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Abstract. We show that compactly supported functions with sufficient smoothness and enough
vanishing moments can serve as analyzing vectors for shearlet coorbit spaces. We use this approach
to prove embedding theorems for subspaces of shearlet coorbit spaces resembling shearlets on the
cone into Besov spaces. Furthermore, we show embedding relations of traces of these subspaces
with respect to the real axes.

1. Introduction

One of the most important tasks in applied analysis is the analysis of signals which are usually
modeled by (real or complex valued) functions. The first step is always to decompose the signal
with respect to suitable building blocks. There are by now many different ways to choose these
building blocks. Most prominent examples are the Fourier, the wavelet and the Gabor transform,
respectively. All these different transforms have their advantages and drawback, which one to
choose depends on the application and on the specific information one wants to extract from the
signal. However, for many applications, in particular in image analysis, the wavelet transform is
very often the method of choice. Indeed, wavelets are very well suited for piecewise smooth signals
with isolated singularities, for in this case the wavelet expansion turns out to be quite sparse which
gives rise to very efficient compression strategies. Unfortunately it has been observed that the
detection of directional information by wavelets is difficult or at least not very efficient. Therefore,
in recent years, much effort has been spent to design directional representation systems such as the
curvelets [3], the ridgelets [2] and also the shearlets [14] (This list is clearly not complete). Among
all these transforms, the shearlet transform stands out since it stems from a square-integrable group
representation. This has been clarified in [5] where the underlying group, the full shearlet group, has
been established. This pure group theoretical approach to shearlets has some important advantages.
In particular, it is possible to derive canonical smoothness spaces associated with the shearlet
transform. The basic tool to do this is provided by the coorbit space theory derived by Feichtinger
and Gröchenig in a series of papers [8, 9, 10]. Under certain additional integrability conditions, the
smoothness spaces related with a square-integrable group representation are defined by the decay
of the associated voice transform. This technique is quite universal, and the classical smoothness
spaces such as Besov and modulation spaces can be interpreted as coorbit spaces associated with
the affine group and the Weyl-Heisenberg group, respectively. Moreover, the coorbit space theory
provides a very general discretization technique which produces atomic decompositions and Banach
frames for the coorbit spaces.

In [6], it has been clarified that the coorbit theory is indeed applicable to the full shearlet group.
Moreover, in [7], a natural generalization to arbitrary space dimensions has been derived.
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However, once these new smoothness spaces, the shearlet coorbit spaces, are established, some
natural questions arise. How do these spaces really look like? Are there ‘nice’ sets of functions that
are dense in these spaces? What are the relations to classical smoothness spaces such as Besov
spaces? Do there exist embeddings into Besov spaces? And do there exist generalized versions of
Sobolev embedding theorems for shearlet coorbit spaces? Moreover, can the associated trace spaces
be identified? In this paper, we provide some first answers to these questions. We concentrate on
the two-dimensional case, and we show that

• For large classes of weights, variants of Sobolev embeddings exist;
• for natural subclasses which in a certain sense correspond to the ‘shearlets on the cone’

[17], there exist embeddings into (homogeneous) Besov spaces:
• for the same subclass, the traces onto the coordinate axis can again be identified with

homogeneous Besov spaces.
Our approach heavily relies on atomic decomposition techniques. Recall that the coorbit space

theory naturally gives rise to Banach frames, and therefore, by using the associated norm equiva-
lences, all the tasks outlined above can be studied by means of weighted sequence. In particular,
based on the general analysis in [15], quite recently this technique has been applied to derive new
embedding and trace results for Besov spaces [19]. The analysis presented in this paper was partially
inspired by this thesis.

To make this approach really powerful, it is very convenient and sometimes even necessary to
work with compactly supported building blocks. In the shearlet case, this is a nontrivial problem,
since usually the analyzing shearlets are band-limited functions. For the specific case of shearlets
on the cone, quite recently a first solution has been provided in [16]. We refer to the overview
article [18] for a detailed discussion. Since the shearlets on the cone do not really fit into the group
theoretical setting, we provide a new construction of families of compactly supported shearlets in
this paper. We show that indeed a compactly supported function with sufficient smoothness and
enough vanishing moments can serve as an analyzing vector for shearlet coorbit spaces.

This paper is organized as follows: We start by introducing the shearlet group in Section 2. In
Section 3 we consider shearlet coorbit spaces, their atomic decompositions and shearlet Banach
frames. We show that compactly supported shearlets can be used as analyzing vectors for these
spaces, in particular there exist compactly supported shearlets within so-called ’better’ sets used to
define atomic decompositions. Finally we prove that the Schwartz functions are dense in our shearlet
coorbit spaces. Section 4 deals with relations between shearlet coorbit spaces and Besov spaces.
After recalling the general characteristics of homogeneous Besov spaces we prove embeddings of
traces of certain subspaces of shearlet coorbit spaces on the real axes into (sums of) onedimensional
Besov spaces. Finally, we show that these shearlet coorbit subspaces are themselves embedded into
(sums of) Besov spaces of appropriate smoothness.

2. The Shearlet Group

In this section, we provide the basic notation and results about the shearlet group and its square
integrable representations including the corresponding admissible functions, the so-called shearlets.
For a ∈ R∗ := R \ {0} and s ∈ R, let

Aa :=
(

a 0
0 sgn (a)

√
|a|

)
and Ss :=

(
1 s
0 1

)

denote the parabolic scaling matrix and the shear matrix, respectively, where sgn (a) denotes the
sign of a. The (full) shearlet group S is defined to be the set R∗ ×R×R2 endowed with the group
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operation
(a, s, t) (a′, s′, t′) = (aa′, s + s′

√
|a|, t + SsAat

′).
A left–invariant and right-invariant Haar measures of S is given by

µS,l =
da

|a|3 ds dt and µS,r =
da

|a| ds dt,

respectively and the modular function of S by 4(a, s, t) = 1/|a|2. In the following, we use the
left-invariant Haar measure µS = µS,l. Let Lx, Rx denote the left and right translations by x ∈ S,
i.e., LxF (y) := F (x−1y) and RxF (y) := F (yx).

Recall that a unitary representation of a locally compact group G with the left–invariant Haar
measure µG on a Hilbert space H is a homomorphism π from G into the group of unitary operators
U(H) on H which is continuous with respect to the strong operator topology. For the shearlet
group the mapping π : S→ U(L2(R2)) defined by

π(a, s, t) ψ(x) := |a|− 3
4 ψ(A−1

a S−1
s (x− t)) = |a|− 3

4 ψ

(
1
a

(x1 − t1 − s(x2 − t2)) ,
sgn a√
|a| (x2 − t2)

)

(1)
is a unitary representation of S, see [5, 6]. In the following, we use the abbreviation ψa,s,t :=
π(a, s, t) ψ. Let the Fourier transform be defined by

Ff(ω) = f̂(ω) =
∫

R2

f(x)e−2πi〈ω,x〉 dx.

Then straightforward computation yields

ψ̂a,s,t(ω) = |a| 34 e−2πitωψ̂
(
AT

a ST
s ω

)
= |a| 34 e−2πitωψ̂

(
aω1, sgn (a)

√
|a|(sω1 + ω2)

)
. (2)

A function ψ ∈ L2(R2) is called admissible, if
∫

S
|〈ψ, π(g)ψ〉|2dµS(g) < ∞.

If a unitary representation π is irreducible and there exists at least one admissible function ψ ∈
L2(R2) then π is called square integrable.

The following result from [6] shows that the unitary representation π defined in (1) is a square-
integrable representation of S.

Theorem 2.1. A function ψ ∈ L2(R2) is admissible if and only if it fulfills the admissibility
condition

Cψ :=
∫

R

∫

R

|ψ̂(ω1, ω2)|2
ω2

1

dω2 dω1 < ∞. (3)

Then, for any f ∈ L2(R2), the following equality holds true:
∫

S
|〈f, ψa,s,t〉|2 dµS(a, s, t) = Cψ ‖f‖2

2 . (4)

In particular, the unitary representation π is irreducible and hence square-integrable.

A function ψ ∈ L2(R2) fulfilling the admissibility condition (3) is called a continuous shearlet.
The transform SHψ : L2(R2) → L2(S) defined by

SHψf(a, s, t) = 〈f, ψa,s,t〉 (5)
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and is called Continuous Shearlet Transform. The admissibility condition is important, since it
implies a resolution of identity that allows the reconstruction of a function f ∈ L2(R2) from its
Continuous Shearlet Transform.

3. Shearlet Coorbit Spaces from Shearlets with Compact Support

3.1. Shearlet Coorbit Spaces. Let w be a positive, real-valued, continuous submultiplicative
weight on S, i.e., w(gh) ≤ w(g)w(h) for all g, h ∈ S. To define our coorbit spaces we need the set

Aw := {ψ ∈ L2(R2) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w}.
of analyzing vectors. In the following, we assume that our weight is symmetric with respect to the
modular function, i.e., w(g) = w(g−1)4(g−1). Starting with an ordinary weight function w, its
symmetric version can be obtained by w#(g) := w(g) + w(g−1)4(g−1). Moreover, it was proved in
Lemma 2.4 of [8] that Aw = Aw# .

We want to show that Aw contains shearlets with compact support. To this end, we need the
following auxiliary lemma which is a modification of Lemma 11.1.1 in [11].

Lemma 3.1. For r > 1 and α > 0, the following estimate holds true

I(x) :=
∫

R
(1 + |t|)−r (1 + α|x− t|)−r dt ≤ C

(
1
α

(1 + |x|)−r + (1 + α|x|)−r

)
.

Proof. Let

Nx :=
{

t ∈ R : |t− x| ≤ |x|
2

}
, N c

x :=
{

t ∈ R : |t− x| > |x|
2

}
.

Then we obtain for t ∈ Nx by |x| − |t| ≤ |t− x| ≤ |x|/2 that |t| ≥ |x|/2 and consequently

(1 + |t|)−r ≤
(

1 +
|x|
2

)−r

≤ 2r(1 + |x|)−r.

Now the above integral can be estimated as follows:

I(x) =
∫

Nx

(1 + |t|)−r(1 + α|x− t|)−r dt +
∫

N c
x

(1 + |t|)−r(1 + α|x− t|)−r dt

≤ 2r(1 + |x|)−r

∫

Nx

(1 + α|x− t|)−r dt +
(

1 + α
|x|
2

)−r ∫

N c
x

(1 + |t|)−r dt

≤ 2r 1
α

(1 + |x|)−r

∫

R
(1 + |u|)−r du + 2r(1 + α|x|)−r

∫

R
(1 + |t|)−r dt.

This implies the assertion. ¤
Let QD := [−D,D] × [−D, D]. The following theorem shows that Aw contains shearlets with

compact support.

Theorem 3.2. Let ψ(x) ∈ L2(R2) fulfill suppψ ∈ QD. Suppose that the weight function satisfies
w(a, s, t) = w(a) ≤ |a|−ρ1 + |a|ρ2 for ρ1, ρ2 > 0 and that

|ψ̂(ω1, ω2)| ≤ C
|ω1|n

(1 + |ω1|)r

1
(1 + |ω2|)r

(6)

with n ≥ max(1
4 +ρ2,

9
4 +ρ1) and r > n+max(7

4 +ρ2,
9
4 +ρ1). Then we have that SHψ(ψ) ∈ L1,w(S),

i.e.,

I :=
∫

S
|SHψ(ψ)(g)|w(g) dµ(g) < ∞.
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Proof. First we have by the support property of ψ that SHψ(ψ) = 〈ψ, ψa,s,t〉 6= 0 requires (x1, x2) ∈
QD and

−D ≤ sgn a√
|a| (x2 − t2) ≤ D,

−D ≤ 1
a

(x1 − t1 − s(x2 − t2)) ≤ D.

Hence 〈ψ, ψa,s,t〉 6= 0 implies that

−D(1 +
√
|a|) ≤ t2 ≤ D(1 +

√
|a|),

−D
(
1 + |a|+ |s|(2 +

√
|a|)

)
≤ t1 ≤ D

(
1 + |a|+ |s|(2 +

√
|a|)

)
.

Using this relation we obtain that

I ≤
∫

R∗

∫

R
4D2(1 +

√
|a|)

(
1 + |a|+ |s|(2 +

√
|a|)

)
|〈ψ,ψa,s,t〉| dsw(a)

da

|a|3 .

Next, Plancherel’s equality together with (2) and the decay assumptions on ψ̂ yield

I ≤ C

∫

R∗

∫

R
(1 +

√
|a|)

(
1 + |a|+ |s|(2 +

√
|a|)

)
|〈ψ̂, ψ̂a,s,t〉| dsw(a)

da

|a|3

≤ C

∫

R∗

∫

R


1 + |a| 12 + |a|+ |a| 32︸ ︷︷ ︸

p3(|a| 12 )

+|s|(2 + 3|a| 12 + a︸ ︷︷ ︸
p2(|a| 12 )

)


 J(a, s) dsw(a)

da

|a|3

where |SHψψ(a, s, t)| ≤ J(a, s) and

J(a, s) := |a| 34
∫

R

∫

R

|ω1|n
(1 + |ω1|)r

1
(1 + |ω2|)r

|aω1|n
(1 + |aω1|)r

1
(1 +

√
|a| |sω1 + ω2|)r

dω2dω1

=
∫

R

|ω1|n
(1 + |ω1|)r

|aω1|n
(1 + |aω1|)r

∫

R

1
(1 + |ω2|)r

1
(1 +

√
|a| |sω1 + ω2|)r

dω2dω1.

The inner integral can be estimated by Lemma 3.1 which results in

J(a, s) ≤ C |a|n+ 3
4

∫

R

|ω1|n
(1 + |ω1|)r

|ω1|n
(1 + |aω1|)r

(
1√

|a| (1 + |sω1|)r
+

1
(1 +

√
|a| |sω1|)r

)
dω1. (7)

Now we obtain

I ≤ C

(∫

R∗

∫

R

∫

R
|a|n− 11

4 (p3 + |s|p2)
|ω1|2n

(1 + |ω1|)r(1 + |aω1|)r

1
(1 + |sω1|)r

dsdω1w(a)da

+
∫

R∗

∫

R

∫

R
|a|n− 9

4 (p3 + |s|p2)
|ω1|2n

(1 + |ω1|)r(1 + |aω1|)r

1
(1 +

√
|a| |sω1|)r

dsdω1w(a)da

)
.
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Since the integrand is even in ω1, s and a this can be further simplified as

I ≤ C

(∫ ∞

0
an− 11

4 p3(
√

a)
∫ ∞

0

ω2n
1

(1 + ω1)r(1 + aω1)r

∫ ∞

0

1
(1 + sω1)r

dsdω1w(a)da

+
∫ ∞

0
an− 11

4 p2(
√

a)
∫ ∞

0

ω2n
1

(1 + ω1)r(1 + aω1)r

∫ ∞

0

s

(1 + sω1)r
dsdω1w(a)da

+
∫ ∞

0
an− 9

4 p3(
√

a)
∫ ∞

0

ω2n
1

(1 + ω1)r(1 + aω1)r

∫ ∞

0

1
(1 +

√
asω1)r

dsdω1w(a)da

+
∫ ∞

0
an− 9

4 p2(
√

a)
∫ ∞

0

ω2n
1

(1 + ω1)r(1 + aω1)r

∫ ∞

0

s

(1 +
√

asω1)r
dsdω1w(a)da

)
.

Substituting t := sω1 with dt = ω1 ds in the first two integrals and t :=
√

asω1 with dt =
√

aω1 ds
in the last two integrals, we obtain for r > 2 that

I ≤ C

(∫ ∞

0

ω2n−1
1

(1 + ω1)r

∫ ∞

0
an− 11

4 p3(
√

a)
1

(1 + aω1)r
w(a)dadω1

+
∫ ∞

0

ω2n−2
1

(1 + ω1)r

∫ ∞

0
an− 11

4 p2(
√

a)
1

(1 + aω1)r
w(a)dadω1

+
∫ ∞

0

ω2n−1
1

(1 + ω1)r

∫ ∞

0
an− 11

4 p3(
√

a)
1

(1 + aω1)r
w(a)dadω1

+
∫ ∞

0

ω2n−2
1

(1 + ω1)r

∫ ∞

0
an− 13

4 p2(
√

a)
1

(1 + aω1)r
w(a)dadω1

)
.

Substituting b := aω1 with db = ω1da and bounding w accordingly we conclude further that

I ≤ C




∫ ∞

0

ω
n+ 3

4
+ρ1

1

(1 + ω1)r

∫ ∞

0
p3

(√
b

ω1

)
bn− 11

4
−ρ1

(1 + b)r
dbdω1

+
∫ ∞

0

ω
n− 1

4
+ρ1

1

(1 + ω1)r

∫ ∞

0
p2

(√
b

ω1

)
bn− 11

4
−ρ1

(1 + b)r
dbdω1

+
∫ ∞

0

ω
n+ 1

4
+ρ1

1

(1 + ω1)r

∫ ∞

0
p2

(√
b

ω1

)
bn− 13

4
−ρ1

(1 + b)r
dbdω1

+
∫ ∞

0

ω
n+ 3

4
−ρ2

1

(1 + ω1)r

∫ ∞

0
p3

(√
b

ω1

)
bn− 11

4
+ρ2

(1 + b)r
dbdω1

+
∫ ∞

0

ω
n− 1

4
−ρ2

1

(1 + ω1)r

∫ ∞

0
p2

(√
b

ω1

)
bn− 11

4
+ρ2

(1 + b)r
dbdω1

+
∫ ∞

0

ω
n+ 1

4
−ρ2

1

(1 + ω1)r

∫ ∞

0
p2

(√
b

ω1

)
bn− 13

4
+ρ2

(1 + b)r
dbdω1


 .

Regarding that pk ∈ Πk, k = 2, 3 we see that the integrals are finite if n ≥ max(1
4 + ρ2,

9
4 + ρ1) and

r > n + max(7
4 + ρ2,

9
4 + ρ1). This finishes the proof. ¤
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For an analyzing vector ψ we can consider the space

H1,w := {f ∈ L2(R2) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (8)

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼1,w, the space of all continuous conjugate-
linear functionals onH1,w. The spacesH1,w andH∼1,w are π-invariant Banach spaces with continuous
embeddingH1,w ↪→ H ↪→ H∼1,w. Then the inner product on L2(R2)×L2(R2) extends to a sesquilinear
form on H∼1,w ×H1,w, therefore for ψ ∈ H1,w and f ∈ H∼1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼1,w×H1,w

are well-defined.
Let m be a w-moderate weight on S which means that m(xyz) ≤ w(x)m(y)w(z) for all x, y, z ∈ S.

For 1 ≤ p ≤ ∞, let
Lp,m(S) := {F measurable : Fm ∈ Lp(S)}.

We are interested in the following Banach spaces which are called shearlet coorbit spaces

SCp,m := {f ∈ H∼1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m := ‖SHψf‖Lp,m(S). (9)

Note that the definition of SCp,m is independent of the analyzing vector ψ and of the weight w in
the sense that w̃ with w(g) ≤ Cw̃(g) for all g ∈ S and Aw̃ 6= {0} give rise to the same space see [8,
Theorem 4.2].

In applications, one may start with some sub-multiplicative weight m and use the symmetric
weight w := m# for the definition of Aw. Obviously, we have that m is w-moderate.

3.2. Atomic Decompositions and Shearlet Banach Frames. To construct atomic decompo-
sitions and Banach frames of our shearlet coorbit spaces the following better subset Bw of Aw has
to be non-empty

Bw := {ψ ∈ L2(R2) : SHψ(ψ) ∈ W(C0, L1,w)},
where W(C0, L1,w) is the Wiener-Amalgam space

W(C0, L1,w) := {F : ‖(LxχQ)F‖∞ ∈ L1,w}, ‖(LxχQ)F‖∞ = sup
y∈xQ

|F (y)|

and Q is a relatively compact neighborhood of the identity element in S, see [13]. Note that
in general Bw is defined with respect to the right version WR(C0, L1,w)) := {F : ‖(RxχQ)F‖∞ =
supy∈Qx−1 |F (y)| ∈ L1,w} of the Wiener-Amalgam space. Regarding that SHψ(ψ)(g) = SHψψ(g−1)
and assuming that Q = Q−1 both definitions of Bw coincide.

Corollary 3.3. Let ψ(x) ∈ L2(R2) fulfill suppψ ∈ QD. Suppose that the weight function satisfies
w(a, s, t) = w(a) ≤ |a|−ρ1 + |a|ρ2 for ρ1, ρ2 > 0 and that

|ψ̂(ω1, ω2)| ≤ C
|ω1|n

(1 + |ω1|)r

1
(1 + |ω2|)r

(10)

for sufficiently large n and r. Then we have that ψ ∈ Bw.

Proof. To keep technicalities at a reasonable level, we restrict ourselves to the case w ≡ 1. Let
Q = Q−1 ⊂ [ 1

α , α]× [−σ, σ]×Qτ , where α > 1, σ, τ > 0. In the following, we restrict our attention
to group elements of S with a > 0 and s ≥ 0. The other cases can be deduced in a similar way. Let
(aq, sq, tq) ∈ Q and

(a′, s′, t′) := (a, s, t)(aq, sq, tq) =
(

aaq, s + sq

√
a,

(
t1 + atq,1 +

√
a s tq,2

t2 +
√

a tq,2

))
.
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We are interested in
G(a, s, t) := sup

(aq ,sq ,tq)∈Q
|SHψψ(a′, s′, t′)|.

As in the proof of Theorem 3.2 we have that SHψψ(a′, s′, t′) is zero if t′ does not fulfill

−D ≤ 1√
a′

(x2 − t′2) ≤ D,

−D ≤ 1
a′

(
x1 − t′1 − s′(x2 − t′2)

) ≤ D,

where x ∈ QD. By definition of a′, s′, t′ this implies that

x2 −
√

a tq,2 −D
√

aqa ≤ t2 ≤ x2 −
√

a tq,2 + D
√

aqa,

r −Daaq ≤ t1 ≤ r + Daaq,

where r := x1− atq,1−
√

a s tq,2− (s+ sq
√

a)(x2− t2−
√

a tq,2. By definition of Q we conclude that
G(a, s, t) becomes zero if t is not contained in

−C(1 +
√

a) ≤ t2 ≤ C(1 +
√

a), C := max{D, D(
√

α + τ},
−P2(

√
a)− sP1(

√
a) ≤ t1 ≤ P2(

√
a) + sP1(

√
a),

where Pk ∈ Πk are polynomials with nonnegative coefficients depending on α, σ and τ . As in the
proof of Theorem 3.2 we conclude that |SHψψ(a′, s′, t′)| ≤ C J(a′, s′), where

J(a′, s′) := (a′)n+ 3
4

∫

R

|ω1|2n

(1 + |ω1|)r(1 + |a′ω1|)r

(
1√

a′ (1 + |s′ω1|)r
+

1
(1 +

√
a′ |s′ω1|)r

)
dω1

= (aaq)n+ 3
4

∫

R

|ω1|2n

(1 + |ω1|)r(1 + |aaqω1|)r

(
1√

aaq (1 + |s + sq
√

a||ω1|)r

)
dω1

+ (aaq)n+ 3
4

∫

R

|ω1|2n

(1 + |ω1|)r(1 + |aaqω1|)r

(
1

(1 +√
aaq |s + sq

√
a||ω1|)r

)
dω1.

For 0 ≤ s ≤ 2σ
√

a we use the estimate |s + sq
√

a| ≥ 0 to get

|G(a, s, t)| ≤ Can+ 3
4

(
1√
a

+ 1
) ∫

R

|ω1|2n

(1 + |ω1|)r( 1
α + |aω1|)r

dω1.

For s > 2σ
√

a we have that |s + sq
√

a| ≥ |s|/2 and consequently

|G(a, s, t)| ≤ Can+ 3
4

∫

R

|ω1|2n

(1 + |ω1|)r( 1
α + |aω1|)r

(
1√

a(2 + |s||ω1|)r
+

1
( 2

α +
√

a|s||ω1|)r

)
dω1.

If the following integral is finite, then we can conclude that G ∈ L1,w:

I :=
∫

S
|G(a, s, t)| dt ds

da

|a|3

≤ C

∫ ∞

0

∫ 2σ
√

a

0

(
p3(
√

a) + sp2(
√

a)
) |G(a, s, t)| ds

da

a3

+ C

∫ ∞

0

∫ ∞

2σ
√

a

(
p3(
√

a) + sp2(
√

a)
) |G(a, s, t)| ds

da

a3
,
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where p3(
√

a) := (1 +
√

a)P2(
√

a) ∈ Π3 and p2(
√

a) := (1 +
√

a)P1(
√

a) ∈ Π2. By the above
estimates of G this can be rewritten as

I ≤ C

∫ ∞

0

∫ ∞

0
an− 9

4
(
p3(
√

a) + p̃3(
√

a)
)
(
√

a + 1)
ω2n

1

(1 + ω1)r( 1
α + aω1)r

da dω1

+ C

∫ ∞

0

∫ ∞

0

∫ ∞

0
an− 11

4
(
p3(
√

a) + sp2(
√

a)
) ω2n

1

(1 + ω1)r( 1
α + aω1)r

1
(2 + sω1)r

dadsdω1

+ C

∫ ∞

0

∫ ∞

0

∫ ∞

0
an− 9

4
(
p3(
√

a) + sp2(
√

a)
) ω2n

1

(1 + ω1)r( 1
α + aω1)r

1
( 2

α +
√

asω1)r
dadsdω1,

where p̃3(
√

a) := 2σ
√

ap2(
√

a) ∈ Π3. The two later integrals can be estimated as in the proof of
Theorem 3.2 with ρ1 = ρ2 = 0 and the first integral by

I1 ≤ C

∫ ∞

0

ω
n+ 5

4
1

(1 + ω1)r

∫ ∞

0
p4

(√
b

ω1

)
bn− 9

4

( 1
α + b)r

dbdω1,

where p4(
√

a) = (p3(
√

a) + p̃3(
√

a)) (
√

a + 1). This integral is finite for n ≥ 9
4 and r > n + 9

4 . This
completes the proof. ¤

A (countable) family X = {(ai, si, ti) : i ∈ I} in S is said to be U -dense if ∪i∈I(ai, si, ti)U = S,
and separated if for some compact neighborhood Q of e we have (ai, si, ti)Q∩(aj , sj , tj)Q = ∅, i 6= j,
and relatively separated if X is a finite union of separated sets. Let α > 1 and σ, τ > 0 be defined
such that

[
1
α

, α)× [−σ, σ)×Qτ ⊂ U. (11)

Then it was shown in [6] that the set

X := {(εα−j , σα−j/2k, Sσα−j/2kAα−jτ l) : j ∈ Z, k ∈ Z, l ∈ Z2, ε ∈ {−1, 1}} (12)

is U -dense and relatively separated. For g ∈ S, let

oscU (g) := sup
u∈U

|SHΨψ(ug)− SHΨψ(g)|.

The following theorem from [6] shows that the functions in our shearlet coorbit spaces possess
atomic decompositions.

Theorem 3.4. Assume that the irreducible, unitary representation π is w-integrable and let an
appropriately normalized ψ ∈ Bw. Choose a neighborhood U of e so small that

‖ oscU ‖L1,w(S) < 1. (13)

Then for any U -dense and relatively separated set X = {(ai, si, ti) : i ∈ I} the space SCp,m has the
following atomic decomposition: If f ∈ SCp,m, then

f =
∑

i∈I
ci(f)π(ai, si, ti)ψ, (14)

where the sequence of coefficients depends linearly on f and satisfies

‖(ci(f))i∈I‖`p,m ≤ C‖f‖SCp,m (15)

with a constant C depending only on ψ and with `p,m being defined by

`p,m := {c = (ci)i∈I : ‖c‖`p,m := ‖cm‖`p < ∞},
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where m = (m(ai, si, ti))i∈I . Conversely, if (ci(f))i∈I ∈ `p,m, then f =
∑

i∈I ciπ(ai, si, ti)ψ is in
SCp,m and

‖f‖SCp,m ≤ C ′‖(ci(f))i∈I‖`p,m . (16)

Given such an atomic decomposition, the problem arises under which conditions a function f
is completely determined by its moments 〈f, π(ai, si, ti)ψ〉, i ∈ I and how f can be reconstructed
from these moments. This is answered by the following theorem from [6] which establishes the
existence of Banach frames.

Theorem 3.5. Impose the same assumptions as in Theorem 3.4. Choose a neighborhood U of e
such that

‖ oscU ‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). (17)

Then, for every U -dense and relatively separated family X = {(ai, si, ti) : i ∈ I} in S the set
{π(ai, si, ti)ψ : i ∈ I} is a Banach frame for SCp,m. This means that

i) f ∈ SCp,m if and only if
(
〈f, π(ai, si, ti)ψ〉H∼1,w×H1,w

)
i∈I

∈ `p,m,

ii) there exist two constants 0 < D ≤ D′ < ∞ such that

D ‖f‖SCp,m ≤ ‖(〈f, π(ai, si, ti)ψ〉H∼1,w×H1,w)i∈I‖`p,w ≤ D′ ‖f‖SCp,m , (18)

iii) there exists a bounded, linear reconstruction operator R from `p,m to SCp,m such that

R
(
(〈f, ψ(ai, si, ti)ψ〉H∼1,w×H1,w)i∈I

)
= f.

4. Structure of Shearlet Coorbit Spaces

4.1. Atomic decomposition of Besov spaces. Let us recall the characterization of homogeneous
Besov spaces Bσ

p,q from [12], see also [15, 20]. For inhomogeneous Besov spaces we refer to [19].
For α > 1, D > 1 and K ∈ N0, a K times differentiable function a on Rd is called a K-atom if the
following two conditions are fulfilled:

A1) supp a ⊂ DQj,m(Rd) for some m ∈ Rd,
where Qj,m(Rd) denotes the cube in Rd centered at α−jm with sides parallel to the coor-
dinate axes and side length 2α−j .

A2) |Dγa(x)| ≤ α|γ|j for |γ| ≤ K.

Now the homogeneous Besov spaces can be characterized as follows.

Theorem 4.1. Let D > 1 and K ∈ N0 with K ≥ 1 + bσc be fixed. Let 1 ≤ p ≤ ∞. Then f ∈ Bσ
p,q

if and only if it can be represented as

f(x) =
∑

j∈Z

∑

l∈Zd

λ(j, l)aj,l(x), (19)

where the aj,l are K-atoms with supp aj,l ⊂ DQj,l(Rd) and

‖f‖Bσ
p,q
∼ inf

( ∑

j∈Z
α

j(σ− d
p
)q( ∑

l∈Zd

|λ(j, l)|p)
q
p

) 1
q

where the infimum is taken over all admissible representations (19).
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In this section, we are mainly interested in weights

m(a, s, t) = m(a) := |a|−r, r ≥ 0

and use the abbreviation
SCp,r := SCp,m.

For simplicity, we further assume in the following that we can use σ = τ = 1 in the U -dense,
relatively separated set (12) and restrict ourselves to the case ε = 1. In other words, we assume
that f ∈ SCp,r can be written as

f(x) =
∑

j∈Z

∑

k∈Z

∑

l∈Z2

c(j, k, l)π(α−j , σα−j/2k, Sα−j/2kAα−j l)ψ(x)

=
∑

j∈Z

∑

k∈Z

∑

l∈Z2

c(j, k, l)α
3
4
jψ(αjx1 − αj/2kx2 − l1, α

j/2x2 − l2). (20)

To derive reasonable trace and embedding theorems, it is necessary to introduce the following
subspaces of SCp,r. For fixed ψ ∈ Bw we denote by SCCp,r be the closed subspace of SCp,r consisting
of those functions which are representable as in (20) but with integers |k| ≤ αj/2. As we shall see in
the sequel for each of these ψ the resulting spaces SCCp,r embed in the same scale of Besov spaces,
and the same holds true for the trace theorems.

4.2. A Density Result. In most of the classical smoothness spaces like Sobolev and Besov spaces
dense subsets of ‘nice’ functions can be identified. Typically, the set of Schwartz functions S serves
as such a dense subset. We refer to [1] and any book of Hans Triebel for further information. By
the following theorem the same is true for our shearlet coorbit spaces.

Theorem 4.2. Let

S0 :=
{

f ∈ S : |f̂(ω)| ≤ ω2α
1

(1 + ‖ω‖2)2α
∀ α > 0

}

and m(a, s, t) = m(a, s) := |a|r( 1
|a| + |a| + |s|)n for some r ∈ R, n ≥ 0. Then the set of Schwartz

functions forms a dense subset of the shearlet coorbit space SCp,m.

Proof. As in [6, Theorem 4.7] it can be shown that S0 is at least contained in SCp,m. (Note that
in [6] the weight ( 1

|a| + |a|)r( 1
|a| + |a|+ |s|)n, r, n > 0 which is not smaller than 1 was considered.)

It remains to show the density. To this end, we observe from Theorem 4.2 in [6] that certain band-
limited Schwartz functions can be used as analyzing shearlets. Now let us recall that the atomic
decomposition in (14) has to be understood as a limit of finite linear combinations with respect
to the shearlet coorbit norm. However, every finite linear combination of Schwartz functions is
again a Schwartz function, hence (14) implies that we have found for any f ∈ SCp,m a sequence of
Schwartz functions which converges to f . ¤
4.3. Traces on the Real Axes. In this subsection, we investigate the traces of functions lying in
certain subspaces of SCp,r with respect to the horizontal and vertical axes, respectively.

Theorem 4.3. Let Trhf denote the restriction of f to the (horizontal) x1-axis, i.e., (Trhf)(x1) :=
f(x1, 0). Then Trh(SCCp,r) ⊂ Bσ1

p,p(R) + Bσ2
p,p(R), where

Bσ1
p,p(R) + Bσ2

p,p(R) := {h | h = h1 + h2, h1 ∈ Bσ1
p,p(R), h2 ∈ Bσ2

p,p(R)}
and the parameters σ1 and σ2 satisfy the conditions

σ1 = r − 5
4

+
3
2p

, σ2 = r − 3
4

+
1
p
.
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Note that σ1 ≤ σ2 for p ≥ 2.

Proof. Using (20) we split f into f = f1 + f2, where

f1(x1, x2) :=
∑

j≥0

∑

|k|≤αj/2

∑

l∈Z2

c(j, k, l)α
3
4
jψ(αjx1 − αj/2kx2 − l1, α

j/2x2 − l2), (21)

f2(x1, x2) :=
∑

j<0

∑

l∈Z2

c(j, 0, l)α
3
4
jψ(αjx1 − l1, α

j/2x2 − l2), (22)

By Theorem 3.3 we can choose ψ compactly supported in [−D,D] × [−D,D] for some D > 1.
Moreover, we can assume that |Dγ

1ψ| ≤ 1 for 0 ≤ γ ≤ K := max{K1,K2}, where K1 := 1 + bσ1c,
K2 := 1 + bσ2c and where D1ψ denotes the derivative with respect to the first component of ψ.
Now Trhf can be written as

Trhf(x1) = f(x1, 0) =
∑

j∈Z

∑

|k|≤αj/2

∑

l∈Z2

c(j, k, l)α
3
4
jψ(αjx1 − l1,−l2)

=
∑

j∈Z

∑

l1∈Z

∑

|k|≤αj/2

∑

|l2|≤D

c(j, k, l1, l2)α
3
4
jψ(αjx1 − l1,−l2)

=
∑

j≥0

∑

l1∈Z
λ(j, l1)aj,l1(x1) +

∑

j<0

∑

l1∈Z
λ(j, l1)aj,l1(x1)

= Trhf1(x1) + Trhf2(x1),

where for j ≥ 0,

aj,l1(x1) :=





λ(j, l1)−1α
3
4
j ∑
|k|≤αj/2

∑
|l2|≤D

c(j, k, l1, l2)ψ(αjx1 − l1,−l2) if λ(j, l1) 6= 0,

0 otherwise,

λ(j, l1) := α
3
4
j

∑

|k|≤αj/2

∑

|l2|≤D

|c(j, k, l1, l2)|,

and for j < 0

aj,l1(x1) :=





λ(j, l1)−1α
3
4
j ∑
|l2|≤D

c(j, 0, l1, l2)ψ(αjx1 − l1,−l2) if λ(j, l1) 6= 0,

0 otherwise,

λ(j, l1) := α
3
4
j

∑

|l2|≤D

|c(j, 0, l1, l2)|.

We have that suppψ(αjx1− l1,−l2) ⊂ DQj,l1(R) which is also true for all aj,l1 and by construction
we know further that |Dγaj,l1 | ≤ αjγ , 0 ≤ γ ≤ K. Thus, the aj,l1 are K1-atoms on R. Next, we
consider

‖Trhf1‖B
σ1
p,p

.
(∑

j∈Z
α

j(σ1− 1
p
)p

∑

l1∈Z
|λ(j, l1)|p

) 1
p

=
(∑

j≥0

α
jp(σ1+ 3

4
− 1

p
)
∑

l1∈Z

( ∑

|k|≤αj/2

∑

|l2|≤D

|c(j, k, l1, l2)|
)p

) 1
p
.
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Since
( ∑N

i=1 |zi|
)p ≤ Np−1

∑N
i=1 |zi|p and the set {k ∈ Z : |k| ≤ αj/2} contains Cαj/2 elements we

can estimate

‖Trhf1‖B
σ1
p,p

.
(∑

j≥0

α
jp(σ1+ 5

4
− 3

2p
)

∑

|k|≤αj/2

∑

l∈R2

|c(j, k, l)|p
) 1

p

.
(∑

j∈Z
αjpr

∑

k∈Z

∑

l∈R2

|c(j, k, l)|p
) 1

p . ‖f‖SCp,r

with r = σ1 + 5
4 − 3

2p . In the same way we obtain that

‖Trhf2‖B
σ2
p,p

.
(∑

j<0

α
jp(σ2+ 3

4
− 1

p
)
∑

l∈R2

|c(j, 0, l)|p
) 1

p

.
(∑

j∈Z
αjpr

∑

k∈Z

∑

l∈R2

|c(j, k, l)|p
) 1

p . ‖f‖SCp,r

with r = σ2 + 3
4 − 1

p . This completes the proof. ¤
By the following corollary the restriction to SCCp,r is not necessary for p = 1.

Corollary 4.4. For p = 1, the embedding Trh(SC1,r) ⊂ Bσ
1,1(R) with σ = r − 3

4 + 1
p holds true.

Proof. Following the lines of the previous proof, where the summation with respect to k is over Z,
we obtain

‖Trhf‖Bσ
1,1

.
∑

j∈Z
αj((σ+ 3

4
)p−1)

∑

l1∈Z

∑

k∈Z

∑

|l2|≤D

|c(j, k, l1, l2)| ≤ C‖f‖SC1,r

with r = σ + 3
4 − 1

p and we are done. ¤
Let us turn to traces on the vertical axis.

Theorem 4.5. Let Trvf denote the restriction of f to the (vertical) x2-axis, i.e., (Trvf)(x2) :=
f(0, x2). Then the embedding Trv(SCCp,r) ⊂ Bσ1

p,p(R) + Bσ2
p,p(R), holds true, where σ1 is the largest

number such that
σ1 + bσ1c ≤ 2r − 9

2
+

3
p
, and σ2 = 2r − 3

2
+

1
p
.

Proof. As in (21) and(21) we split f into f = f1 +f2 , where we can choose ψ compactly supported
in [−D, D]× [−D, D] for some D > 1 and normalized such that the derivatives of order 0 ≤ γ ≤ K
with K := max{K1,K2}, where K1 := 1 + bσ1c, K2 := 1 + bσ2c are not larger than 1. By the
support assumption on ψ we have that

α−j/2(l2 −D) ≤ x2 ≤ α−j/2(l2 + D),
−kl2 −D(1 + |k|) ≤ l1 ≤ −kl2 + D(1 + |k|).

Let Ik,l2 := {r ∈ Z : |r + km2| ≤ D(1 + |k|)}. Now we obtain that

Trvf(x2) = f(0, x2) =
∑

j∈Z

∑

|k|≤αj/2

∑

l∈Z2

c(j, k, l)α
3
4
jψ(−αj/2kx2 − l1, α

j/2x2 − l2).

This can be rewritten as

f(0, x2) =
∑

j≥0

∑

l2∈Z
λ(j, l2)aj,l2(x2) +

∑

j<0

∑

l2∈Z
λ(j, l2)aj,l2(x2)

= Trvf1(x2) + Trvf2(x2),
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where for j ≥ 0,

aj,l2(x2) := λ(j, l2)−1α
3+2K1

4
j

∑

|k|≤αj/2

∑

l1∈Ik,l2

c(j, k, l1, l2)α−K1j/2ψ(−αj/2kx2 − l1, α
j/2x2 − l2)

if λ(j, l2) 6= 0 and aj,l2(x2) = 0 otherwise and

λ(j, l2) := α
3+2K1

4
j

∑

|k|≤αj/2

∑

l1∈Ik,l2

|c(j, k, l1, l2)|

and for j < 0,

aj,l2(x2) := λ(j, l2)−1α
3
4
j

∑

|l1|≤D

c(j, 0, l1, l2)ψ(−l1, α
j/2x2 − l2)

if λ(j, l2) 6= 0 and aj,l2(x2) = 0 otherwise and

λ(j, l2) := α
3
4
j

∑

|l1|≤D

|c(j, 0, l1, l2)|.

We have that suppψ(−αj/2kx2 − l1, α
j/2x2 − l2) ⊂ DQj,l2(R), where the cube is considered with

respect to
√

α now. This is also true for aj,l2 . For j ≥ 0 we conclude by |k| ≤ αj/2 that
α−Kj/2|Dγψ(−αj/2kx2 − l1, α

j/2x2 − l2)| ≤ α
j
2
γ and consequently |Dγaj,l2 | ≤ α

j
2
γ , γ ≤ K1 .

For j < 0 we also have that |Dγaj,l2 | ≤ α
j
2
γ . Thus aj,l2 are K1-atoms. We get

‖Trvf1‖B
σ1
p,p

.
(∑

j∈Z
α

j
2
(σ1− 1

p
)p

∑

l2∈Z
|λ(j, l2)|p

) 1
p

≤
(∑

j≥0

α
j
2
(σ1− 1

p
)p

α
j
2
(
3+2K1

2
)pα

j
2
(2− 2

p
)p

∑

|k|≤αj/2

∑

l∈R2

|c(j, k, l)|p
) 1

p

≤
(∑

j∈Z
α

j
2
(σ1+ 7

2
+K1− 3

p
)p

∑

|k|≤αj/2

∑

l∈R2

|c(j, k, l)|p
) 1

p

≤
(∑

j∈Z
α

j
2
(σ1+ 7

2
+1+bσ1c− 3

p
)p

∑

|k|≤αj/2

∑

l∈R2

|c(j, k, l)|p
) 1

p

≤
(∑

j∈Z
αjpr

∑

k∈Z

∑

l∈R2

|c(j, k, l)|p
) 1

p

. ‖f‖SCp,r
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with r ≥ 1
2(σ1 + bσ1c+ 9

2 − 3
p). Analogously we can compute

‖Trvf2‖B
σ2
p,p

.
(∑

j∈Z
α

j
2
(σ2− 1

p
)p

∑

l2∈Z
|λ(j, l2)|p

) 1
p

≤
(∑

j<0

α
j
2
(σ2− 1

p
+ 3

2
)p

∑

l∈R2

|c(j, 0, l)|p
) 1

p

≤
(∑

j∈Z
αjpr

∑

k∈Z

∑

l∈R2

|c(j, k, l)|p
) 1

p

. ‖f‖SCp,r

with r = 1
2(σ2 + 3

2 − 1
p) and we are done. ¤

4.4. Embedding Results. In this subsection, we prove embedding results of certain subspaces
of shearlet coorbit spaces into (sums of) homogeneous Besov spaces. But first we provide a result
concerning the embedding within shearlet coorbit spaces. In [8, Section 5.7] some embedding
theorems for general Lp,m coorbit spaces were given. In particular, the authors mentioned that for
a fixed weight m, these spaces are monotonically increasing with p. The following corollary is a
special results in this direction.

Corollary 4.6. For 1 ≤ p1 ≤ p2 ≤ ∞ the embedding SCp1,r ⊂ SCp2,r holds true. Introducing the
’smoothness spaces’ Gr

p := SCp,r+d( 1
2
− 1

p
). this implies the continuous embedding

Gr1
p1
⊂ Gr2

p2
, if r1 − d

p1
= r2 − d

p2
.

For convenience we add the simple proof.

Proof. By Theorem 3.4 we obtain that

‖f‖SCp2,r . ‖(cε(j, k, l)‖`p2,r .
(∑

j∈Z
αjrp2

∑
k,l

ε∈{−1,1}

|cε(j, k, l)|p2

) 1
p2 ,

where cε(j, k, l) is the coefficient belonging in the representation (14) with respect to (12) to the
function π(εα−j , σα−j/2k, Sσα−j/2kAα−jτ l)ψ. Since `p1 ⊂ `p2 for p1 ≤ p2 we get finally that

‖f‖SCp2,r .
(∑

j∈Z
αjrp2

( ∑
k,l

ε∈{−1,1}

|cε(j, k, l)|p1
) p2

p1

) 1
p2

.
(∑

j∈Z
αjrp1

∑
k,l

ε∈{−1,1}

|cε(j, k, l)|p1

) 1
p1 . ‖f‖SCp1,r .

¤
Next we state our final result.

Theorem 4.7. The embedding SCCp,r ⊂ Bσ1
p,p(R2) + Bσ2

p,p(R2), holds true, where σ1 is the largest
number such that

σ1 + bσ1c ≤ 2r − 9
2

+
4
p
, and σ2 − bσ2c

2
= r +

3
2p

+
1
4
.
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Proof. By (20) we know that f ∈ SCCp,r can be written as

f(x) =
∑

j∈Z

∑

|k|≤αj/2

∑

l∈Z2

c(j, k, l)α
3
4
jψ(αjx1 − αj/2kx2 − l1, α

j/2x2 − l2),

where we can choose ψ compactly supported in [−D,D]× [−D, D] for some D > 1 and normalized
such that the derivatives of order 0 ≤ |γ| ≤ K := max{K1,K2}, K1 := 1 + bσ1c, K2 := 1 + bσ2c
are not larger than 1.

We split f ∈ SCCp,r as in (21) and (22) into f1 and f2. Then we obtain with the index transform
l1 = r1 − kl2 that

f1(x) =
∑

j≥0

∑

|k|≤αj/2

∑

l2∈Z

∑

n1∈Z

∑

r1∈I(j,n1)

c(j, k, r1 − kl2, l2)α
3
4
j

×ψ(αjx1 − αj/2kx2 − r1 + kl2, α
j/2x2 − l2)

where I(j, n1) := {r ∈ Z : αj/2(n1 − 1) < r ≤ αj/2n1}.
For j ≥ 0 we set

aj,n1,l2(x) := λ(j, n1, l2)−1α
3+2K1

4
j

∑

|k|≤αj/2

∑

r1∈I(j,n1)

c(j, k, r1 − kl2, l2)

×α−K1j/2 ψ(αjx1 − αj/2kx2 − r1 + kl2, α
j/2x2 − l2),

if λ(j, n1, l2) 6= 0 and aj,n1,l2(x) = 0 otherwise, where

λ(j, n1, l2) := α
3+2K1

4
j

∑

|k|≤αj/2

∑

r1∈I(j,n1)

|c(j, k, r1 − kl2, l2)|.

By the support assumption on ψ, the functions appearing in the definition of aj,n1,m2 are only
non-zero if the following conditions are satisfied:

−D ≤ αj/2x2 − l2 ≤ D, α−j/2(l2 −D) ≤ x2 ≤ α−j/2(l2 + D)

and

−D ≤ αjx1 − αj/2kx2 − r1 + kl2 ≤ D,

α−jr1 + α−jk(αj/2x2 − l2)− α−jD ≤ x1 ≤ α−jr1 + α−jk(αj/2x2 − l2) + α−jD,

α−jr1 − α−j/2(2D) ≤ x1 ≤ α−jr1 + α−j/2(2D),

α−j/2n1 − α−j/2(3D) ≤ x1 ≤ α−j/2n1 + α−j/2(2D).

Thus, aj,n1,l2 is supported in 3DQj,n1,l2 , where the cube is considered with respect to
√

α. The
appropriate bounds |Dγaj,n1,l2 | ≤ α

j
2
|γ|, |γ| ≤ K1 can be derived as in the previous proof. Hence

the functions aj,n1,l2 are K1-atoms.
Now we obtain for

f1(x) =
∑

j≥0

∑

l2∈Z

∑

n1∈Z
λ(j, n1, l2)aj,n1,l2(x)



SHEARLET COORBIT SPACES: COMPACTLY SUPPORTED ANALYZING SHEARLETS, TRACES AND EMBEDDINGS17

that

‖f1‖p

B
σ1
p,p

.
∑

j∈Z
α

j
2
(σ1− 2

p
)p

∑

l2∈Z

∑

n1∈Z
|λ(j, n1, l2)|p

=
∑

j∈Z
α

j
2
(σ1− 2

p
)p

α
j
2
(
3+2K1

2
)p

∑

l2∈Z

∑

n1∈Z

∣∣∣∣∣∣
∑

|k|≤αj/2

∑

r1∈I(j,n1)

|c(j, k, r1 − kl2, l2)|
∣∣∣∣∣∣

p

≤
∑

j∈Z
α

j
2
p(σ1+ 7

2
+K1− 4

p
)
∑

l2∈Z

∑

n1∈Z

∑

|k|≤αj/2

∑

r1∈I(j,n1)

|c(j, k, r1 − kl2, l2)|p

=
∑

j∈Z
α

j
2
p(σ1+ 9

2
+bσ1c− 4

p
)

∑

|k|≤αj/2

∑

l1∈Z

∑

l2∈Z
|c(j, k, l1, l2)|p

. ‖f‖p
SCp,r

.

In the case j < 0 we obtain with J(j, n2) := {r : α−j/2(n2 − 1) < r ≤ α−j/2n2} that

f2(x) =
∑

j<0

∑

l1∈Z

∑

l2∈Z
c(j, 0, l1, l2)α

3
4
jψ(αjx1 − l1, α

j/2x2 − l2)

=
∑

j<0

∑

l1∈Z

∑

n2∈Z

∑

r2∈J(j,n2)

c(j, 0, l1, r2)α
3
4
jψ(αjx1 − l1, α

j/2x2 − r2)

=
∑

j<0

∑

l1∈Z

∑

n2∈Z
λ(j, l1, n2)aj,l1,n2(x),

where

aj,l1,n2(x) := λ(j, l1, n2)−1α
3−2K2

4
j

∑

r2∈J(j,n2)

c(j, 0, l1, r2)α
jK2

2 ψ(αjx1 − l1, α
j/2x2 − r2),

λ(j, l1, n2) := α
3−2K2

4
j

∑

r2∈J(j,n2)

|c(j, 0, l1, r2)|

and aj,l1,n2(x) := 0 if λj,l1,n2 = 0. By the support assumption on ψ we get

α−j(l1 −D) ≤ x1 ≤ α−j(l1 + D),

α−j/2(r2 −D) ≤ x2 ≤ α−j/2(r2 + D) ⇒ α−j(n2 − 2D) ≤ x2 ≤ α−j(n2 + D).

Consequently, aj,l1,n2 is supported in 2DQj,l1,n2 . Since 1 ≥ αj|γ|/2 ≥ αj|γ| ≥ αjK2 for 0 ≤ |γ| ≤ K2

and j < 0 we obtain further that |Dγaj,n1,l2 | ≤ αjK2/2αj|γ|/2 ≤ αj|γ| so that aj,l1,n2 are K2-atoms..
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Thus,

‖f2‖p

B
σ2
p,p

.
∑

j∈Z
α

j(σ2− 2
p
)p

∑

l1∈Z

∑

n2∈Z
|λ(j, l1, n2)|p

≤
∑

j<0

α
j(σ2− 2

p
+

3−2K2
4

)p
∑

l1∈Z

∑

n2∈Z

∣∣∣∣∣∣
∑

r2∈J(j,n2)

c(j, 0, l1, r2)

∣∣∣∣∣∣

p

≤
∑

j<0

α
j(σ2− 3

2p
+ 1

4
−K2

2
)p

∑

l∈R2

|c(j, 0, l)|p

≤
∑

j∈Z
αjpr

∑

k∈Z

∑

l∈R2

|c(j, k, l)|p

. ‖f‖p
SCp,r

,

where r = σ2 − 3
2p − 1

4 − bσ2c
2 . ¤

Remark 4.8. An alternative way to obtain trace results would be first to apply the Besov em-
bedding and afterwards the classical trace theorem for homogeneous Besov spaces. Let us briefly
discuss the relation between these different approaches. For simplicity we restrict ourselves to the
positives scales and traces to the x2-axis. Usually an application of trace theorems in Besov spaces
leads to a loss of smoothness of order 1/p, that is Tr(Bs

pp(Rd)) = B
s−1/p
pp (Rd−1), see [12]. Let the

coorbit space smoothness index r be fixed. Depending on the concrete values of r and p, the direct
and the indirect approach can yield the same result. However, in specific cases it turns out that
the direct approach is superior as we gain some smoothness: Let 2r − 9

2 + 3
p = 2a + α with a ∈ Z

and α ∈ [0, 2). Then we have for α ∈ [0, 1) by Theorem 4.5 that σ1 = a + α. On the other hand, in
case α + 1

p ∈ [1, 2) an application of Theorem 4.7 yields SCCp,r ⊂ Bσ̃1
pp , where σ̃1 = a + 1 − ε for

arbitrary small ε > 0. Consequently, applying the trace theorem for Besov spaces yields smoothness
σ̃1 − 1/p = a + 1− ε− 1/p < a + α = σ1.

Remark 4.9. Embedding results in Besov spaces have also been shown for the curvelet setting
by Borup and Nielsen [4]. However, the technique used by these authors is completely different.
In contrast to our approach they work in the frequency domain. We prefer to consider the time
domain with flexible atomic decompositions for the following reasons. As already outlined above
time domain techniques provide a very natural way to derive trace theorems which might be very
difficult or even impossible in the Fourier domain. Moreover, since we are working with compactly
supported atoms the treatment of shearlet coorbit spaces on bounded domains, including again
embedding and trace theorems, seems to be manageable. We also think that our approach provides
some advantages for higher dimensions. One natural conjecture would be that the traces of shearlet
coorbit spaces on R3 with respect to two-dimensional hyperplanes are again shearlet coorbit spaces.
To prove this conjecture, again flexible atomic decomposition techniques for shearlet coorbit spaces
would be needed. By following the lines corresponding to the Besov space setting there is some hope
that such flexible decompositions can be derived. These questions will be discussed in forthcoming
papers.
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[9] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic
decomposition I, J. Funct. Anal. 86, 307 - 340 (1989).
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[13] K. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. Math. 112, 1 - 42 (1991).
[14] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representation using anisotropic dilation and

shear operators, in: Wavelets and Splines (Athens, GA, 2005), G. Chen and M.J. Lai, eds., Nashboro Press,
Nashville, TN (2006), 189–201.

[15] L.I. Hedberg and Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approxi-
mation, Memoirs of the American Math. Soc. 188, 1- 97 (2007).

[16] P. Kittipoom, G. Kutyniok, and W.-Q Lim, Construction of compactly supported shearlet frames, Preprint, 2009.
[17] G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets, Preprint, 2006.
[18] G. Kutyniok, J. Lemvig, and W.-Q. Lim, Compactly supported shearlets, Preprint, 2010.
[19] C. Schneider, Besov spaces of positive smoothness, PhD thesis, University of Leipzig, 2009.
[20] H. Triebel, Function Spaces I, Birkhäuser, Basel - Boston - Berlin, 2006
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