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Abstract

In this paper we shall be concerned with compressive sampling strategies and sparse
recovery principles for linear inverse and ill-posed problems. As the main result, we
provide compressed measurement models for ill-posed problems and recovery accuracy
estimates for sparse approximations of the solution of the underlying inverse problem.
The main ingredients are variational formulations that allow the treatment of ill-posed
operator equations in the context of compressively sampled data. In particular, we
rely on Tikhonov variational and constrained optimization formulations. One essential
difference to the classical compressed sensing framework is the incorporation of joint
sparsity measures allowing the treatment of infinite dimensional reconstruction spaces.
The theoretical results are furnished with a number of numerical experiments.

Keywords: Compressive sampling, inverse and ill-posed problems, joint sparsity,
sparse recovery

1 Introduction

Many applications in science and engineering require the solution of an operator equation

Kx = y. Often only noisy data yδ with ‖yδ − y‖ ≤ δ are available, and if the problem

is ill-posed, regularization methods have to be applied. During the last three decades, the

theory of regularization methods for treating linear problems in a Hilbert space framework

has been well developed, see, e.g., [24, 28, 29, 32, 35]. Influenced by the huge impact of sparse

signal representations and the practical feasibility of advanced sparse recovery algorithms,

the combination of sparse signal recovery and inverse problems emerged in the last decade
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as a new growing area. Currently, there exist a great variety of sparse recovery algorithms

for inverse problems (linear as well as for nonlinear operator equations) within this context,

see, e.g., [3, 4, 5, 15, 17, 18, 26, 27, 36, 39, 40]. These recovery algorithms are successful for

many applications and have lead to breakthroughs in many fields. However, the feasibility

is usually limited to problems for which the data are complete and where the problem is

of moderate dimension. For really large-scale problems or problems with incomplete data,

these algorithms are not well-suited or fail completely.

For the incomplete data situation, a mathematical technology, which is quite successful

in sparse signal recovery, was established several years ago by D. Donoho and was called

the theory of compressed sensing, see [21]. A major breakthrough was achieved when it was

proven that it is possible to reconstruct a signal from very few measurements under certain

conditions on the signal and the measurement model, see [8, 9, 10, 21]. First recovery results

could be shown for special measurement scenarios, see [19, 20, 25], but it turned out that the

theory is also applicable for more general measurement models, see e.g. [37]. The ingredients

of this compressed sensing idea are as follows. Assume we are given a synthesis operator

B ∈ Rm×m for which a given signal x ∈ Rm has a sparse representation x = Bd where d

obeys just a few non-zero components. Furthermore, suppose we have a measurement matrix

A ∈ Rp×m which takes p� m linear measurements of the signal x. Hence, we can describe

the measuring process by y = Ax = ABd. A crucial property for compressed sensing to work

is the so-called restricted isometry property, see [2, 10, 11, 12]. This property basically states

that the product AB should have singular values either close to one (especially bounded away

from zero) or zero. In [12] it was shown that if AB satisfies the restricted isometry property

the solution d can be reconstructed exactly by minimization of an `1 constrained problem,

provided that the solution is sparse enough. Results in [9, 22] show that even in the presence

of noise, a recovery of d is possible. Up to now, all formulations of compressed sensing

are finite dimensional. Quite recently, first continuous formulations have appeared for the

special problem of analog-to-digital conversion, see [31, 34].

Within this paper we combine the concepts of compressive sensing and sparse recovery

in inverse and ill-posed problems. To establish an adequate measurement model, we adapt

an infinite dimensional compressed sensing setup that was invented in [23]. As the main

result we provide recovery accuracy estimates for the computed sparse approximations of

the solution of the underlying inverse problem. One essential difference to the classical

compressed sensing framework is the incorporation of joint sparsity measures allowing the

treatment of infinite dimensional reconstruction spaces. Moreover, we choose variational

formulations that allow the treatment of ill-posed operator equations. In particular, we rely

on Tikhonov variational and constrained optimization formulations.

Organization of the paper: In Section 2 we introduce the compressed measurement model

and repeat some standard results in compressed sensing. In Section 3 we introduce joint

sparsity measures and corresponding variational formulations and its minimization. Section

4 is devoted to the ill-posed sensing model, stabilization issues and accuracy estimates.

Finally, in Section 5 we present numerical experiments.
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2 Preliminaries

Within this section we provide the standard reconstruction space, the compressive sens-

ing model and repeat classical recovery results for finite-dimensional problems that can be

established thanks to the restricted isometry property of the underlying sensing matrix.

2.1 Compressive sensing model

Let X be a separable Hilbert space and Xm ⊂ X the (possibly infinite dimensional) recon-

struction space defined by

Xm =

{
x ∈ X, x =

m∑
`=1

∑
λ∈Λ

d`,λa`,λ, d ∈ (`2(Λ))m

}
,

where we assume that Λ is a countable index set and Φa = {a`,λ, ` = 1, . . . ,m , λ ∈ Λ} forms

a frame for Xm with frame bounds 0 < CΦa ≤ CΦa <∞. Note that the reconstruction space

Xm is a subspace of X with possibly large m. Typically we consider functions of the form

a`,λ = a`(· − λT ), for some T > 0. With respect to Φa we define the map

Fa : Xm → (`2(Λ))m through x 7→ Fax =

{〈x, a1,λ〉}λ∈Λ

...

{〈x, am,λ〉}λ∈Λ

 .

Fa is the analysis operator and its adjoint, given by

F ∗a : (`2(Λ))m → Xm through d 7→ F ∗a d =
m∑
`=1

∑
λ∈Λ

d`,λa`,λ ,

is the so-called synthesis operator. Since Φa forms a frame, we have CΦa ≤ F ∗aFa ≤ CΦa

and therefore F ∗aFa is invertible implying that I = (F ∗aFa)
−1F ∗aFa = F ∗aFa(F

∗
aFa)

−1. Con-

sequently, each x ∈ Xm can be reconstructed from its moments Fax through (F ∗aFa)
−1F ∗a .

A special choice of analysis/sampling functions might relax the situation a bit. Assume we

have another family of sampling functions Φv at our disposal fulfilling FvF
∗
a = I, then it

follows with x = F ∗a d

y = Fvx =

{〈x, v1,λ〉}λ∈Λ

...

{〈x, vm,λ〉}λ∈Λ

 =

{〈F
∗
a d, v1,λ〉}λ∈Λ

...

{〈F ∗a d, vm,λ〉}λ∈Λ

 = FvF
∗
a d = d , (2.1)

i.e. the sensed values y equal d and therefore

x = F ∗aFvx .

The condition FvF
∗
a = I means nothing else than 〈a`,λ, v`′,λ′〉 = δλλ′δ``′ for all λ, λ′ ∈ Λ and

`, `′ = 1, . . . ,m, i.e. Φv and Φa are biorthogonal to each other.
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As we focus on reconstructing functions (or solutions of operator equations) x that have

a sparse series expansion x = F ∗a d with respect to Φa, i.e. the series expansion of x has only

a very small number of non-vanishing coefficients d`,λ, or that x is compressible (meaning

that x can be well-approximated by a sparse series expansion), the theory of compressed

sensing suggests to sample x at much lower rate as done in the classical setting mentioned

above (there it was m/T ) while ensuring exact recovery of x (or recovery with overwhelming

probability). The compressive sampling idea applied to the sensing situation (2.1) goes now

as follows. Assume we are given a sensing matrix A ∈ Rp×m with p� m. Then we construct

p species of sampling functions throughs1,λ

...

sp,λ

 = A

v1,λ

...

vm,λ

 for all λ ∈ Λ . (2.2)

As a simple consequence of (2.2), the following lemma holds true.

Lemma 1 Assume for all λ ∈ Λ the sampling functions s1,λ, . . . , sp,λ are chosen as in (2.2)

and let y denote the exactly sensed data. If Φa and Φv are biorthogonal to each other, then

y = Ad.

Proof. Sensing x with s1,λ, . . . , sp,λ results in

y = Fsx =

{〈x, s1,λ〉}λ∈Λ

...

{〈x, sp,λ〉}λ∈Λ

 =

{〈F
∗
a d, s1,λ〉}λ∈Λ

...

{〈F ∗a d, sp,λ〉}λ∈Λ

 = FsF
∗
a d .

By a straightforward application of (2.2) it easily follows that

FsF
∗
a d =

{〈F
∗
a d,
∑m

i=1A1ivi,λ〉}λ∈Λ

...

{〈F ∗a d,
∑m

i=1Apivi,λ〉}λ∈Λ

 =

{
∑m

i=1 A1i 〈F ∗a d, vi,λ〉}λ∈Λ

...

{
∑m

i=1Api 〈F ∗a d, vi,λ〉}λ∈Λ


= A

{〈F
∗
a d, v1,λ〉}λ∈Λ

...

{〈F ∗a d, vm,λ〉}λ∈Λ

 = AFvF
∗
a d = Ad

and the proof is complete. �

2.2 Partial recovery and classical approximation estimates

If we denote by dλ the m-dimensional vector (d1,λ, . . . , dm,λ)
T and by yλ the p-dimensional

vector (y1,λ, . . . , yp,λ)
T , Lemma 1 states that for each λ ∈ Λ the measurement vectors are

given by

yλ = Adλ . (2.3)
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It has been shown in [7], that for each individual λ ∈ Λ the solution d∗λ to

min
dλ∈Rm

‖dλ‖`1 subject to yλ = Adλ , (2.4)

recovers dλ exactly provided that dλ is sufficiently sparse and the matrix A obeys a condition

known as the restricted isometry property.

Definition 1 (restricted isometry property) For each integer k = 1, 2, . . . , define the

isometry constant δk of a sensing matrix A as the smallest number such that

(1− δk)‖x‖2
`2
≤ ‖Ax‖2

`2
≤ (1 + δk)‖x‖2

`2
(2.5)

holds for all k-sparse vectors x. A vector is said to be k-sparse if it has at most k non-

vanishing entries.

In [6] results on the accuracy of the reconstruction from undersampled measurements are

established that compare the reconstruction d∗λ with the best k-term approximation one

could obtain if the exact locations and amplitudes of the k largest entries of dλ would be

known. We denote this approximation by dkλ, i.e. dkλ is dλ where all but the k-largest entries

are set to zero.

Theorem 2 (noiseless recovery, see [6]) Assume δ2k <
√

2 − 1. Then for each λ ∈ Λ

the solution d∗λ to (2.4) obeys

‖d∗λ − dλ‖`1 ≤ C0‖dkλ − dλ‖`1 (2.6)

‖d∗λ − dλ‖`2 ≤ C0k
−1/2‖dkλ − dλ‖`1 (2.7)

for some constant C0 (that can be explicitly computed). If dλ is k-sparse, the recovery is

exact.

This result can be extended to the more realistic scenario in which the measurements are

contaminated by noise, i.e.

yδλ = Adλ + zλ , (2.8)

where zλ is an unknown noise term. In this setting, it is proposed in [6] to reconstruct dλ as

the solution to

min
dλ∈Rm

‖dλ‖`1 subject to ‖yδλ − Adλ‖`2 ≤ δ , (2.9)

where ‖yδλ − yλ‖`2 ≤ δ.

Theorem 3 (noisy recovery, see [6]) Assume δ2k <
√

2 − 1 and ‖yδλ − yλ‖`2 ≤ δ. Then

for each λ ∈ Λ the solution d∗λ to (2.9) obeys

‖d∗λ − dλ‖`2 ≤ C0k
−1/2‖dkλ − dλ‖`1 + C1δ (2.10)

with the same constant C0 as before and some C1 (that can be explicitly computed).
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3 Simultaneous recovery by joint sparsity measures

The Theorems 2 and 3 apply for all individual sensing scenarios (2.3) and (2.8), respectively

(i.e. for all individual λ ∈ Λ). But as the index set Λ is possibly of infinite cardinality, we

are faced with the problem of recovering infinitely many unknown vectors dλ for which the

(essential) support can be different. Therefore, the determination of d by solving for each λ

an individual optimization problem is numerically not feasible.

For a simultaneous treatment of all individual optimization problems, we have to restrict

the set of all possible solutions dλ. One quite natural restriction on which we want to focus

in the remaining paper is that all dλ share a joint sparsity pattern. Introducing support sets

I ⊂ {1, . . . ,m}, a corresponding reconstruction space is given through

Xk =

x ∈ X, x =
∑

`∈I,|I|=k

∑
λ∈Λ

d`,λa`,λ, d ∈ (`2(Λ))m

 , (3.1)

i.e. only k out of m sequences {d`,λ}λ∈Λ do not vanish. The space Xk is no longer a subspace

since two different x might correspond to two different support sets I and therefore its sum

is not contained in Xk. The space Xk can be seen as a union of (shift invariant) subspaces.

One approach to recover d was suggested in [23]. The idea goes essentially as follows: first

recover the joint support I and reconstruct then d from given compressed samples y. The

detection of I relies on the fact that every finite collection of vectors spanning the subspace

span({yλ}λ∈Λ) contains enough information to recover I exactly. In particular, it is possible

to determine a p× p matrix V from the measurements y whose columns form a basis for the

range of {yλ}λ∈Λ. Then, the linear system V = AU , in which A is the p ×m compression

matrix from above, has a unique k-row-sparse solution U whose support is equal to I. Once

I is known, system (2.3) becomes invertible. Namely, reducing A by the columns whose

indices do not belong to I results in a matrix AI for which (AI)
†AI = I, whereas (AI)

†

is the Moore-Penrose-Inverse of AI . Then, (2.3) can be written as yλ = AIdI,λ and the

solution can be expressed by dI,λ = (AI)
†yλ. It follows from the definition of the support

set that all other elements in dλ not supported on I are zero.

We propose an alternative by solving adequate variational problems. The essential idea

to tackle the support set recovery problem is to involve a joint sparsity measure that pro-

motes a selection of only those indices ` ∈ {1, . . . ,m} for which ‖{d`,λ}λ∈Λ‖`r(Λ) is large

enough, i.e. where the size of the coefficients d`,λ indicates a significant contribution to the

representation of x. We discuss two possible variational formulations which both result in

iterative reconstruction procedures. The first one is the Tikhonov variational formulation

for which the minimization is very easy to implement but may lack on efficiency whereas

the second requires a sophisticated projection but allows an accelerated computation of an

approximation of the solution. The second method even offers in a very straightforward way

the involvement of ill-posed sensing models/operators.
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3.1 Tikhonov variational formulation and its minimization

Let the linear sensing operator T be given by

T : (`2(Λ))m → (`2(Λ))p via T d = T

{d1,λ}λ∈Λ

...

{dm,λ}λ∈Λ

 =

{(Adλ)
1}λ∈Λ

...

{(Adλ)p}λ∈Λ

 .

First we consider the Tikhonov variational formulation for the recovery of d,

Jα(d) = ‖yδ − Td‖2
(`2(Λ))p + αΨq,r(d) . (3.2)

The penalty term Ψq,r represents the joint sparsity measure which we define for the purpose

of identifying the support set I by

Ψq,r(d) =

 m∑
`=1

(∑
λ∈Λ

|d`,λ|r
) q

r

 1
q

.

This measure forces the solution d for reasonably small chosen q (e.g. 1 ≤ q < 2) to have

non-vanishing rows {d`,λ}λ∈Λ only if ‖{d`,λ}λ∈Λ‖`r(Λ) is large enough.

Lemma 4 The adjoint operator of T as a map between (`2(Λ))p and (`2(Λ))m is for each

h ∈ (`2(Λ))p given by

T ∗h =

{(A
Thλ)

1}λ∈Λ

...

{(AThλ)m}λ∈Λ

 .

Proof. This statement can be easily verified,

〈Td, h〉(`2(Λ))p =

p∑
n=1

∑
λ

(Adλ)
nhnλ =

p∑
n=1

∑
λ

(
m∑
`=1

An`d`,λ

)
hnλ

=
∑
λ

〈Adλ, hλ〉Rp =
∑
λ

〈dλ, AThλ〉Rm

=
m∑
`=1

∑
λ

d`,λ(A
Thλ)

` = 〈d, T ∗h〉(`2(Λ))m .

�

In order to compute a minimizer of (3.2) (while at the same time recovering the support of

d) we apply the technique of surrogate functionals invented in [15]. Applying this technique,

we obtain with ‖T‖2 < C the following family of functionals

Jsα(d; a) = Jα(d) + C‖d− a‖2
(`2(Λ))m − ‖Td− Ta‖2

(`2(Λ))p , (3.3)
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which are easier to minimize and where it was shown in [15] that the sequence

dn+1 = arg min
d∈(`2(Λ))m

Js(d; dn) (3.4)

converges in norm for arbitrarily chosen d0, n = 0, 1, 2, . . . , towards a minimizer of (3.2).

The functional (3.3) can be written as

1

C
Jsα(d; a) = ‖T ∗(yδ − Ta)/C + a− d‖2

(`2(Λ))m +
α

C
Ψq,r(d) (3.5)

+
1

C
‖yδ − Ta‖2 − 1

C2
‖T ∗(yδ − Ta)‖2 .

In the following proposition we provide for the case q = 1 the explicit description of the

minimizing element d∗ of (3.5).

Proposition 5 For given a define ã = T ∗(yδ−Ta)/C+a and let q = 1, then the minimizer

of the surrogate functional Jsα defined by (3.3) is given by

{d`,λ}λ∈Λ =
(
I − PBr′ (α/2C)

)
({ã`,λ}λ∈Λ) , for ` = 1, . . . ,m , (3.6)

where PBr′ (α/2C) denotes the orthogonal projection on the `r′ ball with radius α/2C for which

the duality relation 1/r + 1/r′ = 1 holds.

Proof. Since the second line of (3.5) does not depend on d, it remains to minimize

‖T ∗(yδ − Ta)/C + a− d‖2
(`2(Λ))m +

α

C
Ψq,r(d) . (3.7)

Functional (3.7) reads as

m∑
`=1

‖{ã`,λ}λ∈Λ − {d`,λ}λ∈Λ‖2
`2(Λ) +

α

C

m∑
`=1

‖{d`,λ}λ∈Λ‖`r(Λ)

=
m∑
`=1

{
‖{ã`,λ}λ∈Λ − {d`,λ}λ∈Λ‖2

`2(Λ) +
α

C
‖{d`,λ}λ∈Λ‖`r(Λ)

}
and therefore for each ` = 1, . . . ,m we have to minimize

‖{ã`,λ}λ∈Λ − {d`,λ}λ∈Λ‖2
`2(Λ) +

α

C
‖{d`,λ}λ∈Λ‖`r(Λ) .

We follow now a proceeding that was proposed in [17]. Consider ‖ · ‖∗`r(Λ), the Fenchel

transform or so–called dual functional of ‖ · ‖`r(Λ), see [38]. Since ‖ · ‖`r(Λ) is positive and

one–homogeneous, there exists a convex set C such that ‖ · ‖∗`r(Λ) is equal to the indicator

function χC over C. In Hilbert space, we have total duality between convex sets and positive

and one–homogeneous functionals, i.e. ‖ · ‖`r(Λ) = (χC)∗, or

(χC)∗(·) = sup
h∈C
〈·, h〉 = ‖ · ‖`r(Λ) ;
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see, e.g., [1, 13, 14]. In our case C = {v ∈ `2(Λ) : ‖v‖`r′ (Λ) ≤ 1} with 1/r + 1/r′ = 1.

Therefore we may write

‖{ã`,λ}λ∈Λ − {d`,λ}λ∈Λ‖2
`2(Λ) +

α

C
sup
h∈C
〈{d`,λ}λ∈Λ, h〉 .

By arguments provided in [17, Theorem 1] we obtain

{d`,λ}λ∈Λ =
α

2C
(I − PC)

(
{ã`,λ}λ∈Λ

α/2C

)
,

where PC(v) = arg minh∈C ‖h− v‖`2(Λ). �

In general, the computation of I − PC is rather difficult. However, for particular choices of

r′ it becomes feasible, e.g. r′ = {1, 2,∞}. For the purpose of recovering the joint support

with respect to λ ∈ Λ, we restrict ourselves to r = 2 indeed implying the desired coupling of

coefficients. Setting r = 2 results by duality in r′ = 2. In this situation, the projector PB2

on the `2(Λ)-ball of radius α > 0 reads

PB2(α)(x) =

{
x , ‖x‖`2(Λ) ≤ α

x 1
‖x‖`2(Λ)

α , ‖x‖`2(Λ) > α
.

Consequently, we obtain

(I − PB2(α))(x) =

{
0 , ‖x‖`2(Λ) − α ≤ 0

x
‖x‖`2(Λ)

(‖x‖`2(Λ) − α) , ‖x‖`2(Λ) − α > 0

=
x

‖x‖`2(Λ)

max(‖x‖`2(Λ) − α, 0) (3.8)

=: Sα(x) .

The shorthand notation Sα was chosen as the resulting projector can be seen as a sequence-

valued soft-shrinkage operator. Note that for x ∈ R the classical soft-shrinkage operation

can be written as sign(x) max(|x| − α, 0). In accordance with Proposition 5, the resulting

iteration can therefore be expressed for each ` = 1, . . . ,m by

{dn+1
`,λ }λ∈Λ = Sα/C

(
{(T ∗(yδ − Tdn)/C)`,λ + dn`,λ}λ∈Λ

)
. (3.9)

Introducing for d ∈ (`2(Λ))m,

Sα(d) := (Sα({d1,λ}λ∈Λ), . . . , Sα({dm,λ}λ∈Λ) ) , (3.10)

a condensed notation of (3.9) is given by

dn+1 = Sα/C
(
T ∗(yδ − Tdn)/C + dn

)
. (3.11)

This iteration is easy to implement but, as elaborated in [16, 40], the speed of convergence

is rather slow.
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3.2 Constrained variational problem and its minimization

An improvement of the recovery performance can be obtained when involving the joint

sparsity constraint not as an extra additive penalty term as done in (3.2) but by restricting

the minimization of ‖yδ − Td‖2
(`2(Λ))p to a reasonable sub-domain (as it was suggested and

analyzed in [16, 40]). To this end, we define

B(Ψ1,2, R) = {d ∈ (`2(Λ))m : Ψ1,2(d) ≤ R}

and consider

min
d∈B(Ψ1,2,R)

‖yδ − Td‖2
(`2(Λ))p . (3.12)

As B(Ψ1,2, R) is convex, we know from [16] that the minimizing element of ‖yδ − Td‖2
(`2(Λ))p

in B(Ψ1,2, R) can be approached by

dn+1 = PR
(
dn +

γ

C
T ∗(yδ − Tdn)

)
, (3.13)

where γ > 0 is a step-length control (determined below) and PR is the `2-projection on

B(Ψ1,2, R). In order to verify the computational feasibility of (3.13), we show that the

projection PR is very easy to implement. We proceed similar as in [16] and verify first a

continuity result.

Lemma 6 For each x ∈ (`2(Λ))m and all µ > 0 the quantity Ψ1,2(Sµ(x)) is piecewise linear

and therefore continuous with respect to µ.

Proof.

Ψ1,2(Sµ(x)) =
m∑
`=1

‖Sµ({x`,λ}λ∈Λ)‖`2(Λ)

=
m∑
`=1

∥∥∥∥ {x`,λ}λ∈Λ

‖{x`,λ}λ∈Λ‖`2(Λ)

max(‖{x`,λ}λ∈Λ‖`2(Λ) − µ, 0)

∥∥∥∥
`2(Λ)

=
m∑
`=1

max(‖{x`,λ}λ∈Λ‖`2(Λ) − µ, 0)

=
∑

‖{x`,λ}λ∈Λ‖`2(Λ)>µ

(‖{x`,λ}λ∈Λ‖`2(Λ) − µ) .

�

The next lemma characterizes PR.

Lemma 7 If Ψ1,2(x) > R, then the `2-projection of x ∈ (`2(Λ))m on B(Ψ1,2, R) is given by

PR(x) = Sµ(x), where µ as a function of x and R is chosen such that Ψ1,2(Sµ(x)) = R. If

Ψ1,2(x) ≤ R, then PR(x) = S0(x) = x.
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Proof. Let Ψ1,2(x) > R. By Lemma 6 there exists some µ = µ(x,R) > 0 with Ψ1,2(Sµ(x)) =

R. Due to Proposition 5 (setting ã = x) and by the condensed notation (3.10), the unique

minimizer of ‖x− a‖2
(`2(Λ))m + 2µΨ1,2(a) is given by z = Sµ(x), i.e.

∀y 6= z : ‖x− z‖2
(`2(Λ))m + 2µΨ1,2(z) < ‖x− y‖2

(`2(Λ))m + 2µΨ1,2(y) .

Since Ψ1,2(z) = R, it follows that

∀y ∈ B(Ψ1,2, R), y 6= z : ‖x− z‖2
(`2(Λ))m < ‖x− y‖2

(`2(Λ))m .

Consequently, z is closer to x than any other y ∈ B(Ψ1,2, R), i.e. PR(x) = z = Sµ(x). �

Lemma 6 and 7 provide a simple recipe for computing the projection PR(x): First, sort

the ‖ · ‖`2(Λ)-values of the m components {x1,λ}λ∈Λ, . . . , {xm,λ}λ∈Λ, resulting in a vector

of sequences x∗ in which the m individual rows (that possibly have infinite length) are

rearranged such that ‖{x∗`,λ}λ∈Λ‖`2(Λ) ≥ ‖{x∗`+1,λ}λ∈Λ‖`2(Λ) ≥ 0 for all ` = 1, . . . ,m. Next,

perform a search to find k such that

Ψ1,2(S‖{x∗k,λ}λ∈Λ‖`2(Λ)
(x)) =

k−1∑
l=1

(
‖{x∗`,λ}λ∈Λ‖`2(Λ) − ‖{x∗k,λ}λ∈Λ‖`2(Λ)

)
≤ R

<
k∑
l=1

(
‖{x∗`,λ}λ∈Λ‖`2(Λ) − ‖{x∗k+1,λ}λ∈Λ‖`2(Λ)

)
= Ψ1,2(S‖{x∗k+1,λ}λ∈Λ‖`2(Λ)

(x)) .

Finally, set

ν := k−1(R−Ψ1,2(S‖{x∗k,λ}λ∈Λ‖`2(Λ)
(x))) ,

and

µ := ‖{x∗k,λ}λ∈Λ‖`2(Λ) − ν .

With this choice we ensure that

Ψ1,2(Sµ(x)) =
m∑
`=1

max(‖{x`,λ}λ∈Λ‖`2(Λ) − µ, 0) =
k∑
`=1

(‖{x∗`,λ}λ∈Λ‖`2(Λ) − µ)

=
k−1∑
`=1

(‖{x∗`,λ}λ∈Λ‖`2(Λ) − ‖{x∗k,λ}λ∈Λ‖`2(Λ)) + kν

= Ψ1,2(S‖{x∗k,λ}λ∈Λ‖`2(Λ)
(x))) + kν = R .

Therefore, we conclude that the `2-projection on B(Ψ1,2, R) can be realized by the sequence-

valued generalized soft-shrinkage operator. To improve the speed of convergence in (3.13)

we have to specify γ > 0. To this end, by the same reasoning as in [16] or [40], we introduce

conditions on γ.

11



Definition 2 We say that the sequence {γn}n∈N satisfies Condition (B) with respect to the

sequence {dn}n∈N if there exists n0 such that:

(B1) sup{γn;n ∈ N} <∞ and inf{γn;n ∈ N} ≥ 1

(B2) γn‖Tdn+1 − Tdn‖2
(`2(Λ))p ≤ C‖dn+1 − dn‖2

(`2(Λ))m ∀n ≥ n0 .

With the help of the condition (B) in Definition 2 on the sequence of step-lengths {γn}n∈N,

the following convergence result can be established.

Proposition 8 For arbitrarily chosen d0 assume dn+1 is given by

dn+1 = PR
(
dn +

γn

C
T ∗(yδ − Tdn)

)
, (3.14)

where ‖T‖2 < C and the γn satisfy Condition (B) with respect to {dn}n∈N, then the sequence

of residuals ‖yδ − Tdn‖2
(`2(Λ))p is monotonically decreasing. Moreover, the sequence {dn}n∈N

converges in norm towards d∗, where d∗ fulfills the necessary condition for a minimum of

(3.12).

4 Ill-posed sensing model and sparse recovery

Within this section we establish recovery accuracy estimates for individual vectors d∗λ as well

as for d∗. The estimates are similar to the results shown in Theorem 3, but they hold for a

more general setting that also includes ill-posed compressive sensing models. In the ill-posed

compressive sensing scenario, the objective is again to recover x, but we assume that we

have only access to Kx, where K is supposed to be a linear (possibly ill-posed) and bounded

operator between Hilbert spaces X and Y .

4.1 Sensing model

With the same analysis and synthesis operators, the data y are obtained by sensing Kx

through Fs, i.e.

y = FsKx = FsKF
∗
a d .

The analysis operator Fs is supposed to map between Y and (`2(Λ))p. Similarly to Lemma

1, we have the following result.

Lemma 9 Assume for all λ ∈ Λ the sampling functions s1,λ, . . . , sp,λ are chosen as in (2.2).

Then y = AFK∗vF
∗
a d = AFvF

∗
Kad.

Proof. Sensing Kx with s1,λ, . . . , sp,λ results in

y = FsKx =

{〈Kx, s1,λ〉}λ∈Λ

...

{〈Kx, sp,λ〉}λ∈Λ

 =

{〈KF
∗
a d, s1,λ〉}λ∈Λ

...

{〈KF ∗a d, sp,λ〉}λ∈Λ

 = FsKF
∗
a d .

12



Furthermore it follows,

FsKF
∗
a d =

{〈KF
∗
a d,
∑m

i=1 A1ivi,λ〉}λ∈Λ

...

{〈KF ∗a d,
∑m

i=1Apivi,λ〉}λ∈Λ

 = A

{〈KF
∗
a d, v1,λ〉}λ∈Λ

...

{〈KF ∗a d, vm,λ〉}λ∈Λ

 = AFvKF
∗
a d

= AFK∗vF
∗
a d = AFvF

∗
Kad ,

where the last statement is due to

〈KF ∗a d, v`,λ〉 = 〈F ∗a d,K∗v`,λ〉

and

KF ∗a d =
m∑
`=1

∑
λ∈Λ

d`,λKa`,λ.

�

An ideal choice to guarantee recovery within the compressive sampling framework would be

to ensure

FK∗vF
∗
a = FvF

∗
Ka = Id , i.e. 〈a`,λ, K∗v`′,λ′〉 = 〈Ka`,λ, v`′,λ′〉 = δλ′λδ`′` .

For normalized systems Φa and Φv and ill-posed operators K this is impossible to achieve.

The simplest case, which we discuss in the remaining paper, is that we have systems Φa and

Φv at our disposal that diagonalize K, i.e.

〈Ka`,λ, v`′,λ′〉 = κ`,λ δλ′λδ`′` . (4.1)

One prominent example that performs such a diagonalization is the so-called wavelet-vaguelette

decomposition with respect to K. If Φa and Φv diagonalize K, then the structure of the

sensing operator is

TD : (`2(Λ))m → (`2(Λ))p ,

where

(TD) d = (TD)

{d1,λ}λ∈Λ

...

{dm,λ}λ∈Λ

 = T

{(Dλdλ)
1}λ∈Λ

...

{(Dλdλ)
m}λ∈Λ

 =

{(ADλdλ)
1}λ∈Λ

...

{(ADλdλ)
p}λ∈Λ

 ,

and D is defined by λ-dependant blocks Dλ of size m×m,

Dλ =


κ1,λ 0 · · · 0

0 κ2,λ 0
...

... 0
. . . 0

0 · · · 0 κm,λ

 .
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4.2 A recovery theorem for finite dimensional subproblems

Let us consider the reconstruction problem for each individual label λ (which is an m-

dimensional recovery problem). Limiting the analysis to the noisy measurement model (2.8),

we have to consider

yδλ = ADλdλ + zλ with ‖zλ‖ ≤ δ . (4.2)

But since K is an ill-posed operator, we are faced with the fact that κ`,λ might become

arbitrarily small. Hence, in general, the sensing matrix ADλ obeys no longer the restricted

isometry property. Therefore, we propose to reconstruct dλ as a solution to the following

stabilized constrained optimization problem

min
dλ∈B(`1,R)

‖yδλ − ADλdλ‖2
`2

+ α‖dλ‖2
`2
, (4.3)

where B(`1, R) = {dλ ∈ `2 : ‖dλ‖`1 ≤ R} for some preassigned R. Similar combinations of `1

and `2 constraints were considered, e.g., in [30], and referred to as elastic net regularization.

The difference here is the involvement of the `1 constraint requiring a different proceeding.

The minimizing element (4.3) is approximated due to the iteration (as elaborated in the

previous section),

dn+1
λ = PR

(
DλA

∗(yδλ − ADλd
n
λ)
γn

C
+

(
1− αγn

C

)
dnλ

)
.

As we are interested in the accuracy of the minimizing element d∗λ (limit of dnλ) of (4.3), we

have to make some technical preparations.

The solution of yλ = ADλdλ need not to be an element of B(`1, R). Therefore, we define

the B(`1, R)-best approximate solution as the element for which

d†λ = arg min
dλ∈B(`1,R)

‖yλ − ADλdλ‖2
`2

with

‖d†λ‖`2 = min{‖dλ‖`2 : ‖yλ − ADλdλ‖`2 = ‖yλ − ADλd
†
λ‖`2} .

Lemma 10 Let L2 := DλA
∗ADλ + αI and let dλ be the solution of yλ = ADλdλ, d∗λ the

minimizer of (4.3), δ the noise level as defined in (4.2), and d†λ the B(`1, R)-best approximate

solution. Then

‖L(d∗λ − dλ)‖`2 ≤
√

2‖L(d†λ − dλ)‖`2 + 2δ + 3
√
αR =: C(α, δ, R) .

Proof. Since d∗λ is a minimizer of (4.3), we observe

‖yδλ − ADλd
∗
λ‖`2 ≤ ‖yδλ − ADλd

†
λ‖`2 +

√
α‖d†λ‖`2 ≤ ‖ADλ(d

†
λ − dλ)‖`2 + δ +

√
αR . (4.4)

Now we have due to the definition of L, the triangle inequality and (4.4),

‖L(d∗λ − dλ)‖`2 ≤ ‖ADλ(d
∗
λ − dλ)‖`2 +

√
α‖d∗λ − dλ‖`2

≤ ‖ADλd
∗
λ − yδλ‖`2 + ‖ADλdλ − yδλ‖`2 +

√
α‖d∗λ − dλ‖`2

≤ ‖ADλ(d
†
λ − dλ)‖`2 + δ +

√
αR + δ +

√
α‖d∗λ − d

†
λ + d†λ − dλ‖`2

≤
√

2‖L(d†λ − dλ)‖`2 + 2δ + 3
√
αR .
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The definition of L was motivated by

‖yδλ − ADλdλ‖2
`2

+ α‖dλ‖2
`2

= ‖ỹδλ − Ldλ‖2
`2

+ ‖yδλ‖2
`2
− ‖L−1DλA

∗yδλ‖2
`2
, (4.5)

where ỹδλ := L−1DλA
∗yδλ, leading for fixed α > 0 to an optimization problem which is

equivalent to (4.3), namely

min
dλ∈B(`1,R)

‖ỹδλ − Ldλ‖2
`2
. (4.6)

We have now to quantify whether optimization problem (4.6) (and (4.3), respectively) is

suited to deliver a good approximation to the solution of yλ = ADλdλ, even under the

presence of noise and even in the case where dλ is not sparse (see Theorem 3 for the well-

posed scenario).

If A is a feasible compression matrix, i.e. A fulfills as before the restricted isometry

property (2.5), then as the basic observation, the operator L obeys

(κ2
min(1− δk) + α)‖dλ‖2

`2
≤ ‖Ldλ‖2

`2
≤ (κ2

max(1 + δk) + α)‖dλ‖2
`2
, (4.7)

for all k-sparse vectors dλ and where κmax denotes the largest and κmin the smallest eigenvalue

of Dλ. Note that in general there is no relation between the sparsity pattern of dλ and Dλdλ.

Therefore the diagonal structure of Dλ is essential.

Lemma 11 For all d, d′ ∈ Rm supported on disjoint subsets I, I ′ ⊆ {1, . . . ,m} with |I| ≤ k

and |I ′| ≤ k′ it holds

|〈Ld, Ld′〉| ≤ 1

2

{
κ2
max − κ2

min + (κ2
max + κ2

min)δk+k′
}
‖d‖`2‖d′‖`2 . (4.8)

Proof. As d and d′ have disjoint support, we have due to (4.7),

(κ2
min(1− δk+k′) + α)‖d± d′‖2

`2
≤ ‖L(d± d′)‖2

`2
≤ (κ2

max(1 + δk+k′) + α)‖d± d′‖2
`2
.

Assume d and d′ are unit vectors, then it follows that

2(κ2
min(1− δk+k′) + α) ≤ ‖L(d± d′)‖2

`2
≤ 2(κ2

max(1 + δk+k′) + α) ,

and, moreover, by the parallelogram identity,

|〈Ld, Ld′〉| =
1

4

∣∣‖L(d+ d′)‖2
`2
− ‖L(d− d′)‖2

`2

∣∣
≤ 2

4

{
κ2
max − κ2

min + (κ2
max + κ2

min)δk+k′
}
. (4.9)

Now, for d and d′ with disjoint support (not necessarily unit length vectors) we have

|〈Ld, Ld′〉| = |〈Ld/‖d‖`2 , Ld′/‖d′‖`2〉| ‖d‖`2‖d′‖`2
≤ 1

2

{
κ2
max − κ2

min + (κ2
max + κ2

min)δk+k′
}
‖d‖`2‖d′‖`2

and the proof is complete. �
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Theorem 12 (noisy recovery) Assume R was chosen such that the solution dλ does not

belong to B(`1, R) and that

0 ≤ δ2k <
(1 +

√
2)κ2

min − κ2
max +

√
2α

(1 +
√

2)κ2
min + κ2

max

.

Then the minimizer d∗λ of (4.6) satisfies

‖d∗λ − dλ‖`2 ≤ C0k
−1/2‖dkλ − dλ‖`1 + C1‖L(d†λ − dλ)‖`2 + C2δ + C3

√
αR , (4.10)

where the constants C0, C1, C2, and C3 are given explicitly.

Proof. We essentially follow the proof of Theorem 1.2 in [6]. For fixed λ set d∗λ = dλ + h and

decompose h into a sum of vectors hT0 , hT1 , hT2 , . . ., each of sparsity at most k. T0 corresponds

to the locations of the k largest coefficients of dλ. T1 corresponds to the locations of k largest

coefficients of hTC0 ; T2 to the locations of the next k largest coefficients of hTC0 , and so on.

In a first step, we show that the size of h outside of T0 ∪ T1 is essentially bounded by

that of h on T0 ∪ T1. In a second step, we show that ‖h(T0∪T1)C‖`2 is adequately small.

First step: for each j ≥ 2 we have,

‖hTj‖`2 ≤ k1/2‖hTj‖`∞ ≤ k−1/2‖hTj−1
‖`1 .

Therefore, ∑
j≥2

‖hTj‖`2 ≤ k−1/2 (‖hT1‖`1 + ‖hT2‖`1 + . . .) ≤ k−1/2‖hTC0 ‖`1 (4.11)

leading to

‖h(T0∪T1)C‖`2 =
∑
j≥2

‖hTj‖`2 ≤ k−1/2‖hTC0 ‖`1 . (4.12)

As dλ 6∈ B(`1, R), it follows that ‖d∗λ‖`1 < ‖dλ‖`1 . Therefore, we can verify that ‖hTC0 ‖`1 is

reasonably bounded. We have,

‖dλ‖`1 ≥ ‖d∗λ‖`1 = ‖dλ + h‖`1 =
∑
`∈T0

|d`,λ + h`|+
∑
`∈TC0

|d`,λ + h`|

≥ ‖(dλ)T0‖`1 − ‖hT0‖`1 + ‖hTC0 ‖`1 − ‖(dλ)TC0 ‖`1 ,

resulting in

‖hTC0 ‖`1 ≤ ‖hT0‖`1 + 2‖(dλ)TC0 ‖`1 , (4.13)

where by definition ‖(dλ)TC0 ‖`1 = ‖dkλ − dλ‖`1 . Applying now (4.13) to (4.12) and again the

Cauchy-Schwarz inequality to bound ‖hT0‖`1 by k1/2‖hT0‖`2 , we obtain with the shorthand

notation e0 := k−1/2‖dkλ − dλ‖`1 ,

‖h(T0∪T1)C‖`2 ≤ ‖hT0‖`2 + 2e0 . (4.14)

Second step: it remains to bound ‖hT0∪T1‖`2 . To this end, we observe that

LhT0∪T1 = Lh−
∑
j≥2

LhTj ,
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and hence,

‖LhT0∪T1‖2
`2

= 〈LhT0∪T1 , Lh〉 − 〈LhT0∪T1 ,
∑
j≥2

LhTj〉 .

It follows from Lemma 10 and the restricted isometry property (4.7) for L that

|〈LhT0∪T1 , Lh〉| ≤ ‖LhT0∪T1‖`2‖Lh‖`2 ≤ C(α, δ, R)
√
κ2
max(1 + δ2k) + α‖hT0∪T1‖`2 .

From Lemma 11 we obtain

|〈LhT0 , LhTj〉| ≤
1

2

{
κ2
max − κ2

min + (κ2
max + κ2

min)δ2k

}
‖hT0‖`2‖hTj‖`2

and

|〈LhT1 , LhTj〉| ≤
1

2

{
κ2
max − κ2

min + (κ2
max + κ2

min)δ2k

}
‖hT1‖`2‖hTj‖`2 .

Since ‖hT0‖`2 + ‖hT1‖`2 ≤
√

2‖hT0∪T1‖`2 for disjoint sets T0 and T1, it holds

‖LhT0∪T1‖2
`2
≤ |〈LhT0∪T1 , Lh〉|+

∑
j≥2

(
|〈LhT0 , LhTj〉|+ |〈LhT1 , LhTj〉|

)
≤ ‖hT0∪T1‖`2

(
C(α, δ, R)

√
κ2
max(1 + δ2k) + α

+
1√
2

{
κ2
max − κ2

min + (κ2
max + κ2

min)δ2k

}∑
j≥2

‖hTj‖`2

)
, (4.15)

and by left inequality of isometry property (4.7),

(κ2
min(1− δ2k) + α)‖hT0∪T1‖2

`2
≤ ‖LhT0∪T1‖2

`2
. (4.16)

We define two auxiliary variables,

θ =

√
κ2
max(1 + δ2k) + α

(κ2
min(1− δ2k) + α)

, ρ =
κ2
max − κ2

min + (κ2
max + κ2

min)δ2k√
2(κ2

min(1− δ2k) + α)
.

Dividing now (4.16) by κ2
min(1 − δ2k) + α and bounding ‖LhT0∪T1‖2

`2
in (4.16) by (4.15)

and applying (4.11) and (4.13) and the Cauchy-Schwarz inequality (as used after (4.13)) we

obtain

‖hT0∪T1‖`2 ≤ θC(α, δ, R) + ρk−1/2‖hTC0 ‖`1
≤ θC(α, δ, R) + ρ‖hT0∪T1‖`2 + ρ2e0

and consequently,

‖hT0∪T1‖`2 ≤ (1− ρ)−1 (θC(α, δ, R) + ρ2e0) .

Finally, we conclude by (4.14),

‖d∗λ − dλ‖`2 = ‖h‖`2 ≤ ‖hT0∪T1‖`2 + ‖h(T0∪T1)C‖`2
≤ 2‖hT0∪T1‖`2 + 2e0

≤ (1− ρ)−1 (2θC(α, δ, R) + (1 + ρ)2e0)

= (1− ρ)−1
(

2θ
{√

2‖L(d†λ − dλ)‖`2 + 2δ + 3
√
αR
}

+ (1 + ρ)2e0

)
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To bound the right hand side, we have to ensure that ρ < 1. This implies

(κ2
max + (1 +

√
2)κ2

min)δ2k < (1 +
√

2)κ2
min − κ2

max +
√

2α ,

and as 0 ≤ δ2k, we obtain the following condition on δ2k,

0 ≤ δ2k <
(1 +

√
2)κ2

min − κ2
max +

√
2α

κ2
max + (1 +

√
2)κ2

min

(4.17)

and the proof is complete. �

Remark 13 In the well-posed situation (see Theorem 3), perfect recovery can be achieved

for δ = 0 and if dλ coincides with its best k-term approximation. In the ill-posed setting,

estimate (4.10) does not provide conditions for perfect recovery. This is clear as we deal with

a B(`1, R)-best approximation framework and as the stabilization yields a changed recovery

problem. Even if δ = 0 and if dλ would coincide with its best k-term approximation, the

remaining terms in (4.10) do not vanish since α has to be strictly bounded away from zero

and since dλ 6∈ B(`1, R). If we would allow dλ ∈ B(`1, R), we could not directly conclude

‖d∗λ‖`1 ≤ ‖dλ‖`1 (as needed in the proof of Theorem 12 to obtain estimate (4.13)). As d∗λ is

a minimizer of (4.6) we only have

√
α√
m
‖d∗λ‖`1 ≤

√
α‖d∗λ‖`2 ≤ ‖ADdλ − yδλ‖`2 +

√
α‖dλ‖`2 = δ +

√
α‖dλ‖`2 ≤ δ +

√
α‖dλ‖`1

leading to ‖d∗λ‖`1 ≤
√
m δ√

α
+
√
m‖dλ‖`1 and therefore implying another estimate than (4.13)

resulting in extra constants in the final estimates of the proof.

4.3 A recovery theorem for the infinite dimensional problem

Theorem 12 provides a reasonable estimate for the reconstruction accuracy in the finite

dimensional case. But practically we cannot solve infinitely many optimization problems.

Therefore, we have to investigate the full infinite dimensional measurement model,

yδ = (TD)d+ z with ‖z‖(`2(Λ))m ≤ δ .

To derive an approximation to its solution, we propose to solve the following constrained

optimization problem

min
d∈B(Ψ1,2,R)

‖yδ − (TD)d‖2
(`2(Λ))p + α‖d‖2

(`2(Λ))m . (4.18)

Similarly as before, the minimizing element d∗ is iteratively approximated by

dn+1 = PR
(
D∗T ∗(yδ − TDdn)

γn

C
+

(
1− αγn

C

)
dn
)
. (4.19)
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Theorem 14 (noisy recovery) Assume R was chosen such that the solution d of problem

y = (TD)d does not belong to B(Ψ1,2, R) and δ2k is as in Theorem 12. Then the minimizer

d∗ of (4.18) satisfies

‖d∗ − d‖(`2(Λ))m ≤ C0k
−1/2Ψ1,2(dk − d) + C1‖L(d† − d)‖(`2(Λ))m + C2δ + C3

√
αR , (4.20)

where the constants C0, C1, C2, and C3 are given explicitly.

Proof. We adapt the proof of Theorem 12. First we introduce the notation of row sparsity.

We consider d ∈ (`2(Λ))m as a semi-infinite matrix with entries d`,λ, where ` = 1, . . . ,m

is the row index and λ ∈ Λ is the column index. Then d ∈ (`2(Λ))m is said to be k-row-

sparse if at most k rows are not identically zero. Furthermore, let I ⊂ {1, 2, . . . ,m}, then

dI denotes the matrix for which all rows are set to zero except those that correspond to I.

Now set d∗ = d+h and decompose h into a sum of matrices hT0 , hT1 , hT2 , . . ., each of column

sparsity of at most k. T0 corresponds to the row locations of the k largest row-`2-norms

‖{d`,λ}λ∈Λ‖`2(Λ). T1 corresponds to the row locations of k largest row-`2-norms of hTC0 ; T2

to the locations of the next k largest row-`2-norms of hTC0 , and so on. As in the proof of

Theorem 12, we proceed in two steps. First, we show that the size of h outside of T0 ∪ T1

is essentially bounded by that of h on T0 ∪ T1. Second, we verify that ‖h(T0∪T1)C‖(`2(Λ))m is

adequately small.

First step: for each j ≥ 2 we have,

‖hTj‖(`2(Λ))m ≤ k1/2 sup
`
‖{(hTj)`,λ}λ∈Λ‖`2(Λ)

≤ k−1/2

m∑
`=1

‖{(hTj−1
)`,λ}λ∈Λ‖`2(Λ) = k−1/2Ψ1,2(hTj−1

).

Therefore,∑
j≥2

‖hTj‖(`2(Λ))m ≤ k−1/2 (Ψ1,2(hT1) + Ψ1,2(hT2) + . . .) ≤ k−1/2Ψ1,2(hTC0 ) (4.21)

leading to

‖h(T0∪T1)C‖(`2(Λ))m =
∑
j≥2

‖hTj‖(`2(Λ))m ≤ k−1/2Ψ1,2(hTC0 ) . (4.22)

Since Ψ1,2(d∗) < Ψ1,2(d), we can verify that Ψ1,2(hTC0 ) is reasonably bounded. We have,

Ψ1,2(d) > Ψ1,2(d∗) = Ψ1,2(d+ h) =
∑
`∈T0

‖{d`,λ + h`,λ}λ∈Λ‖`2(Λ) +
∑
`∈TC0

‖{d`,λ + h`,λ}λ∈Λ‖`2(Λ)

≥
∑
`∈T0

(‖{d`,λ}λ∈Λ‖`2(Λ) − ‖{h`,λ}λ∈Λ‖`2(Λ)) +
∑
`∈TC0

(‖{h`,λ}λ∈Λ‖`2(Λ) − ‖{d`,λ}λ∈Λ‖`2(Λ))

≥ Ψ1,2(dT0)−Ψ1,2(hT0) + Ψ1,2(hTC0 )−Ψ1,2(dTC0 ) ,

resulting in

Ψ1,2(hTC0 ) ≤ Ψ1,2(hT0) + Ψ1,2(d)−Ψ1,2(dT0) + Ψ1,2(dTC0 ) = Ψ1,2(hT0) + 2Ψ1,2(dTC0 ) , (4.23)
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where by definition Ψ1,2(dTC0 ) = Ψ1,2(dk − d). Applying now (4.23) to (4.22) and again

the Cauchy-Schwarz inequality to bound Ψ1,2(hT0) by k1/2‖hT0‖(`2(Λ))m , we obtain with the

shorthand notation e0 := k−1/2Ψ1,2(dk − d),

‖h(T0∪T1)C‖(`2(Λ))m ≤ ‖hT0‖(`2(Λ))m + 2e0 .

Second step: it remains to bound ‖hT0∪T1‖(`2(Λ))m . To this end, we have just to check whether

the reasoning in the proof of Theorem 12 holds also for the (`2(Λ))m-topology. Defining

L2 := D∗T ∗TD + αI, Lemma 10 easily extends to

‖L(d∗ − d)‖(`2(Λ))m ≤
√

2‖L(d† − d)‖(`2(Λ))m + 2δ + 3
√
αR =: C(α, δ, R) .

Accordingly, condition (4.7) reads as

(κ2
min(1− δk) + α)‖d‖2

(`2(Λ))m ≤ ‖Ld‖2
(`2(Λ))m ≤ (κ2

max(1 + δk) + α)‖d‖2
(`2(Λ))m .

Consequently, also Lemma 11 holds true and therefore the remaining proof of Theorem 12

applies without any further changes. �

4.4 Relation between isometry constant and stabilization

As (4.17) serves as a condition for δ2k and α at the same time, it turns out that the choice

of α influences the choice of a suitable sensing matrix A and vice versa. Therefore, we can

distinguish two scenarios: A is given in advance or can be chosen after the selection of α.

Let us first consider the scenario in which we are given a preassigned sensing matrix A

and an operator K, then the choice of α is restricted to

(1 + δ2k)κ
2
max − (1 +

√
2)(1− δ2k)κ

2
min√

2
< α . (4.24)

If δ2k < 1, a stabilization becomes necessary if

1 + δ2k

1− δ2k

· κ
2
max

κ2
min

> 1 +
√

2 . (4.25)

If δ2k ≥ 1, the left side in (4.24) is positive (independently on what K is) and we have to

choose α accordingly. Specializing the case δ2k < 1 to the situation in which κ2
max = κ2

min = 1,

inequality (4.25) simplifies to

δ2k >
√

2− 1 ,

reflecting a violation of the condition on δ2k in Theorem 3. Condition (4.25) shows also the

interplay between A and K leading to well- or ill-posedness of the problem.
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Let us now consider the scenario in which we first stabilize the problem with respect to

K and then select an adequate sensing matrix A. As the isometry constant δ2k (not yet

chosen) has to fulfill (4.17), the choice of α is limited to

κ2
max − (1 +

√
2)κ2

min√
2

< α . (4.26)

Consequently, we have to consider the case κ2
max−(1+

√
2)κ2

min ≤ 0, in which no stabilization

is necessary (supposed we can choose A accordingly), and the case κ2
max− (1 +

√
2)κ2

min > 0.

The first case include operators K for which

1 ≤ κ2
max/κ

2
min < 1 +

√
2 . (4.27)

By (4.17) the isometry constant has to fulfill

δ2k <
1 +
√

2− κ2
max/κ

2
min

1 +
√

2 + κ2
max/κ

2
min

.

Due to (4.27), we observe that the bound for δ2k is then allowed to vary from
√

2−1 (classical

bound) to 0 (not including 0 itself), i.e. the larger κ2
max/κ

2
min the more must be compensated

by the properties of A. This, however, might be rather difficult in practice. To this end,

it might be useful to choose even in this case some α > 0. The second case (in which we

definitely must stabilize the problem) covers operators K for which

1 +
√

2 ≤ κ2
max/κ

2
min . (4.28)

As we have by (4.17),

δ2k <
1 +
√

2− κ2
max/κ

2
min +

√
2α/κ2

min

1 +
√

2 + κ2
max/κ

2
min

,

it follows by (4.28) that in dependance on the choice of α through condition (4.26), the

bound for δ2k is bounded away from 0. By setting α reasonably large, we can reduce the

requirements on A. Note that in both cases choosing a large value for α may change the

recovery problem significantly. This becomes visible through estimate (4.10) indicating that

the recovery accuracy gets lost.

5 Numerical experiments

The following numerical experiments demonstrate the applicability of the proposed algo-

rithms for computing sparse approximations of solutions of inverse problems on the basis of

compressively sensed data. We discuss two scenarios: with and without an ill-posed operator.
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Let us first consider the case which the operator K = Id. Then, we are only faced with

a sparse signal recovery problem. In order to define Φa, we introduce the scaling function φ

as the normalized cardinal sine function defined by

φ(t) = sinc(πt) =
sin(πt)

πt
,

which is nothing than the inverse Fourier transform of 1√
2π
χ[−π,π](ω). All translated and

dilated versions of φ form a multi-resolution analysis {V`}`∈Z of X = L2(R), see for more

details [33]. The mother wavelet function a is given through a(t) = 2φ(2t) − φ(t) with

corresponding translated and dilated versions

a`,λ(t) = 2`/2a(2` t− λ) ,

where all the translates span the detail (or complement) spaces W` that fulfil V`+1 = V`⊕W`.

This relation implies X = V`1 ⊕
⊕∞

`=`1
W`. To define Xm we truncate the infinite direct sum

and obtain by setting W`0 = V`1 (to simplify the notation),

Xm =

`m−1⊕
`=`0

W` = V`m .

In our example we choose ` = −3, . . . , 5, i.e. `0 = −3 and `8 = 5 and therewith m = 9. As

K = Id, we choose Φv = Φa. To determine the compressed sampling system Φs, we have to

select a compression matrix A of size p×m (which is here a Gaussian random matrix with

zero mean and variance 1/p2). As our synthetic example we define a 2-sparse signal and as

the recovery theory requires at least 2k ≤ p < m (k stands for the sparsity index), we pick

p = 4. The signal x which we wish to recover is defined by

x(t) = 3 a−3,0(t)− 1 a0,−1(t) + 2 a0,4(t)

and is shown in Figure 1 (left). The right image in Figure 1 shows the corresponding

coefficients d`,λ where only {d−3,λ}λ∈Λ and {d0,λ}λ∈Λ have nonzero entries, namely d−3,0 = 3,

d0,−1 = −1 and d0,4 = 2. All other coefficients are set to zero. For numerical feasibility,

we limit the computations to the finite interval [−20, 20] which is discretized through ti =

−20+0.01i, i = 0, 1, 2, ..., 4000. Therefore, in the numerical simulation the index set Λ (which

is allowed to be of infinite cardinality) is truncated accordingly. As we have for K = Id direct

access to x, we obtain our measurements y by sampling x, i.e. y = Fsx = FsF
∗
a d = Ad.

After the sampling process, the p dimensional measurement vectors yλ are corrupted by

noise (noise level about 10 percent) resulting in yδ. Now we apply the proposed iterations

(3.11) and (3.14) (with and without acceleration) to recover d and therewith x. As the

initial guess for all iterations we have always chosen d0 identically zero. Figure 2 shows the

recovery result for (3.11). The constant C in (3.11) must fulfill ‖T‖2 < C. Since ‖T‖ ≤ ‖A‖,
the constant C must be an upper bound for the maximal eigenvalue of A∗A. The recovery

results in Figure 2 are obtained for α = 0.5 and after 150 iteration steps. As an observation
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Figure 1: Simulated signal x (left) and the corresponding coefficients d (right). In this case,

x is 2-sparse meaning that two out of m = 9 sequences {d`,λ}λ∈Λ have nonzero elements.

Figure 2: Recovery signal obtained with method (3.11). Top image: recovered function x∗,

bottom left: recovered coefficients d∗, bottom right: row `2-energy of d∗.

(which was still recognized and extensively discussed in [16]), this method converges quite

slow. Nevertheless, the joint support of d is correctly identified (compare with the bottom

right image in Figure 2). A significant improvement is obtained with iteration (3.14). The

bottleneck of this procedure is the choice of R. This, of course, requires a-priori knowledge of

the solution to be reconstructed. In our synthetic experiment we pick R =
√

5 +
√

9, which
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Figure 3: Top row: reconstruction of x (left) obtained with the projected iteration (3.14) with

constant step length (non-accelerated iteration) and corresponding coefficients d∗, bottom

row: reconstruction of x (left) obtained with the projected iteration (3.14) with variable step

length (accelerated iteration) and corresponding coefficients d∗.

is equal to Ψ1,2(d). In the first experiment we set γ = 1, which is an iteration with constant

step length. The recovery results of this method after 50 iteration steps are illustrated in the

top row in Figure 3. The reconstructed signal is displayed on the left and the coefficients

on the right side. The speed of convergence of the projected method can be significantly

improved by allowing γ to vary in accordance with Condition (B). The values for γ are

determined during the iteration leading much better convergence properties of (3.14). The

recovery results are shown in the bottom row in Figure 3. The differences of both schemes

can be observed in Figure 4. The iterates of both the projected method (gray dots) and the

accelerated projected method (black dots) live (from a certain number of iterations on) on

the boundary of B(Ψ1,2, R) which can be seen in Figure 4 (left). Furthermore, the effect

of the acceleration can be observed in Figure 4 (right). The residual value obtained by the

non-accelerated version after 50 iteration steps is already achieved by the accelerated variant

after 5 steps.

In the second experiment we discuss the case in which K is a non-trivial operator. We
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Figure 4: Left image: sparsity to residual plot of the accelerated (black) and non-accelerated

(gray) projected iteration, right image: decay of residuum with respect to the number of

iterations for the accelerated (black) and non-accelerated (gray) scheme.

Figure 5: Left: original signal x (gray) and the convolution of x with the Gaussian (black),

right: diagonalization constants κ`.

focus on an inverse problem which is given by an integral operator equation Kx = y,

y(t) = Kx(t) =

∫
g(t− τ)x(τ)dτ ,

where g is the Gaussian function (with zero mean and variance 0.01) and K : X → Y . If we

deal with noisy data yδ, we always assume ‖y − yδ‖ ≤ δ. As mentioned in Section 2.1, we

restrict ourselves to the case in which the solution of the inverse problem belongs to Xm ⊂ X

which is spanned by Φa. In this experiment Φa again consists of sinc-type wavelet functions.

This choice is practically motivated as the resulting function space is a space of bandlimited

functions. Moreover, the choice of a wavelet system allows a straightforward diagonalization

of K due to the corresponding wavelet-vaguelette-decomposition of K, see [33]. The system

Φv, which performs the analysis/sensing step, then consists of the associated collection of

vaguelette functions. The vaguelette construction principles can be retraced in [33]. Assume

K is a bounded and linear operator and Φa is defined as above, then the vaguelette functions
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Figure 6: Top row: reconstruction of x (left) obtained with the projected iteration (4.19) with

constant step length (non-accelerated iteration) and corresponding coefficients d∗, bottom

row: reconstruction of x (left) obtained with the projected iteration (4.19) with variable step

length (accelerated iteration) and corresponding coefficients d∗.

v`,λ are defined through

K∗v`,λ = κ`,λa`,λ with ‖v`,λ‖Y = 1 ∀`, λ .

If the system Φv is constructed as mentioned above, we obviously have 〈Ka`,λ, v`′,λ′〉 =

κ`,λδλ′λδ`′`. In the particular case of convolution operators the numbers κ`,λ just depend on

`, i.e. κ`,λ = κ` for all λ ∈ Λ. The number κ` in our specific example are visualized in Figure

5 (right). The compressed analysis/sensing system Φs is generated as before by (2.2) leading

to the analysis operator Fs. Sensing now Kx yields, as shown in Lemma 9,

y = FsKx = AFK∗vF
∗
a d = TDd .

In Figure 5 the original signal x and its smoothed version Kx is illustrated. The data y are

contaminated by additive noise (again 10 percent). The recovery of d is performed by itera-

tion (4.19). The difference to (3.14) is the extra parameter α that realizes the stabilization

of the problem and is chosen here α = 0.00003. The results of both, the non-accelerated and

the accelerated variant are shown in Figure 6. Notice that here just 20 iteration steps were
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done. The reconstruction of x is rather good.

Summarizing our numerical findings, we can conclude that for the well-posed as well

as for the ill-posed scenario the formulated optimization problems involving joint sparsity

constraints seem to be well-suited. This can be verified due to the fact that the recovery

the joint support of d and finally the recovery of a sparse approximation of d could be

done quite effectively. The choice of α in accordance with Section 4.4 has required a good

estimate of δ2k. This was done experimentally. The choice of R, however, has requested

a-priori knowledge on the sparsity of the signal to recovered. If now no knowledge on the

sparsity is available, there exists an heuristic proceeding that was suggested in [16] and goes

as follows: choose a slowly increasing radius, i.e.

Rn = (n+ 1)R/N ,

where n is the iteration index and N stands for a prescribed number of iterations. This

proceeding yields in all considered experiments reasonable results. If R is chosen too large

it may easily happen that the `1 constraint has almost no impact and the solution can be

arbitrarily far off the true solution. However, convergence of a scheme with varying Rn is

theoretically not verified yet.
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