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Generalized sampling, infinite-dimensional
compressed sensing, and semi-random sampling for

asymptotically incoherent dictionaries
Ben Adcock*, Anders C. Hansen, Evelyn Herrholz and Gerd Teschke

Abstract—Recent developments in sampling in abstract Hilbert
spaces have led to a new theory of compressed sensing for infinite-
dimensional signals. In this paper, we continue with this theme by
introducing a new type of subsampling for infinite-dimensional
sparse recovery problems, known as semi-random sampling.
As we demonstrate, this allows for subsampling in problems
which previously had not been amenable to more conventional
compressed sensing tools. More specifically, semi-random sam-
pling allows one to overcome the so-called incoherence barrier,
which limits the potential for subsampling via standard random
sampling techniques. The key to this improvement is a property
known as asymptotic incoherence. In the final part of this
paper we provide specific estimates for this property in several
important cases, and illustrate via numerical example the benefit
of semi-random sampling.

Index Terms—Compressed sensing, generalized sampling, in-
coherence, asymptotic incoherence, semi-random sampling

I. INTRODUCTION

Compressed sensing (CS) has been one of the major devel-
opments in applied mathematics in the last decade [10], [17],
[16], [25], [27]. The key to its success is that it allows one
to exploit a particular signal structure, namely sparsity, to cir-
cumvent the traditional barriers of sampling theory (such as the
Nyquist rate) [13], [14], [15]. In addition, efficient algorithms,
based on l1-minimization, allow the practical realization of
such a theory.

However, CS deals only with the reconstruction of vectors in
finite-dimensional vector spaces. In other words, it is a finite-
dimensional theory. On the other hand, many problems one
encounters in applications are inherently infinite-dimensional:
the signal f lives in some function space (typically a Hilbert
or Banach space), and its samples form some countable
collection (typically in l2(N)). Take, for example, the Magnetic
Resonance Imaging (MRI) problem. Here f (the image) is
modelled as an element of the Hilbert space H = L2(−b, b)d,
with the samples {ζj(f)}j∈N being pointwise evaluations of
the Fourier transform of f . Suppose now that f is known to
be sparse in some basis {ϕj}j∈N for H. It is by no means
obvious how to apply current CS techniques to this problem
(see §I-D for details). In particular, to use current tools, one
must first somehow ‘discretize’ the problem, so as to reduce
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it to one involving finite vectors and matrices. How best to
carry out such a discretization is, in general, neither clear nor
straightforward.

The MRI problem also illustrates a point that is key to what
follows. In many important applications the sampling scheme
{ζj}j∈N is fixed. Although much work in finite-dimensional
CS is devoted to designing efficient measurement systems,
there are numerous applications for which one does not have
the luxury to choose how to sample. This is the case in MRI,
where the physical device takes pointwise measurements of
the Fourier transform, and this cannot easily be altered. Thus,
throughout this paper, we deal exclusively with the problem
of how to reconstruct given fixed samples.

A. Infinite-dimensional CS

The fact that the standard CS framework can only be applied
to finite-dimensional problems has been acknowledged, but
an extension to infinite-dimensional problems (of the above
type) was only recently introduced in [3], based on ideas
from [30]. Therein it was proposed to tackle the infinite-
dimensional problem directly. Rather than discretizing first,
and applying existing tools (an approach that may well not be
successful [3]), the idea is to formulate the sparse recovery
problem in infinite-dimensions, and then discretize. Provided
such discretization is carried out appropriately, one obtains
new techniques, and indeed a whole new theory, for CS in
infinite dimensions (see §II for details).

With this in mind, the purpose of this paper is to continue
the development of infinite-dimensional CS. Specifically, we
introduce a new type of sampling, based on so-called asymp-
totic incoherence, which improves on the techniques of [3].

Remark 1 Recently there have been a number of other at-
tempts at generalizations of compressed sensing to infinite-
dimensional (or analog) signal models. See [19], [23], [39],
[40]. Other infinite-dimensional generalizations (for specific
problems) have also been considered in [31], [41], [42]. We
remark that these are quite different in character (i.e. they
treat different types of signal models) to the generalization
considered in this paper and [3]. In a sense, the generalization
we propose is a natural extension of the current theory: rather
than orthonormal vectors in finite-dimensional vector spaces,
we consider orthonormal bases in separable Hilbert spaces.

It is also worth noting that there are number of alternatives
to CS for infinite-dimensional signal models. Amongst the
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most well-known is the technique of finite rates of innovation,
due to Vetterli et al. See [9], [18], [47] for further details.

B. Generalized sampling (GS): sampling and reconstruction
in infinite-dimensions

The framework developed in [3] is part of a new approach
to problems in sampling, known as generalized sampling (GS).
First introduced in [2], [4], [6], [7], GS works directly with an
infinite-dimensional signal model. That is, we assume that f ∈
H is an element of a separable Hilbert space H, its samples

ζj(f), j ∈ N, (1)

are actions of linear functionals ζj : H → C on H, and
the reconstruction system is a basis {ϕj}j∈N for H. As
evidenced by the MRI problem, such a model is often far
more representative of reality (in this case, the reconstruction
basis could, for example, consist of wavelets).

Of course, although f has infinitely many samples (1),
in practice we will only have access to a finite number
N . Thus, we may ask the following question: how good a
reconstruction can we obtain from this finite collection? What
generalized sampling provides is a framework that allows one
to model signals as infinite-dimensional objects, whilst giving
a practical numerical algorithm for reconstruction from the
given collection of finitely many measurements.

GS, as introduced in [2], [7], does not require sparsity to
obtain a reconstruction. A key property is that it give estimates
for the reconstruction error committed through reconstructing
from only N measurements (naturally, an arbitrary, nonsparse
f cannot typically be recovered perfectly from only finitely
many samples). In [3], the GS framework was combined with
random subsampling and convex optimization techniques to
exploit sparsity, leading to so-called generalized sampling with
compressed sensing (GS–CS).

C. Incoherence, asymptotic incoherence and semi-random
sampling

A key theorem proved in [3] states that if f is k-sparse in
the orthonormal basis {ϕj}j∈N, i.e.

f =

∞∑
j=1

αjϕj , |{j : αj 6= 0}| = k,

then, under a number of assumptions (see §II) it is possible to
recover f perfectly by subsampling. The amount of subsam-
pling depends critically on the coherence µ of the sampling
system {ζj}j∈N and the reconstruction basis {ϕj}j∈N:

µ = sup
i∈N

sup
j∈N
|ζi(ϕj)|.

In particular, when µ is small (see §II for specific estimates),
then one requires, up to a log-factor, only O (k) samples to
recover f exactly (with high probability).

The coherence µ is a fundamental quantity related to the
sampling and reconstruction specifications. Recall that the
system {ζj}j∈N is fixed. The reconstruction basis {ϕj}j∈N
is also typically fixed, since this is the basis we know f
to be sparse in. Hence, one cannot necessarily alter either

the sampling or reconstruction specification, and therefore the
coherence µ is, for all intents and purposes, also fixed. As a
result, there may well be situations where µ is large, meaning
that subsampling is not always possible with GS–CS. In fact,
this arises in very straightorward cases, as we shall see later.

Remark 2 This is, of course, not a problem exclusive to
infinite-dimensional CS. It is well known in finite dimensions
that incoherence is essentially necessary to achieve subsam-
pling [11] using CS techniques.

This incoherence barrier places limitations on the amount
of subsampling that can be achieved with random sampling
techniques. However, many pairs {{ζj}j∈N, {ϕj}j∈N}, whilst
not incoherent, actually possess the property of so-called
asymptotic incoherence. More specifically, if

µn = sup
i∈N

sup
j>n
|ζi(ϕj)|,

then asymptotic incoherence is the property that µn →
0 as n → ∞. In other words, for large n, the pair
{{ζj}j∈N, {ϕj}j>n} is incoherent.

With this in mind, the purpose of this paper is to intro-
duce a new approach, known as semi-random subsampling,
that exploits asymptotic incoherence to achieve subsampling,
and therefore circumvent the incoherence barrier. This is a
fundamentally new approach to sampling in infinite dimen-
sions, which builds directly on the GS–CS framework. As we
demonstrate, it proves to be remarkably effective in numerical
examples. Problems with µ = O (1) that would previously not
be amenable to subsampling can now be efficiently tackled
by this new approach. In addition, semi-random sampling
provides an answer to a question posed by K. Gröchenig on
how to subsample from Fourier measurements and achieve
reconstructions in (piecewise) polynomial bases [33].

D. Example

The main example considered in this paper is that of the
MRI problem. In other words, we wish to recover f ∈
L2(−b, b) from pointwise samples of its Fourier transform

Ff(t) =

∫
(−b,b)

f(x)e−2πitx dx, t ∈ R.

Specifically, we shall be interested in reconstructions from the
equispaced samples

ζj(f) = F(ερ(j)), j ∈ N,

where ε ≤ 1
2b and ρ : N → Z is the standard re-indexing

function (i.e. ρ(1) = 0, ρ(2) = 1, ρ(3) = −1,...). Although
the famous Shannon Sampling Theorem [35], [44] guarantees
that f can be recovered exactly from {ζj(f)}j∈N, the recon-
struction given by Shannon (i.e. the Fourier series of f ) is
often useless in applications, due to the slow decay of the
coefficients ζj(f) as j →∞ [25], [44]. Thus, the purpose of
this paper is to introduce different ways to reconstruct f , in
particular, those which take advantage of sparsity.

Remark 3 The MRI problem was one of the original mo-
tivators for CS [13], and work by Lustig et al has led to
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the successful use of finite-dimensional CS in this area [37],
[38]. However, there are some potentially significant issues in
tackling the fundamentally infinite-dimensional MRI problem
with finite-dimensional tools. We shall not discuss this further,
and refer to [3] for details.

E. Key results and outline

The key result of this paper is that one can use asymptotic
incoherence to circumvent the incoherence barrier and achieve
subsampling in situations where it is otherwise not possible.
This aside we shall also give estimates for the behaviour of
µn as n→∞. Specifically, for the problem of §I-D we show
that µn = O(n−

1
2 ) whenever {ϕj}j∈N consists of wavelets

and µn = O(n−
1
3 ) for polynomials.

The outline of the remainder of this paper is as follows.
In §II we recap the work of [2], [3], [4], [7] on generalized
sampling and infinite-dimensional compressed sensing. The
new approach of semi-random sampling is introduced in §III,
and in §IV we provide estimates for asymptotic incoherence
and give numerical examples illustrating the effectiveness of
this approach.

II. GS AND GS–CS

Let {ψj}j∈N and {ϕj}j∈N be orthonormal bases (the sam-
pling and reconstruction bases respectively) for a separable
Hilbert space H with inner product 〈·, ·〉 and norm ‖·‖. Given
f ∈ H, we assume that we have access to the samples

ζj(f) := 〈f, ψj〉, j ∈ N. (2)

The task is to recover f in the basis {ϕj}j∈N (at the moment,
we do not assume any sparsity in this basis). Since

f =

∞∑
j=1

αjϕj , αj = 〈f, ϕj〉,

we wish to compute approximations to the coefficients αj
using the the given samples (2). Naturally, we only have
finitely many samples in practice, hence we typically can only
compute approximations

α̃j ≈ αj , j = 1, . . . ,M,

to the first M coefficients, where M ∈ N is finite.
There are two key issues in the computation of the values
{α̃j}Mj=1 that are vital to what follows:

(i) The value α̃j should be a good approximation to αj ,
j = 1, . . . ,M . The whole premise for reconstructing
f in the basis {ϕj}j∈N is that we know f to have a
‘nice’ representation in this basis; sparsity or rapidly
decaying coefficients, for example. Thus, it is vital
that we approximate the first M coefficients to good
accuracy.

(ii) The computation of {α̃j}Mj=1 should be numerically
stable. In practice, there is always error in computations,
be it from round-off, noise or otherwise. Thus it is vital
to have a stable reconstruction to avoid catastrophic
propagation of errors.

A. Generalized sampling

Suppose now that we have access to the first N samples
{ζj(f)}Nj=1 of f . A common way to reconstruct f would be
to use a consistent reconstruction [20], [21], [22], [26], [45],
[46]. In this technique, one recovers M = N approximate
coefficients α̃j by enforcing the reconstruction be consistent
with the first N measurements {ζj(f)}Nj=1. However, whilst
this technique is useful in some circumstances, there is no
guarantee in general that either of the key properties listed
above will hold. In fact, it is easy to construct examples
where a consistent reconstruction is exponentially unstable and
divergent [2], [4], [6] (see also [20], [24], [32]).

In [2], [7] a new approach, generalized sampling (GS), was
introduced as an alternative to consistent reconstructions. The
key idea is very simple: one should allow the parameters N
(the number of samples) and M (the number of coefficients to
be reconstructed) to vary. When done correctly, via GS, one
obtains both the critical properties listed above.

Let {ej}j∈N be the canonical basis for l2(N) and write
PN : l2(N)→ span{e1, . . . , en} for the orthogonal projection.
Define the change-of-basis operator U : l2(N)→ l2(N) by

U =


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

 , (3)

where ui,j = 〈ϕj , ψi〉. Note that infinite vector of coefficients
α = {α1, α2, . . .} ∈ l2(N) satisfies

Uα = ζ(f),

where ζ(f) = {ζ1(f), ζ2(f), . . .} ∈ l2(N). Naturally, had we
been able to invert U , and had we access to all of ζ(f), we
could have obtained α exactly. However, in general we do not,
and hence we must discretize these equations. This is achieved
by replacing U with its uneven section

PNUPM ∈ CN×M ,

and then solving

PMU
∗PNUPM α̃ = PMU

∗PNζ(f). (4)

where α̃ = {α̃1, . . . , α̃M} ∈ CM is the vector of approximate
coefficients. The GS reconstruction of f is now given by

fN,M =

M∑
j=1

α̃jϕj .

The main theorem proved in [2], [6] is as follows:

Theorem 4. Suppose that M ∈ N is given. Then there exists
an N0 ∈ N such that, for every N ≥ N0, there is a unique
solution α̃ to (4). Furthermore, we have the sharp bound

‖α− α̃‖l2 ≤
1√

1− CN,M
‖P⊥Mα‖l2 , (5)

where P⊥M = I − PM and

CN,M = ‖PM − PMU∗PNUPM‖l2→l2 . (6)

Specifically, N0 is the least N such that CN,M < 1.
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This theorem states the following: given M , we require
N ≥ N0 samples to reconstruct the first M coefficients in
a manner that is guaranteed to be both stable and accurate.
Note that (5) implies accuracy of α̃ ≈ PMα (with PMα
being, of course, the best possible reconstruction of the first M
coefficients α1, . . . , αM ). Regarding stability, one can show
that the condition number of the uneven section PNUPM
behaves like 1√

1−CN,M

. Thus, the same quantity CN,M which

guarantees accuracy allow ensures numerical stability. We note
that CN,M → 0 as N → ∞ for fixed M . Thus, both the
accuracy of α̃ and the condition number of its computation
can be made arbitrarily close to unity.

Remark 5 The consistent reconstruction technique [21], [22],
[26], [45] actually corresponds to GS with M = N . Un-
fortunately, one can quite easily find examples for which
the relevant constant 1√

1−CN,N

is exponentially large in N ,

making this approach completely unstable and nonconvergent.
However, by allowing N ≥ M and using GS instead, one
avoids this issue. GS has been shown to lead to a vast improve-
ment over consistent reconstructions in numerical examples
[2], [6].

Remark 6 Throughout this paper we assume that both the
sampling and reconstruction systems form orthonormal bases
of H. In fact, this is not necessary: one can develop GS
for both Riesz bases [6] and frames [8] with only minor
modifications.

When using GS in practice, it is useful to have a means
to quantify how N must scale with M to ensure stability
and accuracy. In [6] the so-called stable sampling rate was
introduced:

Θ(M ; θ) = min {N ∈ N : CN,M < θ} , θ ∈ (0, 1).

This quantity stipulates at what rate one must sample (i.e.
how many samples to take) to obtain a stable and accurate
reconstruction. Note that setting N ≥ Θ(M ; θ) implies that

1√
1−CN,M

≤ 1√
1−θ , and therefore stability and accuracy are

guaranteed. Specific examples of the behaviour of Θ(M ; θ)
are described in [2], [7].

B. Generalized sampling with compressed sensing
GS does not take advantage of any sparsity in the coeffi-

cients {αj}j∈N. Suppose now that f is k-sparse in the basis
{ϕj}j∈N, i.e. |∆| = k, where

∆ = {j : αj 6= 0}.

In [3], GS was combined with convex optimization techniques
to yield a framework, generalized sampling with compressed
sensing (GS–CS), for subsampling in this setting. We now
review this work.

Suppose that M is such that ∆ ⊆ {1, . . . ,M}. Let N ∈ N
and pick Ω ⊆ {1, . . . , N}, |Ω| = m uniformly at random (note
that m corresponds to the total number of samples to be used
and N the range of indices from which they are drawn). The
GS–CS reconstruction is now given by

inf
η∈l1(N)

subject to PΩUPMη = PΩζ(f), (7)

where U is as in (3). There are now three important questions:
(i) Given M and k how do we choose N? Recall that there

are infinitely many samples {ζj(f)〉}j∈N to draw from.
Moreover, taking M = N may well not work in practice
[3] (this is analogous to case M = N in GS – see
Remark 5).

(ii) We choose Ω ⊆ {1, . . . , N} uniformly at random, but
how big should m = |Ω| be to guarantee recovery
with high probability? Moreover, will we recover f with
probability one if m = N?

(iii) If f is not sparse but compressible, i.e. f = g+h where
g is k-sparse but h =

∑∞
j=1 βjϕj is not sparse but small

in norm. Can we recover f from random subsamples of
{ζj(f)}j∈N? If not, can we at least do so with some
error depending only on h? Moreover, how large should
N and m be to guarantee this recovery?

The answers to these questions are given in the following
theorems. Note that it is the notion of the balancing property
that allows us to determine the correct relationship between
N and M , k:

Definition 7. We say that N and m satisfy the weak balancing
property with respect to U, M and k if

‖PMU∗PNUPM − PM‖ ≤

(
4

√
log2

(
4N
√
k/m

))−1

, (8)

and

max
|Γ|=k

Γ⊆{1,...,M}

‖PMP⊥Γ U∗PNUPΓ‖mr ≤
1

8
√
k
, (9)

where ‖·‖mr is given by (11). If (8) holds and (9) is replaced
by

max
|Γ|=k

Γ⊆{1,...,M}

‖P⊥Γ U∗PNUPΓ‖mr ≤
1

8
√
k
, (10)

then N and m are said to satisfy the strong balancing property
with respect to U, M and k.

In this definition, note that ‖·‖mr is defined by

‖B‖mr = sup
i∈N

√∑
j∈N
|bij |2, (11)

for a bounded operator B : l2(N) → l2(N), where bij =
〈Bej , ei〉.

Remark 8 One can show that both the weak and strong
balancing properties are well defined [3, Prop. 6.2]. Also, note
that (9) and (10) can be replaced by much easier to verify
(although less sharp) conditions [3, Sec. 6].

The balancing property is the direct analogue of the stable
sampling rate for GS–CS. Much like the former, it determines
precisely how to ‘discretize’ the infinite change-of-basis oper-
ator U (3), the additional stipulations in the definition arising
from the desire to exploit the sparsity of the problem.

Let us also define the coherence of U by

µ(U) = sup
i,j∈N

|ui,j |, ui,j = 〈ϕj , ψi〉.
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We are now able to state the key theorems proved in [3]:

Theorem 9 ([3] Thm 7.1). Let M ∈ N, ε > 0 and
suppose that α ∈ l1(N) with ∆ = {j : αj 6= 0}, where
∆ ⊆ {1, . . . ,M} and |∆| = k. Suppose that N and m satisfy
the weak balancing property with respect to U, M and k,
and let Ω ⊆ {1, . . . , N} be chosen uniformly at random with
|Ω| = m. If ζ = Uα then, with probability exceeding 1 − ε,
the problem

inf
η∈l1(N)

‖η‖l1 subject to PΩUPMη = PΩζ, (12)

has a unique solution ξ and this solution coincides with α,
provided m exceeds

C ·N · µ2(U) · k ·
(
log
(
ε−1
)

+ 1
)
· log

(
MN
√
k

m

)
, (13)

for some universal constant C. Furthermore, if m = N then
ξ is unique and ξ = α with probability 1.

Theorem 9 answers questions (i) and (ii) posed previously.
The next result concerns (iii). Before stating this theorem, let
us define the function

ω̃M,U : {1, . . . ,M} × R+ × N→ N

by

ω̃M,U (r, s,N)

=

∣∣∣∣∣
{
i ∈ N : max

Γ1⊆{1,...,N}
Γ2⊆{1,...,M}
|Γ2|=r

‖PΓ2
U∗PΓ1

Uei‖ > s

}∣∣∣∣∣. (14)

Observe that s 7→ ω̃M,U (r, s,N) is a decreasing function.

Theorem 10 ([3] Thm 7.3). Let M ∈ N, ε > 0 and α, h ∈
l1(N) with {j : αj 6= 0} = ∆, where ∆ ⊆ {1, . . . ,M} and
|∆| = k. Define β = α + h. Suppose that N and m satisfy
the strong balancing property with respect to U, M and k,
and let Ω ⊆ {1, . . . , N} be chosen uniformly at random with
|Ω| = m. If ζ = Uβ and ξ ∈ H is a minimizer of

inf
η∈l1(N)

‖η‖l1 subject to PΩUη = PΩζ, (15)

then, with probability exceeding 1− ε, we have that

‖ξ − β‖ ≤
(

20N

m
+ 11 +

m

2N

)
‖h‖l1 , (16)

provided m exceeds

C ·N · µ2(U) · k ·
(
log
(
ε−1
)

+ 1
)
· log

(
ωN
√
k

m

)
, (17)

for some universal constant C, where

ω = ω̃M,U (k, s,N), s =
m

32N
√
k log(e4ε−1)

and ω̃M,U is given by (14). If m = N then (16) holds with
probability 1.

The reader will no doubt have noticed that the optimization
problem (15) is infinite-dimensional. In practice, we solve the
finite-dimensional problem

inf
η∈l1(N)

‖η‖l1 subject to PΩUPtη = PΩζ, (18)

where t ∈ N. One can show that, provided t is taken
sufficiently large, any solution of (18) will approximately solve
(15). Indeed,

Proposition 11 ([3] Prop. 7.4). Let α ∈ l1(N) and PΩ be a
finite rank projection. Then, for all sufficiently large t ∈ N,
there exists an ξt ∈ H satisfying

‖ξt‖l1 = inf
η∈l1(N)

{‖η‖l1 : PΩUPtη = PΩUα} .

Moreover, for every ε > 0 there is a T ∈ N such that, for all
t ≥ T , we have ‖ξt − ξ̃t‖l1 ≤ ε, where ξ̃t satisfies

‖ξ̃t‖l1 = inf
η∈l1(N)

{‖η‖l1 : PΩUη = PΩUα} . (19)

In particular, if there exists a unique minimiser α of (19), then
ξt → α in the l1 norm as t→∞.

C. Summary

Theorems 9 and 10 demonstrate that it is possible with
GS–CS to recover sparse or compressible signals using only
a small number m of their measurements. However, one
notes that the number of samples m depends critically on
the coherence µ(U), or, more precisely, the product Nµ2(U).
Unfortunately, µ(U) is fixed. Therefore if M (and conse-
quently N ) is sufficiently large we cannot expect to be able
to subsample, i.e. we must take a number of samples m equal
to N . This is the so-called incoherence barrier.

Now, in many cases, this may not be a problem: numer-
ical examples given in [3] illustrate sparse recovery with a
good degree of subsampling. In other words, µ(U) is often
sufficiently small so that the incoherence barrier is never
encountered for all reasonable values of M . However, if
µ(U) is 1 (or even if µ(U) is O (1)) then it may well
not be possible to subsample with this approach (specific
examples are given in §IV). Fortunately, the new technique
of sem-random subsampling, which we introduce in the next
section, circumvents this barrier. To do so, it exploits so-
called asymptotic incoherence of many typical sampling and
reconstruction pairs {{ψj}j∈N, {φj}j∈N}.

III. SEMI-RANDOM SAMPLING AND GS–CS
Definition 12. Let {ψj}j∈N and {ϕj}j∈N be orthonormal
bases of a Hilbert space H and suppose that U is the
corresponding change-of-basis operator (3). If

µn := µ(UP⊥n )→ 0, n→∞, (20)

then the pair {{ψj}j∈N, {φj}j∈N} is said to be asymptotically
incoherent.

We give specific examples of pairs which possess this
property in §IV. For now, however, we shall explain how to
exploit this property to achieve subsampling regardless of how
large M is, even in the case that µ(U) = 1.
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A. Semi-random sampling

The key to overcoming the incoherence barrier is a very
simple idea. We shall seek to sample fully those indices
corresponding to the columns of U that are coherent, and
subsample elsewhere.

The sparse case. Suppose first that α ∈ l1(N) and

∆ = {j : αj 6= 0} = ∆1 ∪∆2, (21)

where ∆1 and ∆2 are disjoint with

∆1 ⊆ {1, . . . ,M1}, ∆2 ⊆ {M1 + 1, . . . ,M2},

for some M1,M2 ∈ N. Write k1 = |∆1| and k2 = |∆2|. To
recover α we now proceed as follows:
• Let ε > 0 and suppose that N2,m2 ∈ N satisfy the weak

balancing property with respect to U , M2 and k2. Also,
let m2 exceed

C ·N2 · µ2(UP⊥M1
) · k2

·
(
log
(
ε−1
)

+ 1
)
· log

(
M2N2

√
k2

m2

)
, (22)

for some universal constant C.
• Let N1, m1 := N1 satisfy the weak balancing property

with respect to U , M1 and k1 and let Ω1 = {1, . . . , N1}.
• Choose Ω2 ⊆ {N1 + 1, . . . , N2} uniformly at random

with |Ω2| = m2, and set

Ω = Ω1 ∪ Ω2.

• If ζ = Uα, solve

inf
η∈l1(N)

‖η‖l1 subject to PΩUPM2
η = PΩζ. (23)

The compressible case. Suppose now that β = α+ h, where
h ∈ l1(N) and α satisfies (21). In this case, we make the
following construction:
• Let ε > 0 and suppose that N2,m2 ∈ N satisfy the strong

balancing property with respect to U , M2 and k2. Also,
let m2 exceed

C ·N2 · µ2(UP⊥M1
) · k2

·
(
log
(
ε−1
)

+ 1
)
· log

(
ωN2

√
k2

m2

)
, (24)

where

ω = ω̃M2,U (k2, s,N2), s =
m2

32N2

√
k2 log(e4ε−1)

.

• Let N1, m1 := N1 satisfy the weak balancing property
with respect to U , M1 and k1 and let Ω1 = {1, . . . , N1}.

• Choose Ω2 ⊆ {N1 + 1, . . . , N2} uniformly at random
with |Ω2| = m2, and set

Ω = Ω1 ∪ Ω2.

• If ζ = Uα, solve

inf
η∈l1(N)

‖η‖l1 subject to PΩUPtη = PΩζ, (25)

where t ∈ N is sufficiently large.

It is beyond the scope of this paper to analyse the recon-
structions (23) and (25). However, both Theorems 9 and 10
can be generalized to this case (proofs will be presented in a
separate paper [5] – these are technical, but similar in nature
to the arguments given in [3]). In other words, in the sparse
case, one can show that with probability greater than 1 − ε
there is a unique solution ξ to (23) and this solution coincides
with α. On the other hand, in the compressible case, one can
prove that if ξ is a minimizer of

inf
η∈l1(N)

‖η‖l1 subject to PΩUPη = PΩζ,

then with probability exceeding 1− ε we have

‖ξ − β‖ ≤
(

20N2

m2
+ 11 +

m2

2N2

)
‖h‖l1 . (26)

Hence, using Proposition 11, one finds that the solutions of
(25) will approximately satisfy (26) for sufficiently large M ′2.

B. Explanation of semi-random sampling

With semi-random subsampling we sample deterministically
over those indices in Ω1 = {1, . . . , N1}, where N1 is specified
through M1 and the balancing property. We then subsample
in the incoherent region of U , i.e. that corresponding to the
tail UP⊥M1

. The approach avoids the potential pitfalls of the
standard GS–CS technique of §II (based on random sampling)
in the following manner. Unlike with the latter, the estimates
(22) and (24) both decrease as M1 increases. Thus, one can
take a smaller value of m2, and therefore subsample, even
when the total coherence µ(U) is large.

To obtain a complete picture of how to perform semi-
random sampling, we need estimates for the rate of conver-
gence in (20). These estimates depend completely on the pairs
of sampling and reconstruction bases, and thus must be derived
on a case-by-case basis. Fortunately, as we discuss in the
next section, in many important cases (e.g. reconstructions in
wavelets or polynomials) one can obtain good estimates.

Remark 13 Note that the issue of fixed coherence is not
just a problem in infinite dimensions. Consider the following
example. Let Udf,n ∈ Cn×n denote the discrete Fourier
transform. Then µ(Udf,n) → 0 as n → ∞. However, if
we let Vdw,n ∈ Cn×n denote the discrete wavelet transform
corresponding to the Haar wavelet, then µ(Udf,nV

−1
dw,n) = 1

for all n. In particular, we have the worst possible incoherence.
In this case one may also solve the problem by semi-random
sampling, as suggested above. We omit the details as this paper
is about the infinite-dimensional case. Note, however, that
in the finite-dimensional case, such a semi-random sampling
technique has already been used in applications [43] (in this
paper it is referred to as the “half-half strategy”).

IV. ESTIMATES FOR ASYMPTOTIC INCOHERENCE

Recall the main example of this paper (§I-D) which con-
cerns reconstructions from equispaced samples of the Fourier
transform. The purpose of this section is to obtain estimates
for (20) for this type of sampling in the cases where the recon-
struction basis is consists of (i) wavelets and (ii) polynomials.
Proof are found in Appendix B.
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A. Wavelet bases

Let Ωa = {ϕj}j∈N be an orthonormal system of wavelets
such that L2(0, a) ⊂ span{Ωa} ⊂ L2(−b, b), where 0 <
a, b <∞, with mother wavelet ψ and a scaling function φ (see
Appendix A for a general construction). Note that L2(0, a) is
chosen for simplicity, and this extends in an obvious way to
L2(−a/2, a/2). If

ψj(·) =
√
εe2πiερ(j)·, j ∈ N, (27)

(recall ρ from §I-D), then let U denote the corresponding
infinite matrix (3). We are interested in the behaviour of
µn = µ(UP⊥n ). We have

Theorem 14. Let Ωa and U be as above with a ≥ 1. Then

µ(UP⊥n ) ≤

{√
εmax{A,B} n < 2dae − 1,
√
ε
√

2
−blog2(n+3

dae −3)c
B n ≥ 2dae − 1,

(28)

where
A = sup

t∈R
|Fφ(t)|, B = sup

t∈R
|Fψ(t)|.

In particular,

µ(UP⊥n ) = O
(√

ε

n

)
, n→∞. (29)

Corollary 15. Suppose that {ϕj}j∈N are the Haar wavelets
spanning L2([0, 1]), and let {ψj}j∈N be given by (27). If U
is as in (3), we have

µ(U) =
√
ε, µ(UP⊥n ) ≤ 0.73 ·

√
ε

√
2
blog2(n)c , n ∈ N.

In particular, when n is a power of two, then

µ(UP⊥n ) ≤ 0.73 ·
√
ε√

n
.

Theorem 14 comes as a nice surprise. First, it is true for all
wavelets! Second, the result is rather striking when compared
with the DFT matrix Udf,n ∈ Cn×n. In this case, one has
µ(Udf,n) = O(1/

√
n); a result which is often referred to as

perfect incoherence [12].

B. An example with wavelets

We now give an example of semi-random sampling with
wavelets, using Fourier sampling described in (27) with ε = 1.
Let f ∈ L2(− 1

2 ,
1
2 ) be given by

f(x) =

K∑
j=1

αjϕj(x) + (x+ 1
2 )2e−x−

1
2 ,

where {ϕj}j∈N is the Haar wavelet basis on [− 1
2 ,

1
2 ], K = 800

and βj ∈ (0, 20] are some arbitrarily chosen numbers with

|{j : βj 6= 0}| = 70.

The classical approach to this problem would be to use the
Shannon Sampling Theorem and construct the partial Fourier
series fN of f . However, as commented, this gives a very poor
reconstruction of f (see also Figure 1). Nonetheless, given that
f = g+h, where g is sparse in the Haar basis, it is natural to

try and recover f using the infinite-dimensional compressed
sensing techniques developed in this paper. In particular, let
fN,m,t and fN1,N2,m2,t be the reconstructions of f obtained
by applying GS–CS with firstly random (§II-B), and secondly
semi-random (§III-A), subsampling. In other words,

fN,m,t =

t∑
j=1

αjϕj , fN1,N2,m2,t =

t∑
j=1

βjϕj ,

where α = {α1, . . . , αt} and β = {β1, . . . , βt} are minimizers
of (18) and (25) respectively.

In Figure 1 we plot the errors committed by the three re-
construction techniques. As expected, the Shannon reconstruc-
tion fN is extremely poor. Moreover, GS–CS with random
subsampling also gives a poor reconstruction. On the other
hand, when semi-random subsampling is used, one obtains a
significantly better reconstruction, despite using precisely the
same total number of samples. The advantage of semi-random
subsampling is exactly as expected, given the analysis of the
previous section. In particular, by Corollary 15, µ(U) = 1,
whereas µ(UP⊥n ) ≤ 0.73√

n
. Note also that both the random and

semi-random reconstructions require only around 38% of the
samples used in the extremely poor reconstruction fN .

C. Polynomial bases

A convenient way to represent signals f ∈ L2(−1, 1)
(especially when f has some smoothness) is with a basis
of orthogonal polynomials. Let us assume once more that f
is sampled via (27). We now consider reconstructions in the
orthonormal basis {ϕj}j∈N, where

ϕj(x) =
√
j − 1

2pj−1(x), j ∈ N, (30)

and pj is the jth Legendre polynomial [1].
There are a number of methods to reconstruct functions

in terms of polynomials from their Fourier samples (see [7],
[28], [29] for details). GS, which in this specific instance turns
out to be closely related to work of Hrycak & Gröchenig
[34], was applied successfully to this problem in [7], and
found to outperform more conventional approaches. Having
said this, none of the existing techniques exploit sparsity to
achieve subsampling. Indeed, Gröchenig has conjectured [33]
the potential use of subsampling for this type of problem,
but there does not currently exist a technique which utilizes
sparsity in this way.

For this reason, we are interested in applying GS–CS to
solve this problem. The question we must therefore ask is
the following: is this scenario well suited to subsampling? An
answer in the affirmative is provided in the next theorem:

Theorem 16. Suppose that {ψj}j∈N and {ϕj}j∈N are as in
(27) and (30) respectively, and let U be given by (3). Then
µ(U) = 1 and

µ(UP⊥n ) = O
(
n−

1
3

)
, n→∞.
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Fig. 1. The errors f − fN (top), f − fN,m,t (avg. 20 trials) (middle)
and f − fN1,N2,m2,t (avg. 20 trials) (bottom), where N = N2 = 1451,
m = 560, N1 = 260, m2 = 300. Note that fN1,N2,m2,t uses only 38%
of the samples used for fN .
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0
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Fig. 2. The absolute value of the Legendre coefficients of f .

D. An example with polynomials

Consider the function

f(x) = sinh(x) + x sin(100x).

Since f is nonperiodic, its reconstruction fN via Shannon is
very poor. On the other hand, since f is smooth it has rapidly
decaying coefficients in the basis of Legendre polynomials.
This is illustrated in Figure 2. As can also be seen from this
figure, we may actually decompose f into g + h, where g is
sparse in the Legendre basis and h has small coefficients. This
suggests that subsampling may be possible.
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−0.5 0 0.5
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1
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Fig. 3. The errors f − fN (top), f − fN,m,t (avg. 20 trials) (middle)
and f − fN1,N2,m2,t (avg. 20 trials) (bottom), where N = N2 = 1001,
m = 370, N1 = 170, m2 = 200. Note that fN1,N2,m2,t uses only 37%
of the samples used for fN .

In Figure 3 we plot the results for the reconstructions fN ,
fN,m,t and fN1,N2,m2,t, where the latter two correspond to
GS–CS with random and semi-random subsampling. As in
the wavelet example, random subsampling gives a poor recon-
struction. However, semi-random approach yields a dramatic
improvement. This is exactly as predicted by Theorem 16.
Note that the semi-random reconstruction also significantly
outperforms the Shannon reconstruction: despite using only
37% of the samples, it improves the reconstruction of f by
roughly seven digits.

Remark 17 Sparse expansions in Legendre polynomials have
also recently been considered by Rauhut & Ward [41].
However, [41] considers a fundamentally different problem.
Therein, the user is free to choose the sampling scheme,
and, as shown, if one takes pointwise samples drawn from a
Chebyshev distribution, then one can successfully subsample.
Herein lies the key difference with this paper. In GS–CS the
sampling scheme (in this case, sampling the Fourier transform
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at equispaced nodes) is considered fixed.
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APPENDIX A
WAVELET BASES

Let us review the basic wavelet approach [2] on how
to create orthonormal subsets {ϕk}k∈N ⊆ L2(R) with the
property that L2(0, a) ⊆ span{ϕk}k∈N for some a > 0.
Suppose that we are given a mother wavelet ψ and a scaling
function φ such that supp(ψ) = supp(φ) = [0, a] for some
a ≥ 1. The most standard approach is to consider the following
collection of functions

Ωa = {φk, ψj,k : supp(φk)o ∩ [0, a] 6= ∅,
supp(ψj,k)o ∩ [0, a] 6= ∅, j ∈ Z+, k ∈ Z, },

where

φk = φ(· − k), ψj,k = 2
j
2ψ(2j · −k).

(the notation Ko denotes the interior of a set K ⊆ R). This
now gives

L2(0, a) ⊆ cl(span{ϕ : ϕ ∈ Ωa}) ⊆ L2(−b, b),

where b > 0 is such that [−b, b] contains the support of all
functions in Ωa. Note that the inclusions may be proper (but
not always, as is the case with the Haar wavelet.) It is easy to
see that

ψj,k /∈ Ωa ⇐⇒
a+ k

2j
≤ 0, a ≤ k

2j
,

φk /∈ Ωa ⇐⇒ a+ k ≤ 0, a ≤ k,

and therefore

Ωa ={φk : |k| = 0, . . . , dae − 1}
∪ {ψj,k : j ∈ Z+, k ∈ Z,−dae < k < 2jdae}.

We will order Ωa as follows:

{φ, φ1, . . . , φdae−1, φ−1, . . . , φ−dae+1, ψ0,0, ψ0,1,

. . . , ψ0,dae−1, ψ0,−1, . . . , ψ0,−dae+1, ψ1,0, . . .}. (31)

APPENDIX B
PROOFS

Proof of Theorem 14: By definition Note that by the
definition of U it follows that

ul,m = ζl(ϕm) =

∫ ∞
−∞

√
ε e−2πiρ(l)εtϕm(t) dt

=
√
εFϕm(ερ(l)), l,m ∈ N.

Thus,

µ(UP⊥n ) = sup{|
√
εFϕm(ερ(l))| : l ∈ N, m > n}. (32)

Note also that

Fφk(t) = e−2πiktFφ(t), (33)

and
Fψj,k(t) = e−2πi2−jkt2

−j
2 Fψ(2−jt). (34)

So, by the ordering in (31) as well as (32), (33) and (34) it
follows that

µ(UP⊥n ) ≤
√
εmax

{
sup
t∈R
|Fφ(t)|, sup

t∈R
|Fψ(t)|

}
,

whenever n < 2dae− 1, which gives the first part of (28). As
for the second part of (28), define the bijection

θ : N \ {1, . . . , 2dae − 2} 3 n 7→ (j, k) s.t.ϕn = ψj,k.

Then, by (34), it follows that

µ(UP⊥n ) ≤ ε 2
−j
2 sup
t∈R
|Fψ(t)|, (j, k) = θ(n+ 1), (35)

for n ≥ 2dae − 1. Thus, to get the bound we only need to
figure out what is j in (j, k) = θ(n + 1). Note that since k
ranges from −dae + 1 to 2jdae − 1 it follows that j must
satisfy j = bqc where

(2q + 1)dae − 1 = r,

for some integer r. In particular,

j =

⌊
log2

(
r + 1

dae
− 1

)⌋
,

however, it is clear that we must have

r = n+ 1− (2dae − 1).

Thus, by (35), we get that

µ(UP⊥n ) ≤ ε
√

2
−blog2(n+3

dae −3)c
sup
t∈R
|Fψ(t)|,

yielding the second part of (28).

Proof of Corollary 15: First, let us observe that φ(x) =
χ[0,1](x) and ψ(x) = χ[0,1/2)(x) − χ[1/2,1](x), which auto-
matically gives

Fφ(t) =
i(e−2πit − 1)

2πt
, Fψ(t) =

ie−2πit(1− eπit)2

2πt
.

Let A and B be as in Theorem 14. Then

A = sup
t∈R
|Fφ(t)| = 1.

Moreover, a simple calculus exercise yields that |Fψ(t)|
has two global maxima at t = ±tmax with |Fψ(tmax)| =
|Fψ(−tmax)| ≤ 0.73. Hence B ≤ 0.73. We may now
apply Theorem 14 with a = 1 to yield the upper bound
for µ(UP⊥n ). Since this also holds for n = 0, we find that
µ(U) ≤

√
ε. To show that µ(U) =

√
ε we merely note that

|u1,1| =
√
ε|Fφ(0)| =

√
ε.

Proof of Theorem 16:
By definition,

u1,1 =

∫ 1

−1

1

2
dx = 1.

Therefore µ(U) ≥ 1. However, since {ψj}j∈N and {φj}j∈N
are orthonormal bases, we must have that

∑∞
j=1 |〈φk, ψj〉|2 =
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1 for any k ∈ N. It follows that µ(U) = 1. Next we consider
the asymptotic bound. Note that

u1,1 = 1, u1,k = 0, k 6= 1,

and that

uj,k = (−1)k

√
k − 1

2

ρ(j)
Jk− 1

2
(ρ(j)π), k ∈ N,

where, for ν ∈ R+, Jν denotes the Bessel function of the
first kind [7]. Note that this follows directly from the integral
representation

jk(z) =
1

2
(−i)k

∫ 1

−1

eiztpk(t) dt, ∀z ∈ C, k ∈ Z+, (36)

(see [1, 10.1.14]), where jk is the spherical Bessel function of
the first kind, given by

jk(z) =

√
π

2z
Jk+ 1

2
(z), k ∈ Z+.

In particular, for any k ∈ N,

sup
j∈N
|uj,k| ≤

√
π
(
k − 1

2

)
sup

t∈[0,∞)

Jk− 1
2
(t)

√
t

. (37)

Thus, to bound the right hand side of (37) we are interested
in estimating supt∈[0,∞) |jν(t)| for ν ∈ Z+. To get such
estimates, let a′ν,r (using notation from [1]) denote the rth

non-negative zero of j′ν . In particular, for some r,

sup
t∈[0,∞)

|jν(t)| = jν(a′ν,r).

However, it is known [48] that

jν(a′ν,1) > jν(a′ν,2) > jν(a′ν,3) > . . . , ν ∈ Z+.

Thus, we only need to have estimates for jν(a′ν,1). It is known
(see [1, 10.1.59]) that

a′ν,1 ∼
(
ν +

1

2

)
+

∞∑
s=1

cs

(
ν +

1

2

)1− 2s
3

, ν →∞, .

where |cs| ≤ 1. Thus, there exists a function θ : R→ R such
that

a′ν,1 = θ(ν)

(
ν +

1

2

)
, lim

ν→∞
θ(ν) = 1.

In particular, we have established that

sup
t∈[0,∞)

Jν+ 1
2
(t)

√
t

=
Jν+ 1

2
(θ(ν)

(
ν + 1

2

)
)√

θ(ν)
(
ν + 1

2

) , ν ∈ Z+. (38)

From (37) and (38) it follows that

µ(UP⊥n ) ≤ sup
m>n

√
π

θ(m− 1)
Jm− 1

2

(
θ(m− 1)

(
m− 1

2

))
. (39)

In [36] it was shown that

|Jν(t)| < bν−1/3, t ∈ R, ν ∈ R+, (40)

where b = 0.674885 . . .. Hence, from (39) and (40) we obtain

µ(UP⊥n ) = O
(

1

n1/3

)
, n→∞,

as required.
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