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Sparse Recovery in Inverse Problems
Ronny Ramlau and Gerd Teschke

Abstract. Within this chapter we present recent results on sparse recovery algorithms for in-
verse and ill-posed problems, i.e. we focus on those inverse problems in which we can assume
that the solution has a sparse series expansion with respect to a preassigned basis or frame.
The presented approaches to approximate solutions of inverse problems are limited to itera-
tive strategies that essentially rely on the minimization of Tikhonov-like variational problems,
where the sparsity constraint is integrated through `p norms. In addition to algorithmic and
computational aspects, we also discuss in greater detail regularization properties that are re-
quired for cases in which the operator is ill-posed and no exact data are given. Such scenarios
reflect realistic situations and manifest therefore its great suitability for “real-life” applications.
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1 Introduction

The aim of this chapter is to present technologies for the recovery of sparse signals in
situations in which the given data are linked to the signal to be reconstructed through an
ill-posed measurement model. In such scenarios one is typically faced with regulariza-
tion issues and the construction of suitable methods that allow a stable reconstruction
of sparse signals.

1.1 Road map of the chapter

Nowadays there exist a great variety of schemes realizing sparse reconstructions. Most
of them are well-suited for finite or infinite dimensional problems but where the un-
derlying physical model is well-posed. More delicate are those cases in which ill-
posed operators are involved. So far, for linear ill-posed problems, there are numerous
schemes available that perform quite well sparse reconstructions, e.g. [2, 14, 18, 19,
24, 25, 52]. The majority of these approaches rely on iterative concepts in which ade-
quate sparsity constraints are involved. Within this chapter we do not discuss the pros
and cons of all these methods. In the context of linear problems we just concentrate
on one new approach that involves a complete different but very powerful technology
- that is adaptive approximation. The second focus of this chapter is on the generaliza-
tion of conventional iterative strategies to nonlinear ill-posed problems.

Therefore the road map for this chapter is as follows: In Section 2 we collect the ba-
sics on inverse problems. To elaborate the differences between well- and ill-posedness
and the concepts of regularization theory as simple as possible we limit ourselves in
this introductory section to linear problems. After this preliminary part we continue in
Section 3 with linear problems and present a sparse recovery principle that essentially
relies on the theory of adaptive approximation. The main ingredient that ensures stable
recovery are sophisticated refinement strategies. In Section 4 we turn then to nonlinear
ill-posed problems and discuss in greater detail Tikhonov regularization with sparsity
constraints. The established regularization properties include convergence results and
convergence rates for a-priori as well as for a-posteriori parameter rules. After the
general discussion on Tikhonov regularization we focus within the following Sections
5 and 6 on the development of implementable algorithms to numerically realize sparse
recovery. The first method presented in Section 5 relies on the surrogate functional
technology. This approach results in a Landweber-type iteration where a shrinkage
operation is applied in each iteration step. This method can be generalized to general
sparsity constraints, but fails to be numerically efficient. To overcome this deficiency,
we introduce in Section 6 a slightly modified concept leading to a very similar it-
eration, but where in each iteration a projection on a preassigned `1 ball is applied.
Moreover, this new iteration is designed with an adaptive step length control resulting
in a numerically very efficient method.
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1.2 Remarks on sparse recovery algorithms

As mentioned above, we discuss in this chapter two different species of sparse recovery
algorithms. The first species developed for linear inverse problems relies on nonlinear
approximation, the second species designed for nonlinear inverse problems relies on
linear approximation.

In principle, when it comes to numerical realizations, we are faced with the prob-
lem that we can only treat finite index sets. Therefore one has to answer the question
which coefficients should be involved in the reconstruction process and which can be
neglected. Linear approximation simply suggests a truncation of the infinite index set.
In a wavelet framework this would mean to limit the number resolution scales. For
many problems in which the solution is supposed to have a certain Sobolev smooth-
ness, this proceeding might yield reasonable results. Nevertheless, there are still cases
in which linear approximation fails to yield optimal results. Then often nonlinear ap-
proximation concepts are much better suited. The reason why nonlinear strategies
perform better than standard linear methods is due to the properties of the solution and
the operator. To clarify this statement, we introduce by xN the best N -term approxi-
mation of the solution x. Considering bases or frames of sufficiently smooth wavelet
type (e.g. wavelets of order d), it is known that if both

0 < s <
d− t
n

,

where n is the space dimension and t denoting the the smoothness of the Sobolev
space, and x is in the Besov space Bsn+t

τ (Lτ (Ω)) with τ = (1/2 + s)−1, then

sup
N∈N

N s‖x− xN‖ <∞ .

The condition x ∈ Bsn+t
τ (Lτ (Ω)) is much milder than requiring x ∈ Hsn+t(Ω) that

would be needed to guarantee the same rate of convergence with linear approximation.
However, for inverse problems it is in general not always possible to estimate the regu-
larity of the solution from the regularity of the right hand side due to the presence of the
noise. Therefore, special a-priori information about x and/or the operator is required.
In certain cases, e.g. the tomographic reconstruction problem analyzed in [35], this
information can be derived. A suitable model class for the tomographic reconstruction
problem are piecewise constant functions with jumps along smooth manifolds. It is
shown that such functions belong to the Sobolev space Hsd(Ω) with sd < 1/2. An
adaptive approximation of such functions (when carried out in L2(Ω)) pays off if the
Besov regularity in the scaleBsd

τ (Lτ (Ω)), τ = (s+1/2)−1 is significantly higher. This
issue is discussed in [50, Rem. 4.3] and indeed such functions belong to Bsd

τ (Lτ (Ω))
with sd < 1/τ = s + 1/2. For the two-dimensional case, which is the case of this
application, we therefore have that the solution x belongs to Hsd(Ω) for s < 1/4
and to Bsd

τ (Lτ (Ω)) for s < 1/2. Consequently, the Besov regularity is indeed higher
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than the Sobolev regularity and nonlinear approximation pays off. How nonlinear ap-
proximation strategies can be realized for linear inverse and ill-posed problems shall
be discussed in great detail in Section 3. As Besov regularity directly translates into
sparsity, the elaborated adaptive Landweber-type scheme performs a sparse recovery
for x.

Sparse recovery algorithms for nonlinear inverse problems rely so far on linear ap-
proximation concepts that originate from the minimization of Tikhonov-like function-
als. These concepts were originally developed for linear inverse problems within the
last decade, see e.g. [2, 14, 18, 19, 24, 25, 52], and have led to many breakthroughs in
a broad field of applications. They are due to its simple nature very easy to use and can
be applied in various reformulations. The generalization of these methods to nonlinear
problems has permitted an algorithmic realization of sparse recovery for problems that
were by then not feasible. The main ingredients are a proper variational formulation
of the data misfit term and an adequate involvement of the sparsity constraint either
through an extra penalty term or an restriction of the possible solution set. These two
concepts shall be elaborated in Sections 5 and 6 which are furnished with associated
numerical experiments.

2 Classical Inverse Problems
In many applications in the natural sciences, medicine or imaging one has to determine
the cause x of a measured effect y. A classical example is Computerized Tomography
(CT), a medical application, where a patient is screened using x - rays. The observed
damping of the rays is then used to reconstruct the density distribution of the body. In
order to achieve such a reconstruction, the measured data and the searched for quan-
tity have to be linked by a mathematical model, which we will denote by F (or A, if
the model is linear). In an abstract setting, the determination of of the cause x can be
stated as follows: Solve an operator equation

F (x) = y , (2.1)

F : X → Y , where X,Y are Banach (Hilbert) spaces. For the CT problem, the oper-
ator describing the connection between the measurements and the density distribution
(in 2 dimensions) is given by the Radon transform,

y(s, ω) = (Ax)(s, ω) =
∫
R

x(sω + tω⊥) dt , s ∈ R, ω ∈ S1.

As in practice the observed data stems from measurements, one never has the exact
data y available, but rather a noisy variant yδ. In the following we might assume that
at least a bound δ for the noise is available (e.g. if the accuracy of the measurement
device is known):

‖y − yδ‖ ≤ δ .
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In connection with Inverse Problems, the following questions arise:
(i) Does there exist a solution of equation (2.1) for given exact y?

(ii) Is the solution unique?

(iii) If the solution is determined from noisy data, how accurate is it?

(iv) How to solve (2.1)?

2.1 Preliminaries

In order to give a first idea on the problems that may be encountered for ill-posed prob-
lems, we will now consider a linear operator equation in finite dimensions. Assume
A ∈ Rn×n, and we want to solve the linear system Ax = y from noisy data yδ. If we
assume that A is invertible on range(A) and also yδ ∈ range(A) (which is already a
severe restriction), then we can define

x† := A−1y

xδ := A−1yδ .

With x† − xδ = A−1(y − yδ) the distance between xδ and x† can be estimated as
follows,

‖x† − xδ‖ ≤ ‖A−1‖ ‖y − yδ‖
≤ ‖A−1‖δ .

(2.2)

If we additionally assume that A is symmetric and positive definite with ‖A‖ ≤ 1,
then A has an eigensystem (λi, xi) with eigenvalues 0 < λi ≤ 1 and associated
eigenvectors xi. Moreover we have

‖A−1‖ =
1

λmin
⇒ ‖x† − xδ‖ ≤ δ

λmin

Therefore, the reconstruction quality is of the same orderO(δ) as the data error, magni-
fied only by the norm of the inverse operator. However, it turns out thatO(δ) estimates
are only possible in a finite dimensional setting: Indeed, if we define the operator

Ax =
∞∑
i=1

λi〈x, xi〉xi

with orthonormal basis xi and λi → 0, then it is easily to see that the right hand side of
estimate (2.2) explodes. In fact, for inverse problems with dim range(A) = ∞ and,
e.g., compact operator, it is in general impossible to obtain convergence rates. Under
additional assumptions on the solution of the equation Ax = y, the best possible
convergence rate is given by

‖x− xδ‖ = O(δs) , s < 1. (2.3)
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The above considerations were based on the assumption yδ ∈ range(A). As we will
see in the following example, this is a severe restriction that will not hold in practice:
Let us consider the integral equation

y(s) =
∫ s

0
x(t)dt 0 ≤ s ≤ 1.

If x ∈ C0[0, 1], then it immediately follows that y ∈ C1[0, 1] and

x(s) = y′(s), y(0) = 0 .

For noisy measurements this condition will not hold, as the noise will not only alter
the initial value but also the smoothness of yδ, as the data noise is usually not differen-
tiable. The same also holds for Computerized Tomography: It can be shown [35] that
the exact CT data belongs to the Sobolev space H1/2(R × S1), but for the noisy data
we only have yδ ∈ L2.

Now let us define well-posed and ill-posed problems.

Definition 2.1. Let A : X → Y linear operator and X,Y be topological spaces. Then
the problem (A,X, Y ) is well-posed if condition (i)-(iii) are fulfilled at the same time,

(i) Ax = y has a solution for each y ∈ Y
(ii) the solution is unique

(iii) the solution depends continuously on the data, i.e.

yn → y, yn = Axn,=⇒ xn → x and Ax = y .

If one of the conditions is violated, then the problem is ill posed.

Roughly speaking, well-posed problems allow for an error estimate as in (2.2),
whereas the best possible rate for ill posed problems is as in (2.3).

Let us denote by L(X,Y ) the set of all linear and continuous operatorsA : X → Y .
An important class of operators that lead to ill-posed problems are compact operators.

Definition 2.2. An operator A ∈ L(X,Y ) is compact, if it maps bounded sets to rela-
tive compact sets. Or equivalently, for any bounded sequence (xn)n∈N, the sequence
yn = Axn has a convergent subsequence.

Integral operators are an important class of examples for compact operators.

Definition 2.3. Let G ∈ Rn be a bounded set and k : G × G → G. We define the
integral operator K by

(Kx)(s) =
∫
G
k(s, t)x(t)dt .
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Proposition 2.4. Let k ∈ C(G,G) and K be an integral operator considered between
any of the spaces L2(G) and C(G). Then K is compact. If k ∈ L2(G,G), then the
integral operator K : L2(G)→ L2(G) is compact.

Another example for compact operators are Sobolev embedding operators. For
bounded G and a real number s > 0, let us consider the map

is : Hs(G)→ L2(G) , which is defined by isx = x .

Here Hs denotes the standard Sobolev space. Then we have

Proposition 2.5. The Sobolev embedding operator is is compact.

Proposition 2.6. Compact operators with dim range(K) = ∞ are not continuously
invertible, i.e. they are ill-posed.

Now let us assume that a given operator A : Hs → Hs+t, s ≥ 0, t > 0, is continu-
ously invertible. As pointed out above, the measured data will not belong to Hs+t but
rather to L2. Therefore, we have to consider the operator equation between Hs and
L2, i.e. the equation y = is+t(Ax). As a combination of a continuous and a compact
operator, is ◦ A is also compact and therefore not continuously invertible - regardless
of the invertibility of A.

A key ingredient for the stable inversion of compact operators is the spectral de-
composition:

Proposition 2.7. Let K : X → X, X be a Hilbert space and assume that K is
compact and self-adjoint (i.e, 〈Kx, y 〉 = 〈x,Ky 〉 ∀x, y ∈ X). By (λj , uj) denote
the set of eigenvalues λj and associated eigenvectors uj with Kuj = λjuj . Then
λj → 0 (if dim range(K) =∞) and the functions uj form an orthonormal basis of
range(K) with

Kx =
∞∑
i=1

λi〈x, ui 〉ui .

The eigenvalue decomposition can be generalized to compact operators that are not
self-adjoint. Let K : X → Y be given. The adjoint operator K∗ : Y → X is formally
defined by the equation

〈Kx, y 〉 = 〈x,K∗y 〉 ∀x, y .

We can then define the operator K∗K : X → X and find

〈K∗Kx, y 〉 = 〈Kx,Ky 〉 = 〈x,K∗Ky 〉 ,
〈K∗Kx, x 〉 = 〈Kx,Kx 〉 = ‖Kx‖2 ,
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i.e., K∗K is selfadjoint and positive semi-definite, which also guarantees that all
eigenvalues λi of K∗K are nonnegative. Therefore we have

K∗Kx =
∑
i

λi〈x, ui 〉ui .

Defining

σi = +
√
λi

Kui = σivi ,

we find that the functions vi also form an orthonormal system for X:

〈 vi, vj 〉 =
1

σiσj
〈Kui,Kuj 〉

=
1

σiσj
〈K∗Kui, uj 〉

=
σi
σj
〈ui, uj 〉 = δij =

{
1 i = j

0 i 6= j
,

and get

Kx = K(
∑
i

〈x, ui 〉ui) =
∑
i

〈x, ui 〉Kui =
∑
i

σi〈x, ui 〉vi ,

K∗y =
∑
i

σi〈 y, vi 〉ui .

The above decomposition ofK is called the singular value decomposition and {σi, xi, yi}
is the singular system of K. The generalized inverse of K is defined as follows:

Definition 2.8. The generalized inverse K† of K is defined as

dom(K†) = range(K)⊕ range(K)⊥

K†y := x†

x† = arg min
x
‖y −Kx‖ .

If the minimizer x† of the functional ‖y − Kx‖2 is not unique then the one with
minimal norm is taken.

Proposition 2.9. The generalized solution x† has the following properties
(i) x† is the unique solution of K∗Kx = K∗y,

(ii) Kx† = PR(K)y, where PR(K) denotes the orthogonal projection on the range of
K,
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(iii) x† can be decomposed w.r.t. the singular system as

x† =
∑
i

1
σi
〈y, vi〉ui , (2.4)

(iv) the generalized inverse is continuous if and only if range(K) is closed.

A direct consequence of the above given representation of x† is the so-called Picard
condition:

y ∈ range(K)⇔
∑
i

|〈 y, vi 〉|2

σ2
i

<∞ .

The condition states that the moments of the right hand side y (w.r.t. to the system
{vi}) have to tend to zero fast enough in order to compensate the growth of 1/σi.

What happens if we apply noisy data to formula (2.4)? Assume y ∈ range(K),
y = Kx†, and yδl = y + δvl. Then for all l

‖y − yδl ‖ ≤ δ ,

but with

xδ =
∑
i

1
σi
〈yδl , vi〉ui

we obtain

‖x− xδ‖2 =
∑
i

δ2

σ2
i

|〈 vl, vi 〉|2 =
δ2

σ2
l

→∞ as l→∞ ,

which shows that the reconstruction error can be arbitrarily large even if the noisy data
is close to the true data.

2.2 Regularization Theory

In order to get a reasonable reconstruction, we have to introduce different methods
that ensure a good and stable reconstructions. These methods are often defined via
functions of operators.

Definition 2.10. Let f : R+ → R. For compact operators, we define

f(K)x :=
∑
i

f(σi)〈x, ui 〉vi .

Of course, this definition is only well-defined for functions f for which the sum
converges. We can now define regularization methods.
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Definition 2.11. A regularization of an operator K† is a family of operators (Rα)α>0,

Rα : Y → X

with the following properties: there exists a map α = α(δ, yδ) such that for all y ∈
dom(K†) and all yδ ∈ Y with ‖y − yδ‖ ≤ δ,

lim
δ→0

Rα(δ,yδ)y
δ = x†

and
lim
δ→0

α(δ, yδ) = 0 .

The parameter α is called regularization parameter.

In the classical setting, regularizing operatorsRα are defined via filter functions Fα:

Rαy
δ :=

∑
i∈N

σ−1
i Fα(σi)〈 yδ, vi 〉ui .

The requirements of Definition 2.11 have some immediate consequences on the admis-
sible filter functions. In particular, dom(Rα) = Y enforces |σ−1

i Fα(σi)| ≤ C for all i,
and the pointwise convergence of Rα to K† requires limα→0 Fα(t) = 1. Well-known
regularization methods are:

(i) Truncated singular value decomposition:

Rαy
δ :=

N∑
i

σ−1
i 〈 y

δ, vi 〉ui

In this case, the filter function is given by

Fα(σ) :=
{

1 if σ ≥ α
0 if σ < α

.

(ii) Truncated Landweber iteration: For β ∈ (0, 2
‖K‖ 2 ) and m ∈ N, set

F1/m(λ) = 1− (1− βλ2)m .

Here, the regularization parameter α = 1/m only admits discrete values.

(iii) Tikhonov regularization: Here, the filter function is given by

Fα(σ) =
σ2

σ2 + α
.

The regularized solutions of Landweber’s and Tikhonov’s method can also be charac-
terized as follows:
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Proposition 2.12. The regularized solution due to Landweber, xδ1/m, is also given by
the m-th iterate of the Landweber iteration given by

xn+1 = xn +K∗(yδ −Kxn) , with x0 = 0 .

The regularization parameter is the reciprocal of the stopping index of the iteration.

Proposition 2.13. The regularized solution due to Tikhonov,

xδα :=
∑
i

σ2
i

σ2
i + α

· σ−1
i 〈 y

δ, vi 〉ui ,

is also the unique minimizer of the Tikhonov functional

Jα(x) = ‖yδ −Kx‖2 + α‖x‖2 , (2.5)

which is minimized by the unique solution of the equation

(K∗K + αI)x = K∗yδ .

Tikhonov’s variational formulation (2.5) is important as it allows generalizations
towards nonlinear operators as well as to sparse reconstructions. As mentioned above,
regularization methods also require proper parameter choice rules.

Proposition 2.14. The Tikhonov regularization combined with one of the parameter
choice rules
a) α(δ, yδ)→ 0 and δ2

α(δ,yδ) → 0

b) α∗(δ, yδ) s.t. ‖yδ −Kxδα∗‖ = τδ for fixed τ > 1 (discrepancy principle)
is a regularization method.

Proposition 2.15. Let τ > 1. If the Landweber iteration is stopped afterm∗ iterations,
where m∗ is the first index with

‖yδ −Kxm∗‖ ≤ τδ < ‖yδ −Kxm∗−1‖ (discrepancy principle) ,

then the iteration is a regularization method with R 1
m∗
yδ = xm∗ .

The last two propositions show that the regularized solutions for Tikhonov’s or
Landweber’s method converge towards the true solution provided a proper parameter
choice rule was applied. However, no result on the speed of convergence is provided.
Due to Bakhushinsky one rather has

Proposition 2.16. Let xδα = Rαy
δ, Rα be a regularization method. Then the conver-

gence of xδα → x† can be arbitrary slow.
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To overcome this drawback, we have to assume a certain regularity of the solution.
Indeed, convergence rates can be achieved provided the solution fulfills a so-called
source-conditions. Here we limit ourselves to the Hölder-type source conditions,

x† = (K∗K)
ν
2 w, i.e. x† ∈ range(K∗K)

ν
2 ⊆ dom(K) = X, ν > 0 .

Definition 2.17. A regularization method is called order optimal if for a given param-
eter choice rule the estimate

‖x† − xδα(δ,yδ)‖ = O(δ
ν
ν+1 ) (2.6)

holds for all x† = (K∗K)
ν
2 w and ‖yδ − y‖ ≤ δ.

It turns out that for x† = (K∗K)
ν
2 w this is actually the best possible convergence

rate, no method can do better. Also, we have δ
ν
ν+1 > δ for δ < 1, i.e., we always loose

some information in the reconstruction procedure.

Proposition 2.18. Tikhonov regularization and Landweber iteration together with the
discrepancy principle are order optimal.

3 Nonlinear Approximation for Linear Ill-Posed Problems
Within this section we consider linear inverse problems and construct for them a
Landweber-like algorithm for the sparse recovery of the solution x borrowing "leafs"
from nonlinear approximation. The classical Landweber iteration provides in com-
bination with suitable regularization parameter rules an order optimal regularization
scheme (for the definition, see Eq. (2.6)). However, for many applications the im-
plementation of Landweber’s method is numerically very intensive. Therefore we
propose an adaptive variant of Landweber’s iteration that significantly may reduce the
computational expense, i.e. leading to a compressed version of Landweber’s iteration.
We lend the concept of adaptivity that was primarily developed for well-posed oper-
ator equations (in particular, for elliptic PDE’s) essentially exploiting the concept of
wavelets (frames), Besov regularity, best N -term approximation and combine it with
classical iterative regularization schemes. As the main result we define an adaptive
variant of Landweber’s iteration from which we show regularization properties for ex-
act and noisy data that hold in combination with an adequate refinement/stopping rule
(a-priori as well as a-posteriori principles). The results presented in this Section where
first published in [47]

3.1 Landweber Iteration and Its Discretization

The Landweber iteration is a gradient method for the minimization of ‖yδ−Ax‖2 and
is therefore given through

xn+1 = xn + γA∗(yδ −Axn) . (3.1)
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As it can be retrieved, e.g. in [28], iteration (3.1) is for 0 < γ < 2/‖A‖2 a linear
regularization method as long as the iteration is truncated at some finite index n∗. In
order to identify the optimal truncation index n∗, one may apply either an a-priori
or an a-posteriori parameter rule. The Landweber method (3.1) is an order optimal
linear regularization method, see [28], if the iteration is truncated at the a-priori chosen
iteration index

n∗ = bγ
(
2
γ

ν
e
)ν/(ν+1)(ρ

δ

)2/(ν+1)c , (3.2)

where the common notation bpc denotes the smallest integer less or equal p. Here,
we have assumed that the solution x† of our linear equation admits the smoothness
condition

x† = (A∗A)ν/(ν+1)v, ‖v‖ ≤ ρ .

If n∗ is chosen as suggested in (3.2), then optimal convergence order with respect to x†

can be achieved. This proceeding, however, needs exact knowledge of the parameters
ν, ρ in the source condition. This shortfall can be avoided when applying Morozov’s
discrepancy principle. This principle performs the iteration as long as

‖Axn − yδ‖ > τδ (3.3)

holds with τ > 1, and truncates the iteration once

‖Axn∗ − yδ‖ ≤ τδ (3.4)

is fulfilled for the first time. The regularization properties of this principle were inves-
tigated in [20]. The authors have shown that, as long as (3.3) holds, the next iterate will
be closer to the generalized solution than the previous iterate. This property turned out
to be very fruitful for the investigation of discretized variants of (3.1). This can be
retracted in details in [38] where a discretization of the form

xn+1 = xn + γA∗rδ(n)(y
δ −Arδ(n)x

n) (3.5)

was suggested. The basic idea in [38] is the introduction of approximations Arδ(m) to
the operator A that are updated/refined in dependence on a specific discrepancy prin-
ciple.

Iteration (3.5) acts in the infinite dimensional Hilbert space X . To treat (3.5) nu-
merically, we have to discretize the inverse problem which means that we have to find
a discretized variant of (3.1) through the discretization of the corresponding normal
equation of ‖yδ − Ax‖2. To this end, we assume that we have for the underlaying
space X a preassigned countable system of functions {φλ : λ ∈ Λ} ⊂ X at our dis-
posal for which there exist constants C1, C2 with 0 < C1 ≤ C2 <∞ such that for all
x ∈ X ,

C1‖x‖2
X ≤

∑
λ∈Λ

|〈x, φλ〉|2 ≤ C2‖x‖2
X . (3.6)
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For such a system, which is often referred to as a frame for X , see [6] for further
details, we may consider the operator F : X → `2 via x 7→ c = {〈x, φλ〉}λ∈Λ with
adjoint F∗ : `2 → X via c 7→

∑
λ∈Λ

cλφλ. The operator F is often referred in
the literature to as the analysis operator, whereas F∗ is referred to as the synthesis
operator. The composition of both, F∗F , is called the frame operator which is by
condition (3.6) an invertible map; guaranteeing that each x ∈ X can be reconstructed
from its moments 〈x, φλ〉. Moreover, there is for every x ∈ X at least one sequence c
such that x = F∗c. Consequently, we can define

S = FA∗AF∗ , x = F∗c and gδ = FA∗yδ

leading to the discretized normal equation

Sc = gδ . (3.7)

An approximate solution for (3.7) can then be derived by the corresponding sequence
space Landweber iteration,

cn+1 = cn + γ(gδ − Scn) . (3.8)

Note that the operator S : `2(Λ) → `2(Λ) is symmetric but through the ill-posedness
ofA not boundedly invertible on `2(Λ) (even on the subspace Ran F ). This is one ma-
jor difference to [50] in which the invertibility of S on Ran F was substantially used
to ensure the convergence of the Landweber iteration. Since we can neither handle the
infinite dimensional vectors cn and gδ nor apply the infinite dimensional matrix S, it-
eration (3.8) is not a practical algorithm. To this end, we need to study the convergence
and regularization properties of the iteration in which cn, gδ and S are approximated
by finite length objects. Proceeding as suggested [50], we assume that we have the
following three routines at our disposal:
• RHSε[y] → gε. This routine determines a finitely supported gε ∈ `2(Λ) satis-

fying
‖gε −FA∗y‖ ≤ ε .

• APPLY ε[c]→ wε. This routine determines, for a finitely supported c ∈ `2(Λ)
and an infinite matrix S, a finitely supported wε satisfying

‖wε − Sc‖ ≤ ε .

• COARSEε[c] → cε. This routine creates, for a finitely supported with c ∈
`2(Λ), a vector cε by replacing all but N coefficients of c by zeros such that

‖cε − c‖ ≤ ε ,

whereas N is at most a constant multiple of the minimal value N for which the
latter inequality holds true.
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For the detailed functionality of these routines we refer the interested reader to [10, 50].
For the sake of more flexibility in our proposed approach, we allow (in contrast to clas-
sical setup suggested in [50]) ε to be different within each iteration step and sometimes
different for each of the three routines. Consequently, we set ε = εRn for the routine
RHSε[·], ε = εAn for APPLY ε[·] and, finally, ε = εCn for COARSEε[·]. The
subscript n of the created error tolerance or so-called refinement sequences {εCn }n∈N,
{εAn }n∈N and {εRn }n∈N will be related to the iteration index by specific refinement
strategies of the form

rδ : N→ N.

In principle, the refinement sequences are converging to zero and have to be selected
in advance; the map rδ represents a specific integer to integer map (constructed below)
that allows an adjustment of the reconstruction accuracy within each iteration step
m. As a simple example consider the refinement rule rδ(n) = n that chooses for
each iteration n the preselected error tolerances εCn , εAn and εRn . Choosing proper
refinement strategies rδ(n) enables us to establish convergence results and, thanks to
the introduced subtleness, several desired regularization results.

For ease of notation we write, if not otherwise stated, instead of ε{C,A,R}
rδ(n) just the

index rδ(n), i.e. we abbreviate

COARSEεC
rδ (n)

[·], APPLY εA
rδ (n)

[·], and RHSεR
rδ (n)

[·]

by
COARSErδ(n)[·], APPLY rδ(n)[·], and RHSrδ(n)[·] .

Note, this does not mean the same accuracy for all three routines, it just means the
same index for the accuracy/refinement sequences.

Summarizing the last steps results in the following inexact/approximative variant of
(3.8)

c̃ n+1 = COARSErδ(n)
[
c̃ n − γAPPLY rδ(n)[c̃

n] + γRHSrδ(n)[y
δ]
]
. (3.9)

3.2 Regularization Theory for A-Priori Parameter Rules

As mentioned above, the a-priori parameter rule (3.2) for the exact Landweber iteration
(3.1) yields an order optimal regularization scheme. The natural question is whether
the same holds true for the inexact (nonlinear and adaptive) Landweber iteration (3.9).
A positive answer of the latter question essentially relies on the construction of a suit-
able refinement strategy rδ.

In order to achieve an optimal convergence rate, we have to establish some prelimi-
nary results describing the difference between the exact iteration (3.1) and the inexact
iteration (3.9).



16 R. Ramlau and G. Teschke

Lemma 3.1. Assume, c0 = c̃ 0. Then, for all n ≥ 0,

‖cn+1 − c̃ n+1‖ ≤ γ
n∑
i=0

(1 + γ‖S‖)i(εCrδ(n−i)/γ + εArδ(n−i) + εRrδ(n−i)). (3.10)

The latter lemma allows now to prove that the truncated inexact Landweber iteration
(3.9) is an order optimal regularization method. The regularization method Rα can be
described with the help of an adequate refinement map rδ and the a-priori parameter
rule (3.2).

Definition 3.2 (Regularization method with a-priori parameter rule).
i) Given sequences of error tolerances {ε{C,A,R}n }n∈N and routines COARSE,

APPLY and RHS defined as above,

ii) for δ > 0 with ‖yδ − y‖ ≤ δ derive the truncation index n∗(δ, ρ) as in (3.2),

iii) define the quantities

Cn,rδ :=
n∑
i=0

(1 + γ‖S‖)i(εCrδ(n−i) + β(εArδ(n−i) + εRrδ(n−i))) ,

iv) choose the map rδ such that Cn∗−1,rδ satisfies

Cn∗−1,rδ ≤ δν/(ν+1)ρ1/(ν+1) ,

v) define the regularization
Rαg

δ := F∗c̃ δn∗
with regularization parameter α = 1/n∗(δ, ρ).

Theorem 3.3 (Regularization result). Let the truncation index n∗ = n∗(δ, ρ) be as in
(3.2). Then, the inexact Landweber iteration (3.9) truncated at index n∗ and updated
with the refinement strategy rδ (satisfying iv) in Definition 3.2) yields for α(δ, ρ) =
1/n∗(δ, ρ) a regularization method Rα, which is for all ν > 0 and 0 < γ < 2/‖S‖2

order optimal.

3.3 Regularization Theory by A-Posteriori Parameter Rules

The exact Landweber iteration (3.1) combined with the discrepancy principle (3.3) and
(3.4) yields a regularization method. In what follows we show how this result carries
over to (3.9).

The application of the discrepancy principle (3.3) and (3.4) requires a frequent eval-
uation of the residual discrepancy ‖Axn − yδ‖ . Therefore, we have to propose a
function that is numerical implementable and approximates the residual, preferably by
means of APPLY and RHS.
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Definition 3.4. For some y ∈ Y , c ∈ `2(Λ) and some n ≥ 0 the approximate discrep-
ancy is defined by

(RESn[c, y])2 := 〈APPLY n[c], c〉 − 2〈RHSn[y], c〉+ ‖y‖2. (3.11)

The following lemma gives a result on the distance between the exact function space
residual discrepancy ‖Ax− y‖ and its inexact version RESn[c, y].

Lemma 3.5. For c ∈ `2(Λ) with Fc = x, y ∈ Y and some integer n ≥ 0 it holds

| ‖Ax− y‖2 − (RESn[c, y])2 | ≤ (εAn + 2εRn )‖c‖ . (3.12)

To achieve convergence of (3.9), we have to elaborate under which conditions a decay
of the approximation errors ‖c̃ n − c†‖ can be ensured.

Lemma 3.6. Let δ > 0, 0 < c < 1, 0 < γ < 2/(3‖S‖) and n0 ≥ 1. If there exists for
0 ≤ n ≤ n0 a refinement strategy rδ(n) such that RESrδ(n)[c̃ n, yδ] fulfills

c(RESrδ(n)[c̃
n, yδ])2 >

δ2 + Crδ(n)(c̃ n)

1− 3
2γ‖S‖

, (3.13)

then, for 0 ≤ n ≤ n0, the approximation errors ‖c̃ n − c†‖ decrease monotonically.

The above Lemma 3.6 holds in particular for exact data, i.e. δ = 0. In this case,
condition (3.13) simplifies to

c(RESr(m)[c̃ m, y])
2 ≥

Cr(n)(c̃ n)

1− 3
2γ‖S‖

. (3.14)

To prove convergence, we follow the suggested proceeding in [38] and introduce an
updating rule (U) for the refinement strategy r:
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U(i) Let r(0) be the smallest integer ≥ 0 with

c(RESr(0)[c̃ 0, y])2 ≥
Cr(0)(c̃ 0)

1− 3
2γ‖S‖

, (3.15)

if r(0) with (3.15) does not exist, stop the iteration, set n0 = 0.

U(ii) if for n ≥ 1

c(RESr(n−1)[c̃
n, y])2 ≥

Cr(n−1)(c̃ n)

1− 3
2γ‖S‖

, (3.16)

set r(n) = r(n− 1)

U(iii) if

c(RESr(n−1)[c̃
n, y])2 <

Cr(n−1)(c̃ n)

1− 3
2γ‖S‖

, (3.17)

set r(n) = r(n− 1) + j, where j is the smallest integer with

c(RESr(n−1)+j [c̃
n, y])2 ≥

Cr(n−1)+j(c̃ n)

1− 3
2γ‖S‖

, (3.18)

U(iv) if there is no integer j with (3.18), then stop the iteration, set n0 = n.

Lemma 3.7. Let δ = 0 and {c̃ n}n∈N be the sequence of iterates (3.9). Assume the
updating rule (U) for r was applied. Then, if the iteration never stops,

∞∑
n=0

(RESr(n)[c̃
n, y])2 ≤ 1

β(1− c)
(
1− 3

2γ‖S‖
) ‖c̃ n − c†‖2. (3.19)

If the iteration stops after n0 steps,

n0−1∑
n=0

(RESr(n)[c̃
n, y])2 ≤ 1

β(1− c)
(
1− 3

2γ‖S‖
) ‖c̃ 0 − c†‖2. (3.20)

Combining the monotone decay of the approximation errors and the uniform bound-
edness of the accumulated discrepancies enables strong convergence of iteration (3.9)
towards a solution of the inverse problem for exact data yδ = y.

Theorem 3.8. Let x† denote the generalized solution of the given inverse problem.
Suppose c̃ n is computed (3.9) with exact data y in combination with updating rule
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(U) for the refinement strategy r. Then, for arbitrarily chosen c̃ 0 the sequence c̃ n

converges in norm, i.e.
lim
n→∞

c̃ n = c†

with
x† = F∗c† .

The convergence of the inexact Landweber iteration for noisy data relies on a com-
parison between the individual noise free and noisy iterations. For a comparison it
is essential to analyze the δ-dependence of COARSE, APPLY and RHS; in
particular for δ → 0. For a given error level ‖vδ − v‖ ≤ δ the routines (here just
exemplarily stated for COARSE, but must hold for all three routines) should fulfill
for any fixed ε > 0

‖COARSEε(vδ)−COARSEε(v)‖ → 0 as δ → 0. (3.21)

To ensure (3.21), the three routines as proposed in [50] must be slightly adjusted,
which is demonstrated in great details for the COARSE routine only but must be
done for APPLY and RHS accordingly.

The definition of COARSE as proposed in [50] (with a slight modified ordering
of the output entries) is as follows
COARSEε[v]→ vε

i) Let V be the set of non-zero coefficients of v, ordered by their original
indexing in v. Define q :=

⌈
log
(

(#V )1/2 ‖v‖
ε

)⌉
.

ii) Divide the elements of V into bins V 0, . . . ,V q, where for 0 ≤ k < q

V k := {vi ∈ V : 2−k−1‖v‖ < |vi| ≤ 2−k ‖v‖}, (3.22)

and possible remaining elements are put into V q. Let the elements of a
single V k be also ordered by their original indexing in v. Denote the vector
obtained by subsequently extracting the elements of V 0, . . . ,V q by γ(v).

iii) Create vε by extracting elements from γ(v) and putting them at the original
indices, until the smallest l is found with

‖v − vε‖2 =
∑
i>l

|γi(v)|2 < ε2. (3.23)

The integer q in i) is chosen such that
∑

vi∈V q
|vi|2 < ε2, i.e. the elements of V q

are not used to build vε in iii).
Keeping the original order of the coefficients of v in V k, the output vector of

COARSE becomes unique. This “natural” ordering does not cause any extra com-
putational cost.



20 R. Ramlau and G. Teschke

The goal is to construct a noise dependent output vector that converges to the noise
free output vector as δ → 0. To achieve this, the uniqueness of COARSE must
be ensured. The non-uniqueness of COARSE is through the bin sorting procedure
which is naturally non-unique as long as the input vectors are noisy (i.e. different
noisy versions of the same vector result in significantly different output vectors). This
leads to the problem that the index in γ(vδ) of some noisy element vδi can differ to
the index in γ(v) of its noise free version vi. To overcome this drawback for (at least)
sufficiently small δ, we define a noise dependent version COARSEδ.

COARSEδ
ε[v

δ]→ vδε

i) Let V δ be the set of non-zero coefficients of vδ ordered by their indexing
in vδ. Define qδ :=

⌈
log
(

(#V δ)1/2(‖vδ‖+δ)
ε

)⌉
.

ii) Divide the elements of V δ into bins V δ
0, . . . ,V

δ
qδ , where for 0 ≤ k < qδ

V δ
k := {vδi ∈ V δ : 2−k−1(‖vδ‖ + δ) + δ < |vδi | ≤ 2−k(‖vδ‖ + δ) + δ},

(3.24)
and possible remaining elements are put into V δ

qδ . Again, let the elements
of a single V δ

k be ordered by their indexing in vδ. Denote the vector ob-
tained by the bin sorting process by γδ(vδ).

iii) Create vδε by extracting elements from γδ(vδ) and putting them on the orig-
inal places, until the first index lδ is found with

‖vδ−vδε‖2 = ‖vδ‖2−
∑

1≤i≤lδ
|γδi (vδ)|2 < ε2−(lδ+1)δ(2‖vδ‖+δ). (3.25)

The latter definition of COARSEδ enables us to achieve the desired property (3.21).

Lemma 3.9. Given ε > 0 and δ > 0. For arbitrary finite length vectors v, vδ ∈ `2
with ‖vδ − v‖ ≤ δ, the routine COARSEδ is convergent in the sense that

‖COARSEδ
ε[v

δ]−COARSEε[v]‖ → 0 as δ → 0. (3.26)

Achieving convergence of the inexact iteration, we introduce as for the noise free
situation an updating rule which we denote (D). The updating rule (D) is based on the
refinement strategy rδ(n).
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D(i) Let rδ(0) be the smallest integer ≥ 0 with

c(RESrδ(0)[c̃
δ
0, y

δ])2 ≥
δ2 + Crδ(0)(c̃ δ0)

1− 3
2β‖S‖

, (3.27)

if rδ(0) does not exist, stop the iteration, set n∗ = 0.

D(ii) if for n ≥ 1

c(RESrδ(n−1)[c̃
δ
n, y

δ])2 ≥
δ2 + Crδ(n−1)(c̃ δn)

1− 3
2β‖S‖

, (3.28)

set rδ(n) = rδ(n− 1)

D(iii) if

c(RESrδ(n−1)[c̃
δ
n, y

δ])2 <
δ2 + Crδ(n−1)(c̃ δn)

1− 3
2β‖S‖

, (3.29)

set rδ(n) = rδ(n− 1) + j, where j is the smallest integer with

c(RESrδ(n−1)+j [c̃
δ
n, y

δ])2 ≥
δ2 + Crδ(n−1)+j(c̃ δn)

1− 3
2β‖S‖

(3.30)

and
Crδ(m−1)+j(c̃

δ
m) > c1δ

2. (3.31)

D(iv) if (3.29) holds and no j with (3.30),(3.31) exists, then stop the iteration,
set nδ∗ = n.

Theorem 3.10. Let x† be the solution of the inverse problem for exact data y ∈ Ran A.
Suppose that for any δ > 0 and yδ with ‖yδ − y‖ ≤ δ the adaptive approximation c̃ δn
is derived by the inexact Landweber iteration (3.9) in combination with rule (D) for rδ

and stopping index nδ∗. Then, the family of Rα defined through

Rαy
δ := F∗c̃ δnδ∗ with α = α(δ, yδ) =

1
nδ∗

yields a regularization of the ill-posed operatorA, i.e. ‖Rαyδ−x†‖X → 0 as δ → 0.

4 Tikhonov Regularization with Sparsity Constraints
In this section we turn now to nonlinear inverse and ill-posed problems. The focus
is on the generalization of Tikhonov regularization as it was introduced in Section 2
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(see formula (2.5)) to nonlinear problems. In particular, we consider those operator
equations in which the solution x has a sparse series expansion x =

∑
λ∈Λ

cλφλ with
respect to a preassigned basis or frame, i.e. the series expansion of x has only a very
small number of non-vanishing coefficients cλ, or that x is compressible (meaning that
x can be well-approximated by a sparse series expansion).

4.1 Regularization Result for A-Priori Parameter Rules

We consider the operator equation F (x) = y and assume F is possibly ill-posed and
maps between Hilbert spaces X and Y and we suppose there are only noisy data yδ

with ‖yδ − y‖ ≤ δ available. The natural generalization of Tikhonov’s variational
formulation is then given by

Jα(x) = ‖F (x)− yδ‖2 + α‖x‖2 . (4.1)

The second term determines the properties of the solution. In the given setting the
penalty term is a quadratic Hilbert space norm ensuring finite energy of the solution.
The minimizer is due to the convexity and differentiability of ‖ · ‖2 also very easy
to compute. However, for certain classes of inverse problems, e.g. in medical or as-
trophysical imaging or signal peak analysis, such Hilbert space constraints seem not
to be best suited, because they lead to over-smoothed solutions implying that jumps
and edges cannot be nicely reconstructed. Therefore, alternatives are required that
can perform much better. An alternative that may circumvent the mentioned draw-
backs are so-called sparsity measures. Prominent examples of sparsity measures are
`p-norms, 0 < p < 2, on the coefficients of the series expansions of the solution to be
reconstructed. But also much more general constraints such as the wide class of con-
vex, one–homogeneous and weakly lower semi-continuous constraints are possible,
see e.g. [3, 33, 34, 36, 49] or [9, 11].

In what follows we restrict ourselves to `p-norm constraints. Once a frame is preas-
signed, we know that for every x ∈ X there is a sequence c such that x = F∗c, and
therefore the given operator equation can be expressed as F (F∗c) = y. Consequently,
we can define, for a given a-priori guess c̄ ∈ `2(Λ), an adequate Tikhonov functional
by

Jα(c) = ‖F (F∗c)− yδ‖2 + αΨ(c, c̄) (4.2)

with minimizer
cδα := arg min

c∈`2(Λ)
Jα(c) .

To specify Ψ, we define

Ψp,w(c) :=

(∑
λ∈Λ

wλ|cλ|p
)1/p

,
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where w = {wλ}λ∈Λ is a sequence of weights with 0 < C < wλ. A popular
choice for the ansatz system {φλ : λ ∈ Λ} are wavelet bases or frames. In par-
ticular, for orthonormal wavelet bases and for properly chosen weights w one has
Ψp,w(c) ∼ ‖c‖Bsp,p , where Bs

p,p denotes a standard Besov space. In this section we
restrict the analysis to either Ψ(c, c̄) = Ψp,w(c− c̄) or Ψ(c, c̄) = Ψ

p
p,w(c− c̄).

For cδα as a minimizer of (4.2) we can achieve for any of the introduced sparsity
measures regularization properties if the following assumptions hold true:

(i) F is strongly continuous, i.e. cn w→ c⇒ F (cn)→ F (c),

(ii) a-priori parameter available with α(δ)→ 0 and δ2/α(δ)→ 0 as δ → 0,

(iii) x† as well c̄ have finite value of Ψp,ω.

Here, we denote by the symbol w→ the weak convergence.

Theorem 4.1. Suppose (i) and (iii) hold and that we are given a sequences δk → 0 and
α(δk) with (ii). Then the sequence of minimizers cδkαk has a convergent subsequence
that converges with respect to Ψ towards a solution of F (F∗c) = y. If the solution is
unique, the whole sequence converges with respect to Ψ, i.e.

lim
k→∞

Ψ(cδkαk − c
†) = 0 . (4.3)

Consequently, the variational Tikhonov approach with properly chosen sparsity con-
straints is a regularization method.

4.2 Convergence Rates for A-Priori Parameter Rules

The convergence in (4.3) can be arbitrarily slow. Therefore, conditions for establishing
convergence rates need to be achieved. As the analysis that is required for nonlinear
operator equations can be under several conditions on the operator F reduced to the
study of the linear operator case, we limit the discussion to the linear case for which
convergence rates can be shown. The results within this Section have been first pub-
lished in [48].

Consider the linear and ill-posed operator equation

Ãx = g (4.4)

Ã : Xp,ω → L2(Ω) .

Here,Xp,w denotes a Banach space which is a subspace ofL2(Ω), with parameters p ∈
(1, 2) and w = {wλ}λ∈Λ, where Ω is a bounded open subset of Rd, with d ≥ 1, and
Λ is an index set of (possibly tuples of) integer indices. Although one could employ
more general separable Hilbert spaces than L2(Ω), we consider here the Lebesgue
space case, for simplicity.
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We are in particular interested in the reconstruction of solutions of (4.4) that admit
a sparse structure with respect to a given basis in the Banach space Xp,w. In these
cases it is desirable to choose a regularization method that also promotes a sparse
reconstruction. For instance, suitable choices for the spacesXp,w are the Besov spaces
Bs
p,p with p ∈ (1, 2), in case of a sufficiently smooth wavelet basis and properly chosen

weights - see, e.g., [5], [37] for detailed discussions.
Instead of solving the above equation in a function space setting, we will transform it

into a sequential setting. By choosing a suitable orthonormal basis Φ = {φλ : λ ∈ Λ}
for the space L2(Ω), both x and Ãx can be expressed with respect to Φ. Thus,

Ãx =
∑
λ′

∑
λ

〈x, φλ〉〈Ãφλ, φλ′〉 φλ′ . (4.5)

Defining the infinite dimensional matrix A and vectors c, y by

A = (〈Ãφλ, φλ′〉)λ,λ′∈Λ, c = (〈c, φλ〉)λ∈Λ, y = (〈g, φλ〉)λ∈Λ , (4.6)

equation (4.4) can be reformulated as an (infinite) linear system

Ac = b. (4.7)

To specify the spaces Xp,w, we define for a given orthonormal basis Φ and positive
weights w

x ∈ Xp,w ⇐⇒
∑
λ

wλ|〈x, φλ〉|p <∞ ,

i.e. c belongs to the weighted sequence space `p,w, where

`p,w =

c = {cλ}λ∈Λ : ‖c‖p,w =

(∑
λ

wλ|cλ|p
) 1

p

<∞

 .

Since `p ⊂ `q with ‖c‖q ≤ ‖c‖p for p ≤ q, one also has `p,w ⊂ `q,w′ for p ≤ q and
w′ ≤ w. In particular, if the sequence of weights is positive and bounded from below,
i.e., 0 < C ≤ wλ for some C > 0, then `p,w ⊂ `2 for p ≤ 2.

With the above discretization, we consider the sequence space operator equation

Ac = y (4.8)

A : `p,w → `2,

where A is a linear and bounded operator. Now we are prepared to investigate conver-
gence rates for Tikhonov regularization with sparsity constraints, where the approxi-
mation of the solution is obtained as a minimizer of

Jα(c) = ‖Ac− yδ‖2 + 2αΨ
p
p,w(c) , (4.9)

with regularization parameter α > 0. Note that the function Ψ
p
p,w is strictly convex

since the p-powers of the norms are so. In addition, the function Ψ
p
p,w is Fréchet differ-

entiable. In order to obtain convergence rates we need the following source conditions,
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(SC) Ψ
p
p,w
′(c†) = A∗v, for some v ∈ `2.

(SC I) Ψ
p
p,w
′(c†) = A∗Av̂, for some v̂ ∈ `p,w.

For the above given source conditions we get the following convergence rates:

Proposition 4.2. Assume that the noisy data yδ fulfill ‖y−yδ‖ ≤ δ and that p ∈ (1, 2).
i) If (SC) and α ∼ δ, then the following error estimates hold for the minimizer cδα of
(4.9):

‖cδα − c†‖p,w = O(δ
1
2 ), ‖Acδα − y‖ = O(δ).

ii) If (SC I) and α ∼ δ
2
p+1 , then

‖cδα − c†‖p,w = O(δ
p
p+1 ), ‖Acδα − y‖ = O(δ).

Recently it is shown in [26] that under the assumption that c† is sparse and (SC)
holds, the convergence rate is O(δ

1
p ) for p ∈ [1, 2) (thus, up to O(δ)) with respect to

the `2 norm of cδα − c† (which is weaker than the `p,w norm for p < 2). These rates
are already higher, when p < 1.5, than the ”superior limit” of O(δ

2
3 ) established for

quadratic regularization. This indicates that the assumption of sparsity is a very strong
source condition. Next we give a converse results for the first source condition, which
shows that the above given convergence rate can only hold if the source condition is
fulfilled.

Proposition 4.3. If ‖y− yδ‖ ≤ δ, the rate ‖Acδα− y‖ = O(δ) holds and cδα converges
to c† in the `p,w weak topology as δ → 0 and α ∼ δ, then Ψ

p
p,w
′(c†) belongs to the

range of the adjoint operator A∗.

In what follows, we characterize sequences that fulfill the source condition (SC I).
To this end we introduce the power of a sequence by

wt = {wtλ}λ∈Λ, t ∈ R ,

and will consider the operator

A : `p′,w′ → `2 . (4.10)

Please note that ‖ · ‖p,w is still used as penalty and that p, p′ and w,w′ are allowed to
be different, respectively. In the sequel, the dual exponents to the given p, p′ will be
denoted by q, q′. Consider first the case p, p′ > 1.

Proposition 4.4. Let p, p′ > 1, the operatorA and Ψ
p
p,w be given as above, and assume

that p ≤ p′, w′ ≤ w holds true. Then a solution c† of Ac = y fulfilling A∗v =
Ψ
p
p,w
′(c†) satisfies

c† ∈ `(p−1)q′,(w′)−q′/p′ ·wq′ . (4.11)
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The previous result states only a necessary condition. In order to characterize
the smoothness condition in terms of spaces of sequences, we relate the spaces to
range(A∗):

Proposition 4.5. Let p, p′ > 1, the operatorA and Ψ
p
p,w be given as above, and assume

that p ≤ p′, w′ ≤ w holds true. Moreover, assume

range(A∗) = `q̃,w̃−q̃/p̃ ⊂ `q′,w′−q′/p′

for some p̃, q̃ > 1. Then each sequence

c† ∈ `(p−1)q̃,w̃−q̃/p̃·wq̃ (4.12)

fulfills the smoothness condition (SC).

The above derived conditions on sequences fulfilling a source condition (SC) mean
in principle that the sequence itself has to converge to zero fast enough. They can
also be interpreted in terms of smoothness of an associated function: If the function
system Φ in (4.5), (4.6) is formed by a wavelet basis, then the norm of a function in
the Besov spaceBs

p,p coincides with a weighted `p norm of its wavelet coefficients and
properly chosen weights [8]. In this sense, the source condition requires the solution to
belong to a certain Besov space. The assumption on range(A∗) in Proposition 4.5 then
means that the range of the dual operator equals a Besov space. Similar assumptions
were used for the analysis of convergence rates for Tikhonov regularization in Hilbert
scales, see [31, 30, 27].

4.3 Regularization Result for A-Posteriori Parameter Rules

We deal with Morozov’s discrepancy principle as an a-posteriori parameter choice
rule for Tikhonov regularization with general convex penalty terms Ψ. The results
presented in this Section were first published in [1]. In this framework it can be shown
that a regularization parameter α fulfilling the discprepancy principle exists, whenever
the operator F satisfies some basic conditions, and that for suitable penalty terms the
regularized solutions converge to the true solution in the topology induced by Ψ. It is
illustrated that for this parameter choice rule it holds α→ 0, δq/α→ 0 as the noise
level δ goes to 0.

We assume the operator F : dom(F ) ⊂ X → Y between reflexive Banach spaces
X,Y , with 0 ∈ dom(F ), to be weakly continuous, q > 0 to be fixed, and that the
penalty term Ψ(x) fulfills the following condition.

Condition 4.6. Let Ψ : D(Ψ) ⊂ X → R
+, with 0 ∈ dom(Ψ), be a convex functional

such that
(i) Ψ(x) = 0 if and only if x = 0,
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(ii) Ψ is weakly lower semicontinuous (w.r.t. the Banach space topology on X),

(iii) Ψ is weakly coercive, i.e. ‖xn‖ → ∞⇒ Ψ(xn)→∞.

We want to recover solutions x ∈ X of F (x) = y, where we are given yδ with
‖yδ − y‖ ≤ δ.

Definition 4.7. As before, our regularized solutions will be the minimizers xδα of the
Tikhonov-type variational functionals

Jα(x) =

{
‖F (x)− yδ‖q + αΨ(x) if x ∈ dom(Ψ) ∩ dom(F )
+∞ otherwise.

(4.13)

For fixed yδ, we denote the set of all minimizers by Mα, i.e.

Mα = {xδα ∈ X : Jα(xδα) ≤ Jα(x), ∀x ∈ X} (4.14)

We call a solution x† of equation F (x) = y an Ψ-minimizing solution if

Ψ(x†) = min {Ψ(x) : F (x) = y},

and denote the set of all Ψ-minimizing solutions by L. Throughout this paper we
assume that L 6= ∅.

Morozov’s discrepancy principle goes now as follows.

Definition 4.8. For 1 < τ1 ≤ τ2 we choose α = α(δ, yδ) > 0 such that

τ1δ ≤ ‖F (xδα)− yδ‖ ≤ τ2δ (4.15)

holds for some xδα ∈Mα.

Condition 4.9. Assume that yδ satisfies

‖y − yδ‖ ≤ δ < τ2δ < ‖F (0)− yδ‖, (4.16)

and that there is no α > 0 with minimizers x1, x2 ∈Mα such that

‖F (x1)− yδ‖ < τ1δ ≤ τ2δ < ‖F (x2)− yδ‖.

Then we have the following

Theorem 4.10. If Condition 4.9 is fulfilled, then there are α = α(δ, yδ) > 0 and
xδα ∈Mα(δ,yδ) such that (4.15) holds.

Based on this existence result, we are able to establish regularization properties.



28 R. Ramlau and G. Teschke

Condition 4.11. Let (xn)n∈N ⊂ X be such that xn w→ x̄ ∈ X and Ψ(xn)→ Ψ(x̄) <
∞, then xn converges to x̄ with respect to Ψ, i.e.,

Ψ(xn − x̄)→ 0.

Remark 4.12. Choosing weighted `p-norms of the coefficients with respect to some
frame {φλ : λ ∈ Λ} ⊂ X as the penalty term, i.e.

Ψp,w(x) = ‖x‖w,p =
(∑
λ∈Λ

wλ|〈x, φλ〉|p
)1/p

, 1 ≤ p ≤ 2, (4.17)

where 0 < C ≤ wλ, satisfies Condition 4.11. Therefore the same automatically holds
for Ψ

p
p,w(x). Note that these choices also fulfill all the assumptions in Condition 4.6.

Theorem 4.13. Let δn → 0 and F,Ψ satisfy the Conditions 4.6, 4.11. Assume that
yδn fulfills Condition 4.9 and choose αn = α(δn, yδn), xn ∈ Mαn such that (4.15)
holds, then each sequence xn has a subsequence that converges to an element of L
with respect to Ψ.

Remark 4.14. If instead of Condition 4.11 the penalty term Ψ(x) satisfies the Kadec
property, i.e., xn

w→ x̄ ∈ X and Ψ(xn)→ Ψ(x̄) <∞ imply ‖xn − x̄‖ → 0, then the
convergence in Corollary 4.13 holds with respect to the norm.

Condition 4.15. For all x† ∈ L (see Definition 4.7) we assume that

lim inf
t→0+

‖F ((1− t)x†)− y)q‖
t

= 0. (4.18)

The following Lemma provides more insight as to the nature of Condition 4.15.

Lemma 4.16. Let X be a Hilbert space and q > 1. If F (x) is differentiable in the
directions x† ∈ L and the derivatives are bounded in a neigbourhood of x†, then
Condition 4.15 is satisfied.

Theorem 4.17. Let F,Ψ satisfy the Conditions 4.6, 4.15. Moreover, assume that data
yδ, δ ∈ (0, δ∗), are given such that Condition 4.9 holds, where δ∗ > 0 is an arbi-
trary upper bound. Then the regularization parameter α = α(δ, yδ) obtained from
Morozov’s discrepancy principle (see Definition 4.8) satisfies

α(δ, yδ)→ 0 and
δq

α(δ, yδ)
→ 0 as δ → 0.
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Remark 4.18. In the proof of Theorem 4.17 we have used that ‖F (0)−y‖ > 0, which
is an immediate consequence of (4.16). On the other hand, whenever ‖F (0)− y‖ > 0
we can choose

0 < δ∗ ≤ 1
τ2 + 1

‖F (0)− y‖

and for all 0 < δ < δ∗ and yδ satisfying ‖y − yδ‖ ≤ δ we obtain

‖F (0)− yδ‖ ≥ ‖F (0)− y‖ − ‖y − yδ‖ ≥ ‖F (0)− y‖ − δ > τ2δ,

which is (4.16). Therefore (4.16) can be fulfilled for all δ smaller than some δ∗ > 0,
whenever y 6= F (0).

4.4 Convergence Rates for A-Posteriori Parameter Rules

Finally, we establish convergence rates with respect to the generalized Bregman dis-
tance.

Definition 4.19. Let ∂Ψ(x) denote the subgradient of Ψ at x ∈ X . The generalized
Bregman distance with respect to Ψ of two elements x, z ∈ X is defined as

DΨ(x, z) = {Dξ
Ψ
(x, z) : ξ ∈ ∂Ψ(z) 6= ∅},

where
Dξ

Ψ
(x, z) = Ψ(x)−Ψ(z)− 〈ξ, x− z〉.

Condition 4.20. Let x† be an arbitrary but fixed Ψ-minimizing solution of F (x) = y.
Assume that the operator F : X → Y is Gâteaux differentiable and that there is
w ∈ Y ∗ such that

F ′(x†)∗w ∈ ∂Ψ(x†). (4.19)

Throughout the remainder of this section let w ∈ Y ∗ be arbitrary but fixed fulfilling
(4.19) and ξ ∈ ∂Ψ(x†) be defined as

ξ = F ′(x†)∗w. (4.20)

Moreover, assume that one of the two following non-linearity conditions holds:
(i) There is c > 0 such that for all x, z ∈ X it holds that

〈w,F (x)− F (z)− F ′(z)(x− z)〉 ≤ c‖w‖Y ∗‖F (x)− F (z)‖. (4.21)

(ii) There are ρ > 0, c > 0 such that for all x ∈ dom(F ) ∩ Bρ(x†),

‖F (x)− F (x†)− F ′(x†)(x− x†)‖ ≤ c Dξ
Ψ
(x, x†), (4.22)

and it holds that
c‖w‖Y ∗ < 1. (4.23)
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Here, Bρ(x†) denotes a ball around x† with radius ρ.

Theorem 4.21. Let the operator F and the penalty term Ψ be such that Condtions 4.6
and 4.20 hold. For all 0 < δ < δ∗ assume that the data yδ fulfill Condition 4.9, and
choose α = α(δ, yδ) according to the discrepancy principle in Definition 4.8. Then

‖F (xδα)− F (x†)‖ = O(δ), Dξ
Ψ
(xδα, x

†) = O(δ). (4.24)

5 Iterated Shrinkage for Nonlinear Ill-Posed Problems
This section is devoted to the elaboration of a numerical scheme to derive a minimizer
of

Jα(c) = ‖F (F∗c)− yδ‖2 + αΨ(Bc) , (5.1)

for some given α > 0 and where we have assumed (for simplicity) that c̄ = 0 motivat-
ing the shorthand notation to Ψ(c) for Ψ(c, 0) and where B is an isometric mapping.
But, in contrast to Section 4, in which the choice of Ψ was restricted to weighted `p-
norms, we allow in this section a much broader range constraints, namely the wide
range of positive, one–homogeneous, lower semi–continuous and convex penalty con-
straints, where the `p norm is just one famous example. Further important cases
such as the TV measure can be found in [3, 33, 34, 36, 49]. Since we focus here
on constraints that work on the basis of frame coefficients, TV –like constraints are
not directly applicable here. But there is a remarkable relation between TV penal-
ties and frame coefficient-oriented constraints which can be explained by the inclusion
B1

1,1 ⊂ BV ⊂ B1
1,1 − weak (in two dimensions), see for further Harmonic analy-

sis on BV [9, 11]. This relation yields a wavelet-based near BV reconstruction when
limiting to Haar frames and using aB1

1,1 constraint, see for further elaboration [16, 17].
One additional important condition that is necessary for our further analysis is

‖c‖`2 ≤ Ψ(Bc). (5.2)

To derive a minimizer of (5.1), we follow the strategies developed for nonlinear
problems with quadratic penalties suggested in [44]. These concepts seem to be also
adequate when dealing with sparsity, or more general, with one–homogeneous con-
straints. The idea goes as follows: we replace (5.1) by a sequence of functionals from
which we hope that they are easier to treat and that the sequence of minimizers con-
verge in some sense to, at least, a critical point of (5.1). To be more concrete, for some
auxiliary a ∈ `2, we introduce the a surrogate functional

Jsα(c, a) := Jα(c) + C‖c− a‖2
`2
− ‖F (F∗c)− F (F∗a)‖2

Y (5.3)

and create an iteration process by:

(i) Pick c0 and some proper constant C > 0
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(ii) Derive a sequence (cn)n=0,1,... by the iteration:

cn+1 = arg min
c
Jsα(c, cn) n = 0, 1, 2, . . . (5.4)

As a minor but relatively common restriction, convergence of iterations (5.4) can
only be established when the class of operators F is restricted to (twice)Frechét differ-
entiable operators fulfilling

cn
w→ c? =⇒ F (F∗cn)→ F (F∗c?) , (5.5)

F ′(F∗cn)∗y → F ′(F∗c?)∗y for all y , and (5.6)

‖F ′(F∗c)− F ′(F∗c′)‖ ≤ LC2‖c− c′‖ . (5.7)

These conditions are essentially necessary to establish weak convergence. If F is not
equipped with conditions (5.5)-(5.7) as an operator fromX → Y , this can be achieved
by assuming more regularity of x, i.e. changing the domain of F a little (hoping that
the underlying application still fits with modified setting). To this end, we then assume
that there exists a function spaceXs, and a compact embedding operator is : Xs → X .
Then we may consider F̃ = F ◦ is : Xs −→ Y . Lipschitz regularity is preserved.
Moreover, if now xn

w→ x? inXs, then xn→x? inX and, moreover, F̃ ′(xn)→ F̃ ′(x?)
in the operator norm. This argument applies to arbitrary nonlinear continuous and
Fréchet differentiable operators F : X → Y with continuous Lipschitz derivative as
long as a function space Xs with compact embedding is into X is available.

At a first glance the made assumptions on F might seem to be somewhat restrictive.
But compared to usually made assumptions in nonlinear inverse problems they are in-
deed reasonable and are fulfilled by numerous applications.

All what follows in the remaining section can be comprehensively retraced (includ-
ing all proofs) in [46].

5.1 Properties of the Surrogate Functional

By the definition of Jsα in (5.3) it is not clear whether the functional is positive definite
or even bounded from below. This will be the case provided the constant C is chosen
properly.

For given α > 0 and c0 we define a ball Kr := {c ∈ `2 : Ψ(Bc) ≤ r}, where the
radius r is given by

r :=
‖yδ − F (F∗c0)‖2

Y + 2αΨ(Bc0)
2α

. (5.8)

This obviously ensures c0 ∈ Kr. Furthermore, we define the constant C by

C := 2C2 max

{(
sup
c∈Kr

‖F ′(F∗c)‖
)2

, L
√
Jα(c0)

}
, (5.9)
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where L is the Lipschitz constant of theFrechét derivative of F and C2 the upper frame
bound in (3.6). We assume that c0 was chosen such that r <∞ and C <∞.

Lemma 5.1. Let r and C be chosen by (5.8), (5.9). Then, for all c ∈ Kr,

C‖c− c0‖2
`2
− ‖F (F∗c)− F (F∗c0)‖2

Y ≥ 0

and thus, Jα(c) ≤ Jsα(c, c0).

In our iterative approach, this property carries over to all of the iterates.

Proposition 5.2. Let c0, α be given and r, C be defined by (5.8), (5.9). Then the func-
tionals Jsα(c, cn) are bounded from below for all c ∈ `2 and all n ∈ N and have thus
minimizers. For the minimizer cn+1 of Jsα(c, cn) holds cn+1 ∈ Kr.

The proof of the latter Proposition 5.2 directly yields

Corollary 5.3. The sequences (Jα(cn))n∈N and (Jsα(cn+1, cn))n∈N are non-increasing.

5.2 Minimization of the Surrogate Functionals

To derive an algorithm that approximates a minimizer of (5.1), we elaborate the nec-
essary condition.

Lemma 5.4. The necessary condition for a minimum of Jsα(c, a) is given by

0 ∈ −FF ′(F∗c)∗(yδ − F (F∗a)) + C c− C a+ αB∗∂Ψ(Bc) . (5.10)

This result can be achieved when introducing the functional Θ via the relation v ∈
∂Θ(c)⇔ Bv ∈ ∂Ψ(Bc); then one obtaines in the notion of subgradients,

∂Jsα(c, a) = −2FF ′(F∗c)∗(yδ − F (F∗a)) + 2C c− 2C a+ 2α∂Θ(c) .

Lemma 5.5. Let M(c, a) := FF ′(F∗c)∗(yδ − F (F∗a))/C + a. The necessary con-
dition (5.10) can then be casted as

c =
α

C
B∗ (I − PC)

(
C

α
BM(c, a)

)
, (5.11)

where PC is an orthogonal projection onto a convex set C.

To verify Lemma 5.5, one has to establish the relation between Ψ and C. To this
end, we consider the Fenchel or so–called dual functional of Ψ, which we will denote
by Ψ∗. For a functional Ψ : X → R, the dual function Ψ∗ : X ∗ → R is defined by

Ψ
∗(x∗) = sup

x∈X
{〈x∗, x〉 −Ψ(x)} .
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Since we have assumed Ψ to be a positive and one homogeneous functional, there ex-
ists a convex set C such that Ψ∗ is equal to the indicator function χC over C. Moreover,
in a Hilbert space setting, we have total duality between convex sets and positive and
one homogeneous functionals, i.e. Ψ = (χC)∗.

Consequently, with the shorthand notation M(c, a) we may rewrite (5.10),

B
M(c, a)− c

α
C

∈ ∂Ψ(Bc) ,

and thus, by convex analysis standard arguments,

C

α
Bc ∈ C

α
∂Ψ
∗
(
B
M(c, a)− c

α
C

)
.

In order to have an expression by means of projections, we expand the latter formula
as follows

B
M(c, a)

α
C

∈ B
M(c, a)− c

α
C

+
C

α
∂Ψ
∗
(
B
M(c, a)− c

α
C

)
=

(
I +

C

α
∂Ψ
∗
)(

B
M(c, a)− c

α
C

)
,

which is equivalent to(
I +

C

α
∂Ψ
∗
)−1(

B
M(c, a)

α
C

)
= B

M(c, a)− c
α
C

.

Again, by standard arguments, (for more details, see [46])it is known that
(
I + C

α ∂Ψ∗
)−1

is nothing than the orthogonal projection onto a convex set C, and hence the assertion
(5.11) follows.

Lemma 5.5 states that for minimizing (5.3) we need to solve the fixed point equation
(5.11). To this end, we introduce the associated fixed point map Φα,C with respect to
some α and C, i.e.

Φα,C(c, a) :=
α

C
B∗(I − PC)

(
B
M(c, a)

α
C

)
.

In order to ensure contractivity of Φα,C for some generic a we need two standard
properties of convex sets, see [7].

Lemma 5.6. Let K be a closed and convex set in some Hilbert space X , then for all
u ∈ X and all k ∈ K the inequality 〈u− PKu, k − PKu〉 ≤ 0 holds true.
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Lemma 5.7. Let K be a closed and convex set, then for all u, v ∈ X the inequality

‖u− v − (PKu− PKv)‖ ≤ ‖u− v‖

holds true.

Thanks to Lemmata 5.6 and 5.7 we obtain

Lemma 5.8. The mapping I − PC is non–expansive.

The latter statement provides contractivity of Φα,C(·, a).

Lemma 5.9. The operator Φα,C(·, a) is a contraction, i.e.

‖Φα,C(c, a)−Φα,C(c̃, a)‖`2 ≤ q‖c− c̃‖`2 if q :=
C2L

C

√
Jα(a) < 1 .

This consequently leads to

Proposition 5.10. The fixed point map Φα,C(c, cn) that is applied in (5.11) to compute
c is due to definition (5.9) for all n = 0, 1, 2, . . . and all α > 0 and C a contraction.

The last proposition guarantees convergence towards a critical point of Jsα(·, cn).
This can be sharpened.

Proposition 5.11. The necessary equation (5.11) for a minimum of the functional
Jsα(·, cn) has a unique fixed point, and the fixed point iteration converges towards
the minimizer.

By assuming more regularity on F , the latter statement can be improved a little.

Proposition 5.12. Let F be a twice continuously differentiable operator. Then the
functional Jsα(·, cn) is strictly convex.

5.3 Convergence Properties

Within this section we establish convergence properties of (cn)n∈N. In particular, we
show that (cn)n∈N converges strongly towards a critical point of Jα.

Lemma 5.13. The sequence of iterates (cn)n∈N has a weakly convergent subsequence.

This is an immediate consequence of Proposition 5.2, in which we have shown that
for n = 0, 1, 2, . . . the iterates cn remain in Kr. Moreover, with the help of Corollary
5.3, we observe the following lemma that is essentially used in the convergence proof.

Lemma 5.14. For the iterates cn holds limn→∞ ‖cn+1 − cn‖`2 = 0.
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To arrive at weak convergence, we need the following preliminary lemmatas. They
state properties involving the general constraint Θ. To achieve strong convergence the
analysis is limited to the class of constraints given by weighted `p norms.

Lemma 5.15. Let Θ be a convex and weakly lower semi–continuous functional. For
sequences vn → v and cn w→ c, assume vn ∈ ∂Θ(cn) for all n ∈ N. Then, v ∈ ∂Θ(c).

Thanks to last Lemma 5.15 we therefore have weak convergence.

Lemma 5.16. Every subsequence of (cn)n∈N has a weakly convergent subsequence
(cnl)l∈N with weak limit c?α that satisfies the necessary condition for a minimizer of
Jα,

FF ′(F∗c?α)∗(yδ − F (F∗c?α)) ∈ α∂Θ(c?α) . (5.12)

Lemma 5.17. Let (cnl)l∈N ⊂ (cn)n∈N with cnl w→ c?α. Then, liml→∞Θ(cnl) = Θ(c?α)

Combining the previous lemmatas and restricting the constraints to weighted `p
norms, we can achieve strong convergence of the subsequence (cnl)l∈N.

Theorem 5.18. Let (cnl)l∈N ⊂ (cn)n∈N with cnl w→ c?α. Assume, moreover, that

Θ(c) = Ψ(c) =

∑
j

wj |cj |p
1/p

with wj ≥ r > 0 and 1 ≤ p ≤ 2. Then the subsequence (cnl)l∈N converges also in
norm.

In principle, the limits of different convergent subsequences of cn may differ. Let
cnl → c?α be a subsequence of cn, and let cnl ′ the predecessor of cnl in cn, i.e.
cnl = ci and cnl ′ = ci−1. Then we observe, Jsα(cnl , cnl ′) → Jα(c?α). Moreover,
as we have Jsα(cn+1, cn) ≤ Jsα(cn, cn−1) for all n, it turns out that the value of the
Tikhonov functional for every limit c?α of a convergent subsequence remains the same,
i.e. Jα(c?α) = const .

We summarize our findings and give a simple criterion that ensures strong conver-
gence of the whole sequence (cn)n∈N towards a critical point of Jα.

Theorem 5.19. Assume that there exists at least one isolated limit c?α of a subsequence
cnl of cn. Then cn → c?α as n→∞. The accumulation point c?α is a minimizer for the
functional Jsα(·, c?α) and fulfills the necessary condition for a minimizer of Jα.

Moreover, we obtain, Jsα(c?α + h, c?α) ≥ Jsα(c?α, c
?
α) + C

2 ‖h‖
2 and with Lemma 5.12

the second assertion in the theorem can be shown. The first assertion of the theorem
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can be directly taken from [44].

As a summary of the above reasoning we suggest the following implementation of
the proposed Tikhonov-based projection iteration.

Iterated (generalized) Shrinkage

for nonlinear ill-posed and inverse problems with sparsity constraints

Given operator F , its derivative F ′, matrix B, data yδ, some ini-
tial guess c0, and α > 0

Initialization Kr = {c ∈ `2 : Ψ(Bc) ≤ r} with r = Jα(c0)/(2α),
C = 2C2 max{supc∈Kr ‖F

′(F∗c)‖2, L
√
Jα(c0)}

Iteration for n = 0, 1, 2, . . . until a preassigned precision / maxi-
mum number of iterations

1. cn+1 = α
CB
∗(I − PC)

(
C
αBM(cn+1, cn)

)
by fixed point iteration, and where

M(cn+1, cn) = cn + 1
CFF

′(F∗cn+1)∗(yδ − F (F∗cn))

end

5.4 Application of Sparse Recovery to SPECT

This section is devoted to the application of the developed theory to a sparse recov-
ery problem in the field of single photon emission computed tomography (SPECT).
SPECT is a medical imaging technique where one aims to reconstruct a radioactivity
distribution f from radiation measurements outside the body. The measurements are
described by the attenuated Radon transform (ATRT)

y = A(f, µ)(s, ω) =
∫
R

f(sω⊥ + tω)e−
∫∞
t µ(sω⊥+rω)drdt . (5.13)

As the measurements depend on the (usually also unknown) density distribution µ
of the tissue, we have to solve a nonlinear problem in (f, µ). A throughout analysis
of the nonlinear ATRT was presented by Dicken [22], and several approaches for its
solution were proposed in [4, 29, 56, 57, 43, 40, 41, 42]. If the ATRT operator is
considered with

D(A) = Hs1
0 (Ω)×Hs2

0 (Ω) ,



Sparse Recovery in Inverse Problems. 37

20 40 60 80

10

20

30

40

50

60

70

80
20 40 60 80

10

20

30

40

50

60

70

80

Figure 1. Activity function f∗ (left) and attenuation function µ∗ (right). The activity
function models a cut through the heart.
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Figure 2. Generated data g(s, ω) = A(f∗, µ∗)(s, ω).

where Hs
0 (Ω) denotes a Sobolev space over a bounded area Ω with zero boundary

conditions and smoothness s, then the operator is twice continuous Fréchet differen-
tiable with Lipschitz continuous first derivative, if s1, s2 are chosen large enough. A
possible choice for these parameters that also reflects the smoothness properties of ac-
tivity and density distribution is s1 > 4/9 and s2 = 1/3. For more details we refer to
[41, 21]. Additionally, it has been shown that conditions (5.5), (5.7) hold [39]. For our
test computations, we will use the so called MCAT – phantom [51], see Figure 1. Both
functions were given as 80× 80 pixel images. The sinogram data was gathered on 79
angles, equally spaced over 360 degree, and 80 samples. The sinogram belonging to
the MCAT phantom is shown in Figure 2.

At first, we have to choose the underlaying frame or basis on which we put the spar-
sity constraint. Since a wavelet expansion might sparsely represent images/functions
(better than pixel basis), we have chosen a wavelet basis (here Daubechies wavelets of
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Figure 3. Reconstructions with 5% noise and α = 350: sparsity constraint (left) and
Hilbert space constraint (right).

Figure 4. Reconstruction with sparsity constraint and 5% noise. The regularization pa-
rameter (α = 5) was chosen such that ‖yδ −A(f∗, µ∗)‖ ≈ 2δ

order two) to represent (f, µ), i.e.

(f, µ) =

∑
k

c(f)kφ0,k +
∑
j≥0,i,k

d(f)ij,kψ
i
j,k ,

∑
k

c(µ)kφ0,k +
∑
j≥0,i,k

d(µ)ij,kψ
i
j,k

 .

For more details we refer the reader to [12]. For our implementation we have chosen
B = I and Ψ(·) = ‖·‖`1 . As an observation, the speed of convergence depends heavily
on the choice of the constant C in (5.3). According to our convergence analysis, it has
to be chosen reasonably large. However, a large C speeds up the convergence of
the inner iteration, but decreases the speed of convergence of the outer iteration. In
our example, we needed only 2-4 inner iteration, but the outer iteration required about
5000 iterations. As the minimization in the quadratic case needed much less iterations,
this suggests that the speed of convergence also increases with p.

According to (5.2), the functional Ψ will always have a bigger value than ‖ · ‖`2 . If
Ψ(c) is not too large, then it will also dominate ‖c‖2

`2
, which also represents the classi-

cal L2−norm, and we might conclude that reconstructions with the classical quadratic
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Figure 5. Values of the reconstructed activity function through the heart (left) and well
below the heart (right). Solid line: reconstruction with sparsity constraint, dashed line:
quadratic Hilbert space penalty

Figure 6. Histogram plot of the wavelet coefficient of the reconstructions. Left: sparsity
constraint, Right: quadratic Hilbert space constraint.

Hilbert space constraint and sparsity constraint will not give comparable results if the
same regularization parameter is used. As Ψ is dominant, we expect a smaller (op-
timal) regularization parameter in the case of the penalty term Ψ. This is confirmed
by our first test computations: Figure 3 shows the reconstructions from noisy data
where the regularization parameter was chosen as α = 350. The reconstruction with
the quadratic Hilbert space penalty (we have used the L2 norm) is already quite good,
whereas the reconstruction for the sparsity constraint is still far off. In fact, if we
consider Morozov’s discrepancy principle, then the regularization parameter in the
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quadratic case has been chosen optimal, as we observe

‖yδ −A(f δα, µ
δ
α)‖ ≈ 2δ .

To obtain a reasonable basis for comparison, we adjusted the regularization parameter
α such that the residual had also a magnitude of 2δ in the sparsity case, which occurred
for α = 5 . The reconstruction can be seen in Figure 4.

A visual inspection shows that the reconstruction with sparsity constraint yields
much sharper contours. In particular, the absolute values of f in the heart are higher
in the sparsity case, and the artifacts are not as bad as in the quadratic constraint case,
as can be seen in Figure 5. It shows a plot of the values of the activity function for
both reconstructions along a row in the image in Figures 3 and 4 respectively. The left
graph shows the values at a line that goes through the heart, and right graph shows
the values along a line well outside the heart, where only artifacts occur. Clearly, both
reconstructions are different, but it certainly needs much more computations in order
to decide in which situations a sparsity constraint has to be preferred. A histogram plot
of the wavelet coefficients for both reconstructions shows that the reconstruction with
sparsity constraint has much more small coefficients - it is, as we did expect, a sparse
reconstruction, see Figure 6.

6 Projected Accelerated Steepest Descent for Nonlinear
Ill-Posed Problems

In the previous section we have discussed the iterated generalized shrinkage method
given by

cn+1 =
α

C
B∗(I − PC)

(
C

α
B
{
cn + FF ′(F∗cn+1)∗(yδ − F (F∗cn))/C

})
.

For special choices of Ψ (e.g. Ψ(c) = ‖c‖`1), this iteration then allows due its simple
nature an easy to implement recovery algorithm. But the convergence is rather slow
and does not change substantially through different choices of Ψ. One first serious step
to accelerate such types of iterations (but for linear problems) was suggested in [15], in
which the authors “borrowed a leaf” from standard linear steepest descent methods by
using an adaptive step length. In addition to this, the authors concluded from a detailed
analysis of the characteristic dynamics of the iterated soft-shrinkage that the algorithm
converges initially relatively fast, then it overshoots the `1 penalty, and it takes very
long to re-correct back. The proposed way to circumvent this “external” detour is to
force the iterates to remain within a particular `1 ball BR := {c ∈ `2; ‖c‖`1 ≤ R}.
This has led to the constrained optimization problem

min
c∈BR

‖AF∗c− yδ‖2 (6.1)
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resulting in a significantly different proceeding. The shrinkage operation is replaced
by a projection PBR (where the projection PC(c) is defined for any closed convex set
C and any c as the unique point in C for which the `2 distance to c is minimal) leading
for properly chosen γ > 0 to the following iteration,

cn+1 = PBR(cn + γFA∗(yδ −AF∗cn)). (6.2)

However, the speed of convergence remained very slow. Therefore, as mentioned
above, the authors suggested to introduce an adaptive “descent parameter” γn > 0 in
each iteration yielding

cn+1 = PBR(cn + γnFA∗(yδ −AF∗cn)) . (6.3)

The authors of [15] referred to this modified algorithm as the projected gradient iter-
ation or the projected steeptest descent method. They have determined how large one
can choose the successive γn and have shown weak as well as strong convergence of
the method (with and without acceleration). Alternative approaches for sparse recov-
ery that are closely related to the introduced method are the schemes presented in [32]
and [55]. The analysis in [55] is limited to finite dimensions and the strategy provided
in [32] is suited for linear inverse problems. The principle there is to reformulate the
minimization problem as a bounded constrained quadratic program, and then apply
iterative project gradient iterations.

In this section we show that iteration (6.3) (and also more general formulations) can
be directly extended to the nonlinear situation resulting in

cn+1 = PBR(cn + γnFF ′(F∗cn+1)∗(y − F (F∗cn))) . (6.4)

Again, as in the previous section, weak as well as strong convergence can only be
achieved, if F is equipped with conditions (5.5)-(5.7). We also assume twice continu-
ous Fréchet differentiability of F . But note that at the cost of more technicalities most
of the results can also be achieved if F is only one time Fréchet differentiable.

Another issue that is of great importance but was neither considered in [15] nor
somewhere else is to verify regularizing properties of (6.4). Elaborations on this topic,
however, are not provided so far. Nevertheless, we wish to briefly mention the theory
that is still provided in the literature, which is so far unfortunately limited to linear
problems, see, e.g., [23, Section 5.4]. Therefore, the concepts summarized in [23] not
directly apply here and need to be extended. In any case, the question arises whether
the convex constraint stabilize the problem or if it is still necessary to regularize the
inverse problem. In general it seems to be meaningful to assume ill-posedness. There-
fore, we need to introduce an additional stabilization. The iteration (6.4) can be viewed
as iteration scheme to approach theBR-best-approximate solution c†R, which we define
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as the minimizer of ‖F (F∗c)− y‖2 on BR, i.e.

‖F (F∗c†R)− y‖ = inf
c
{‖F (F∗c)− y‖, c ∈ BR} and

‖c†R‖ = min{‖c‖, ‖F (F∗c)− y‖ = ‖F (F∗c†R)− y‖ and c ∈ BR} .

Since c†R ∈ BR, it is natural to require that the regularized solutions are in BR as well.
If c† denotes the generalized solution of the unconstrained problem and if c†R = c†,
then all “standard results” concerning stability, convergence, and convergence rates
hold also for the constrained case. If c†R 6= c†, one might select a different regulariza-
tion method, e.g.,

min
c∈BR

‖F (F∗c)− y‖2 + η‖c‖2 ,

for some η > 0.

6.1 Preleminaries

Once a frame is selected for X , the computation of a solution x translates into finding
a corresponding sequence c ∈ `2(Λ). Hence, the operator under consideration can
be written as F ◦ F∗ : `2(Λ) → Y . Thus, for the ease of notation we write in the
remaining section (if not misleadingly used) only F instead of F ◦ F∗.

Before analyzing the proposed projected steepest descent (6.4), we provide some
analysis of `2 projections onto `1 balls. The listed properties can be retraced in [15, 53],
from where they are partially taken, or to some extent in [18, 19].

Lemma 6.1. ∀a ∈ `2(Λ), ∀τ > 0 : ‖Sτ (a)‖1 is a piecewise linear, continuous, de-
creasing function of τ ; moreover, if a ∈ `1(Λ) then ‖S0(a)‖1 = ‖a‖1 and ‖Sτ (a)‖1 =
0 for τ ≥ maxi |ai|.

Lemma 6.2. If ‖a‖1 > R, then the `2 projection of a on the `1 ball with radius R
is given by PBR(a) = Sµ(a), where µ (depending on a and R) is chosen such that
‖Sµ(a)‖1 = R. If ‖a‖1 ≤ R then PBR(a) = S0(a) = a.

Lemma 6.1 and 6.2 provide a simple recipe for computing the projection PBR(a).
First, sort the absolute values of the components of a (an O(m logm) operation if
#Λ = m is finite), resulting in the rearranged sequence (a∗l )l=1,...,m, with a∗l ≥ a∗l+1 ≥
0; ∀l. Next, perform a search to find k such that

‖Sa∗k(a)‖1 =
k−1∑
l=1

(a∗l − a∗k) ≤ R <
k∑
l=1

(a∗l − a∗k+1) = ‖Sa∗k+1
(a)‖1 .
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The complexity of this step is againO(m logm). Finally, set ν := k−1(R−‖Sa∗k(a)‖1),
and µ := a∗k − ν. Then

‖Sµ(a)‖1 =
∑
i∈Λ

max(|ai| − µ, 0) =
k∑
l=1

(a∗l − µ)

=
k−1∑
l=1

(a∗l − a∗k) + kν = ‖Sa∗k(a)‖1 + kν = R .

In addition to the above statements, also the still provided Lemmata 5.6 (setting K =
BR), 5.7, and 5.8 apply to PBR and allow therewith the use of several standard argu-
ments of convex analysis.

6.2 Projected Steepest Descent and Convergence

We have now collected some facts on the projector PBR and on convex analysis issues
that allow for convergence analysis of the projected steepest descent method defined
in (6.3). In what follows, we essentially proceed as in [15]. But as we shall see,
several serious technical changes (including also a weakening of a few statements) but
also significant extensions of the nice analysis provided in [15] need to be made. For
instance, due to the nonlinearity of F , several uniqueness statements proved in [15]
do not carry over in its full glory. Nevertheless, the main propositions on weak and
strong convergence can be achieved (of course, at the cost of involving much more
technicalities).

First, we derive the necessary condition for a minimizer of D(c) := ‖F (c) − y‖2

on BR.

Lemma 6.3. If the vector c̃R ∈ `2 is a minimizer of D(c) on BR then for any γ > 0,

PBR(c̃R + γF ′(c̃R)∗(y − F (c̃R)) = c̃R ,

which is equivalent to

〈F ′(c̃R)∗(y − F (c̃R)), w − c̃R〉 ≤ 0, for all w ∈ BR .

This result essentially relies on the Fréchet differentiability of F (see, e.g., [59, 58])
and summarizes the following reasoning.

With the help of the first order Taylor expansion given by

F (c+ h) = F (c) + F ′(c)h+R(c, h) with ‖R(c, h)‖ ≤ L

2
‖h‖2
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one has for the minimizer c̃R of D on BR and all w ∈ BR and all t ∈ [0, 1]

D(c̃R) ≤ = D(c̃R + t(w − c̃R)) = ‖F (c̃R + t(w − c̃R))− y‖2

= ‖F (c̃R)− y + F ′(c̃R)t(w − c̃R) +R(c̃R, t(w − c̃R))‖2

= D(c̃R) + 2〈F ′(c̃R)∗(F (c̃R)− y), t(w − c̃R)〉
+2〈F (c̃R)− y,R(c̃R, t(w − c̃R))〉

+‖F ′(c̃R)t(w − c̃R) +R(c̃R, t(w − c̃R))‖2 .

This implies
〈F ′(c̃R)∗(y − F (c̃R)), w − c̃R〉 ≤ 0 ,

and therefore, for all γ > 0,

〈c̃R + γF ′(c̃R)∗(y − F (c̃R))− c̃R, w − c̃R〉 ≤ 0 ,

which verifies the assertion.
Lemma 6.3 provides just a necessary condition for a minimizer c̃R of D on BR.

The minimizers of D on BR need not be unique. Nevertheless, we have

Lemma 6.4. If c̃, ˜̃c ∈ BR, if c̃ minimizes D and if c̃ − ˜̃c ∈ kerF ′(w) for all w ∈ BR
then ˜̃c minimizes D as well.

In what follows we elaborate the convergence properties of (6.4). In a first step
we establish weak convergence and in a second step we extend weak to strong con-
vergence. To this end, we have to specify the choice of γn. At first, we introduce a
constant r,

r := max{2 sup
c∈BR

‖F ′(c)‖2 , 2L
√

D(c0)} , (6.5)

where c0 denotes a initial guess for the solution to be reconstructed. One role of the
constant r can be seen in the following estimate which is possible by the first order
Taylor expansion of F ,

‖F (cn+1)− F (cn)‖2 ≤ sup
c∈BR

‖F ′(c)‖2‖cn+1 − cn‖2 ≤ r

2
‖cn+1 − cn‖2 .

We define now with the help of (6.5) a sequence of real numbers which we denote
by βn that specifies the choice γn by setting γn = βn/r (as we shall see later in this
section).

Definition 6.5. We say that the sequence (βn)n∈N satisfies Condition (B) with respect
to the sequence (cn)n∈N if there exists n0 such that:

(B1) β̄ := sup{βn;n ∈ N} <∞ and inf{βn;n ∈ N} ≥ 1

(B2) βn‖F (cn+1)− F (cn)‖2 ≤ r

2
‖cn+1 − cn‖2 ∀n ≥ n0

(B3) βnL
√

D(cn) ≤ r

2
.
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By condition (B1) we ensure

‖F (cn+1)− F (cn)‖2 ≤ βn‖F (cn+1)− F (cn)‖2 .

The idea of adding condition (B2) is to find the largest number βn ≥ 1 such that

0 ≤ −‖F (cn+1)− F (cn)‖2 +
r

2βn
‖cn+1 − cn‖2

is as small as possible. The reason can be verified below in the definition of the sur-
rogate functional Φβ in Lemma 6.6. The goal is to ensure that Φβn is not too far off
D(cn). The additional restriction (B3) is introduced to ensure convexity of Φβn and
convergence of the fixed point map Ψ in Lemma 6.7 (as we will prove below).

Because the definition of cn+1 involves βn and vice versa, the inequality (B2) has
an implicit quality. In practice, it is not straightforward to pick βn adequately. This
issue will be discussed later in Subsection 6.3.

In the remaining part of this subsection we prove weak convergence of any subse-
quence of (cn)n∈N towards weak limits that fulfill the necessary condition for mini-
mizers of D on BR.

Lemma 6.6. Assume F to be twice Fréchet differentiable and β ≥ 1. For arbitrary
fixed c ∈ BR assume βL

√
D(c) ≤ r/2 and define the functional Φβ(·, c) by

Φβ(w, c) := ‖F (w)− y‖2 − ‖F (w)− F (c)‖2 +
r

β
‖w − c‖2 . (6.6)

Then there exists a unique w ∈ BR that minimizes the restriction to BR of Φβ(w, c).
We denote this minimizer by ĉ which is given by

ĉ = PBR

(
c+

β

r
F ′(ĉ)∗(y − F (c))

)
.

The essential strategy of the proof goes as follows. First, since F is twice Fréchet
differentiable one verifies that Φβ(·, c) is strictly convex in w. Therefore there exists a
unique minimizer ĉ and thus we have for all w ∈ BR and all t ∈ [0, 1]

Φβ(ĉ, c) ≤ Φβ(ĉ+ t(w − ĉ), c) .

With the short hand notation J(·) := Φβ(·, c) it therefore follows that

0 ≤ J(ĉ+ t(w − ĉ))− J(ĉ) = tJ ′(ĉ)(w − ĉ) + ρ(ĉ, t(w − ĉ))

= 2t〈F (c)− y, F ′(ĉ)(w − ĉ)〉+ 2t
r

β
〈ĉ− c, w − ĉ〉

+ 2〈F (c)− y,R(ĉ, t(w − ĉ)〉+ r

β
‖t(w − ĉ)‖2

≤ 2t
{
〈F (c)− y, F ′(ĉ)(w − ĉ)〉+ r

β
〈ĉ− c, w − ĉ〉

}
+ t2

{
2
r

2βL
L

2
‖w − ĉ‖2 +

r

β
‖w − ĉ‖2

}
.
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This implies for all t ∈ [0, 1]

0 ≤
{
β

r
〈F (c)− y, F ′(ĉ)(w − ĉ)〉+ 〈ĉ− c, w − ĉ〉

}
+

3t
4
‖w − ĉ‖2 .

Consequently, we deduce

〈c+
β

r
F ′(ĉ)∗(y − F (c))− ĉ, w − ĉ〉 ≤ 0

which is equivalent to

ĉ = PBR

(
c+

β

r
F ′(ĉ)∗(y − F (c))

)
and the assertion is shown.

The unique minimizer ĉ is only implicitly given. We propose to apply a simple fixed
point iteration to derive ĉ. The next lemma verifies that the corresponding fixed point
map is indeed contractive and can therefore be used.

Lemma 6.7. Assume βL
√

D(x) ≤ r/2. Then the map

Ψ(ĉ) := PBR(c+ β/rF ′(ĉ)∗(y − F (c)))

is contractive and therefore the fixed point iteration ĉl+1 = Ψ(ĉl) converges to a
unique fixed point.

The latter Lemma is a consequence of the Lipschitz continuity of F ′ and the non-
expansiveness of PBR . The last property that is needed to establish convergence is an
immediate consequence of Lemma 6.6.

Lemma 6.8. Assume cn+1 is given by

cn+1 = PBR

(
cn +

βn

r
F ′(cn+1)∗(y − F (cn))

)
,

where r is as in (6.5) and the βn satisfy Condition (B) with respect to (cn)n∈N, then
the sequence D(cn) is monotonically decreasing and limn→∞ ‖cn+1 − cn‖ = 0.

Now we have all ingredients for the convergence analysis together. Since for all
the iterates we have by definition cn ∈ BR, we automatically have ‖cn‖2 ≤ R for all
n ∈ N. Therefore, the sequence (cn)n∈N must have weak accumulation points.

Proposition 6.9. If c? is a weak accumulation point of (cn)n∈N, then it fulfills the
necessary condition for a minimum of D(c) on BR, i.e. for all w ∈ BR,

〈F ′(c?)∗(y − F (c?)), w − c?〉 ≤ 0 . (6.7)
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Since this proposition is essential and combines all the above made statements, we
give the reasoning and arguments to verify (6.7) in greater detail. Since cnj w−→ c?,
we have for fixed c and a

〈F ′(c)cnj , a〉 = 〈cnj , F ′(c)∗a〉 −→ 〈c?, F ′(c)∗a〉 = 〈F ′(c)c?, a〉

and therefore
F ′(c)cnj w−→ F ′(c)c?. (6.8)

Due to Lemma 6.8, we also have cnj+1 w−→ c?. Now we are prepared to show the
necessary condition for the weak accumulation point c?. As the iteration is given by

cn+1 = PBR(cn + βn/rF ′(cn+1)∗(y − F (cn))) ,

we have

〈cn + βn/rF ′(cn+1)∗(y − F (cn))− cn+1, w − cn+1〉 ≤ 0 for all w ∈ BR .

Specializing this inequality to the subsequence (cnj )j∈N yields

〈cnj + βnj/rF ′(cnj+1)∗(y − F (cnj ))− cnj+1, w − cnj+1〉 ≤ 0 for all w ∈ BR .

Therefore we obtain (due to Lemma 6.8)

lim sup
j→∞

βnj/r〈F ′(cnj+1)∗(y − F (cnj )), w − cnj+1〉 ≤ 0 for all w ∈ BR .

To the latter inequality we may add

βnj/r〈(−F ′(cnj+1)∗ + F ′(cnj )∗)(y − F (cnj )), w − cnj+1〉

and
βnj/r〈F ′(cnj )∗(y − F (cnj )),−cnj + cnj+1〉

resulting in

lim sup
j→∞

βnj/r〈F ′(cnj )∗(y − F (cnj )), w − cnj 〉 ≤ 0 for all w ∈ BR , (6.9)

which is possible due to

|〈(−F ′(cnj+1)∗ + F ′(cnj )∗)(y − F (cnj )), w − cnj+1〉|

≤ L‖cnj+1 − cnj‖‖y − F (cnj )‖‖w − cnj+1‖ j→∞−→ 0

and

|〈F ′(cnj )∗(y − F (cnj )),−cnj + cnj+1〉|

≤ sup
x∈BR

‖F ′(c)∗‖‖y − F (cnj )‖‖cnj − cnj+1‖ j→∞−→ 0 .
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Let us now consider the inner product in (6.9) which we write as

〈F ′(cnj )∗y, w − cnj 〉 − 〈F ′(cnj )∗F (cnj ), w − cnj 〉 .

For the left summand we have by the weak convergence of (cnj )j∈N or likewise

(F ′(c?)cnj )j∈N and the assumption of F , F ′(cnj )∗y
j→∞−→ F ′(c?)∗y,

〈F ′(cnj )∗y, w − cnj 〉 = 〈(F ′(cnj )∗ − F ′(c?)∗ + F ′(c?)∗)y, w − cnj 〉
= 〈F ′(cnj )∗y − F ′(c?)∗y, w − cnj 〉+ 〈F ′(c?)∗y, w − cnj 〉

j→∞−→ 〈F ′(c?)∗y, w − c?〉
= 〈F ′(c?)∗(y − F (c?)), w − c?〉+ 〈F ′(c?)∗F (c?), w − c?〉 .

Therefore (and since 1 ≤ βnj ≤ β̄ and again by the weak convergence of (cnj )j∈N),
inequality (6.9) transforms to

lim sup
j→∞

[
〈F ′(c?)∗(y − F (c?)), w − c?〉

+〈F ′(c?)∗F (c?), w − c? + cnj − cnj 〉 − 〈F ′(cnj )∗F (cnj ), w − cnj 〉
]
≤ 0

⇐⇒

lim sup
j→∞

[
〈F ′(c?)∗(y − F (c?)), w − c?〉

+〈F ′(c?)∗F (c?)− F ′(cnj )∗F (cnj ), w − cnj 〉
]
≤ 0

⇐⇒

〈F ′(c?)∗(y − F (c?)), w − c?〉
+ lim sup

j→∞
〈F ′(c?)∗F (c?)− F ′(cnj )∗F (cnj ), w − cnj 〉 ≤ 0 .

It remains to show that the right summand in (6.10) is for all w ∈ BR zero. We have
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by the assumptions made on F ,

|〈F ′(c?)∗F (c?)− F ′(cnj )∗F (cnj ), w − cnj 〉| =
|〈F ′(c?)∗F (c?)− F ′(c?)∗F (cnj ) + F ′(c?)∗F (cnj )− F ′(cnj )∗F (cnj ), w − cnj 〉|
≤ |〈F ′(c?)∗F (c?)− F ′(c?)∗F (cnj ), w − cnj 〉|

+|〈F ′(c?)∗F (cnj )− F ′(cnj )∗F (cnj ), w − cnj 〉|
≤ sup

x∈BR
‖F ′(c)‖‖F (c?)− F (cnj )‖‖w − cnj‖

+|〈(F ′(c?)∗ − F ′(cnj )∗)(F (c?)− F (c?) + F (cnj )), w − cnj 〉|
≤ sup

x∈BR
‖F ′(c)‖‖F (c?)− F (cnj )‖‖w − cnj‖

+‖(F ′(c?)∗ − F ′(cnj )∗)F (c?)‖‖w − cnj‖
+L‖c? − cnj‖‖F (c?)− F (cnj )‖‖w − cnj‖

j→∞−→ 0 .

Consequently, for all w ∈ BR,

〈F ′(c?)∗(y − F (c?)), w − c?〉 ≤ 0 .

After the verification of the necessary condition for weak accumulation points we show
that the weak convergence of subsequences can be strengthened into convergence in
norm topology. This is important to be achieved as in principle our setup is infinite
dimensional.

Proposition 6.10. With the same assumptions as in Proposition 6.9 and the assump-
tions (5.6)-(5.7) on the nonlinear operator F , there exists a subsequence (cn

′
l)l∈N ⊂

(cn)n∈N such that (cn
′
l)l∈N converges in norm towards the weak accumulation point

c?, i.e.

lim
l→∞
‖cn′l − c?‖ = 0 .

The proof of this proposition is in several parts the same as in [15, Lemma 12].
Here we only mention the difference that is due to the nonlinearity of F . Denote by
(cnj )j∈N the subsequence that was introduced in the proof of Proposition 6.9. Define
now uj := cnj − c?, vj := cnj+1 − c?, and βj := βnj . Due to Lemma 6.8, we have
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limj→∞ ‖uj − vj‖ = 0. But we also have,

uj − vj = uj + c? − PBR(uj + c? + βjF ′(vj + c?)∗(y − F (uj + c?)))

= uj + PBR(c? + βjF ′(c?)∗(y − F (c?)))

−PBR(uj + c? + βjF ′(vj + c?)∗(y − F (uj + c?)))

= uj + PBR(c? + βjF ′(c?)∗(y − F (c?)))

−PBR(c? + βjF ′(vj + c?)∗(y − F (uj + c?)) + uj) (6.10)

+PBR(c? + βjF ′(c?)∗(y − F (c?)) + uj) (6.11)

−PBR(c? + βjF ′(c?)∗(y − F (c?)) + uj)

+PBR(c? + βjF ′(c?)∗(y − F (uj + c?)) + uj) (6.12)

−PBR(c? + βjF ′(c?)∗(y − F (uj + c?)) + uj) , (6.13)

where we have applied Proposition 6.9 (c? fulfills the necessary condition) and Lemma
6.3, i.e. c? = PBR(c?+βjF ′(c?)∗(y−F (c?))). We consider now the sum of the terms
(6.11)+(6.13), and obtain by the assumptions on F and since the βj are uniformly
bounded,

‖PBR(c? + βjF ′(c?)∗(y − F (c?)) + uj)−
PBR(c? + βjF ′(c?)∗(y − F (uj + c?)) + uj)‖

≤ ‖βjF ′(c?)∗(F (uj + c?)− F (c?))‖

≤ β̄ sup
x∈BR

‖F ′(x)‖‖F (uj + c?)− F (c?)‖ j→∞−→ 0 .

The sum of the terms (6.10)+(6.12) yields

‖PBR(c? + βjF ′(c?)∗(y − F (uj + c?)) + uj)−
PBR(c? + βjF ′(vj + c?)∗(y − F (uj + c?)) + uj)‖

≤ β̄
{
‖(F ′(c?)∗ − F ′(vj + c?)∗)(y − F (c?))‖

+‖(F ′(c?)∗ − F ′(vj + c?)∗)(F (c?)− F (uj + c?))‖
}

≤ β̄
{
‖(F ′(c?)∗ − F ′(vj + c?)∗)(y − F (c?))‖

+ L‖vj‖‖F (c?)− F (uj + c?)‖
} j→∞−→ 0 .

Consequently, combining ‖uj − vj‖ j→∞−→ 0 and the two last statements, we observe
that

lim
j→∞

‖PBR(c?+βjF ′(c?)∗(y−F (c?))+uj)−PBR(c?+βjF ′(c?)∗(y−F (c?)))−uj‖ = 0 .
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The remaining arguments that verify the strong convergence towards zero of a subse-
quence of uj are now the same as in [15, Lemma 12].

As mentioned in [15], one can prove at the cost of more technicalities that the whole
subsequence (cnj )j∈N converges in norm towards c?. We summarize the findings in
the following proposition.

Proposition 6.11. Every weak accumulation point c? of the sequence (cn)n∈N defined
by (6.4) fulfills the necessary condition for a minimizer of D in BR. Moreover, there
exists a subsequence (cnj )j∈N ⊂ (cn)n∈N that converges in norm to c?.

In the next proposition we give a condition under which norm convergence of sub-
sequences carries over to the full sequence (cn)n∈N.

Proposition 6.12. Assume that there exists at least one isolated limit c? of a subse-
quence (cnj )j∈N ⊂ (cn)n∈N. Then cn → c? holds.

A proof of this assertion can be directly taken from [45].

6.3 Some Algorithmic Aspects

In the previous subsection we have shown norm convergence for all βn satisfying Con-
dition (B). This, of course, implies also norm convergence for βn = 1 for all n ∈ N,
which corresponds to the projected classical Landweber iteration. However, to accel-
erate the speed of convergence, we are interested in choosing, adaptively, larger values
for βn. In particular, by the reasoning made after Definition 6.5, we like to choose βn

as large as possible. The problem (even for linear operators A) is that the definition of
cn+1 involves βn and the inequality (B2) to restrict the choice of βn uses cn+1. This
“implicit” quality does not allow for a straightforward determination of βn.

For linear problems, conditions (B1) and (B2) are inspired by classical length-step
in the steepest descent algorithm for the unconstrained functional ‖Ax − y‖2 leading
to an accelerated Landweber iteration xn+1 = xn + γnA∗(y − Axn), for which γn is
picked so that it gives a maximal decrease of ‖Ax− y‖2, i.e.

γn = ‖A∗(y −Axn)‖2‖AA∗(y −Axn)‖−2 .

For nonlinear operators this condition translates into a rather non-practical sugges-
tion for γn. In our situation, in which we have to fulfill Condition (B), we may derive
a much simpler procedure to find a suitable γn (which is in our case βn/r). Due to
Lemma 6.8 we have monotonicity of D with respect to the iterates, i.e.

L
√

D(cn) ≤ L
√

D(cn−1) ≤ . . . ≤ r

2
= max{ sup

c∈BR
‖F ′(c)‖2, L

√
D(c0)} .
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Therefore (B3), which was given by

L
√

D(cn) ≤ βnL
√

D(cn) ≤ r

2
,

is indeed a nontrivial condition for βn ≥ 1. Namely, the smaller the decrease of D,
the larger we may choose βn (when only considering (B3)). Condition (B3) can be
recast as 1 ≤ βn ≤ r/(2L

√
D(cn)) and consequently, by Definition (6.5), an explicit

(but somewhat “greedy”) guess for βn is given by

βn = max

{
sup
x∈BR

‖F ′(x)‖2

L
√

D(cn)
,

√
D(c0)
D(cn)

}
≥ 1 . (6.14)

If this choice fulfills (B2) as well, it is retained; if it does not, it can be gradually de-
creased (by multiplying it with a factor slightly smaller than 1 until (B2) is satisfied.

As a summary of the above reasoning we suggest the following implementation of
the proposed projected steepest descent algorithm.

Projected Steepest Descent Method

for nonlinear inverse problems

Given operator F , its derivative F ′(c), data y, some initial guess c0, and
R (sparsity constraint `1-ball BR)

Initialization r = max{2 supc∈BR ‖F
′(c)‖2, 2L

√
D(c0)},

set q = 0.9 (as an example)

Iteration for n = 0, 1, 2, . . . until a preassigned precision / maximum num-
ber of iterations

1. βn = max
{

supc∈BR
‖F ′(c)‖2

L
√

D(cn)
,
√

D(c0)
D(cn)

}
2. cn+1 = PBR

(
cn + βn

r F
′(cn+1)∗(y − F (cn))

)
;

by fixed point iteration

3. verify (B2): βn‖F (cn+1)− F (cn)‖2 ≤ r
2‖c

n+1 − cn‖2

if (B2) is satisfied increase n and go to 1.
otherwise set βn = q · βn and go to 2.

end
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6.4 Numerical Experiment: A Nonlinear Sensing Problem

The numerical experiment centers around a nonlinear sampling problem that is very
closely related to the sensing problem considered in [54]. The authors of [54] have
studied a sensing setup in which a continuous-time signal is mapped by a memoryless,
invertible and nonlinear transformation, and then sampled in a non-ideal manner. In
this context, memoryless means a static mapping that individually acts at each time in-
stance (pointwise behavior). Such scenarios may appear in acquisition systems where
the sensor introduces static nonlinearities, before the signal is sampled by a usual
analog-to-digital converter. In [54] a theory and an algorithm is developed that allow
a perfect recovery of a signal within a subspace from its nonlinear and non-ideal sam-
ples. In our setup we drop the invertibility requirement of the nonlinear transforma-
tion, which is indeed quite restrictive. Moreover, we focus on a subclass of problems
in which the signal to be recovered is supposed to have sparse expansion.

Let us specify the sensing model. Assume we are given a reconstruction space
A ⊂ X (e.g. L2(R)) which is spanned by the frame {φλ : λ ∈ Λ} with frame bounds
0 < C1 ≤ C2 < ∞. With this frame we associate two mappings, the analysis and
synthesis operator,

F : A 3 f 7→ {〈f, φλ〉}λ∈Λ ∈ `2(Λ) and F∗ : `2(Λ) 3 x 7→
∑
λ∈Λ

xλφλ .

We assume that the function/signal f we wish to recover has a sparse expansion in A.
The sensing model is now determined by the nonlinear transformation M : A → Y
of the continuous-time function f that is point-wise given by the regularized modulus
function (to have some concrete example for the nonlinear transformation)

M : f 7→M(f) = |f |ε :=
√
f2 + ε2 .

This nonlinearly transformed f is then sampled in a possibly non-ideal fashion by
some sampling function s yielding the following sequence of samples,

SM(f) = {〈s(· − nT ),M(f)〉Y }n∈Z,

where we assume that the family {s(· − nTs), n ∈ Z} forms a frame with bounds
0 < S1 ≤ S2 < ∞. The goal is to reconstruct f from its samples y = (S ◦M)(f).
Since f belongs to A, the reconstruction of f is equivalent with finding a sequence
c such that y = (S ◦ M ◦ F∗)(c). As {φλ : λ ∈ Λ} forms a frame there might
be several different sequences leading to the same function f . Among all possible
solutions, we aim (as mentioned above) to find those sequences that have small `1
norm. As y might be not directly accessible (due to the presence of measurement
noise) and due to the nonlinearity of the operator M , it seems more practical not to
solve y = (S ◦M ◦ F∗)(c) directly, but to find an approximation ĉ such that

ĉ = arg min
c∈BR

‖F (c)− y‖2 and ,
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where we have used the shorthand notation F := S ◦M ◦ F∗ and where the `1 ball
BR restricts c to have a certain preassigned sparsity.

In order to apply our proposed accelerated steepest descent iteration,

cn+1 = PBR

(
cn +

βn

r
F ′(cn+1)∗(y − F (cn))

)
,

to derive an approximation to x̂, we have to determine the constants r, see (6.5), and
the Lipschitz constant L. This requires a specification of two underlying frames (the
reconstruction and sampling frame). One technically motivated choice in signal sam-
pling is the cardinal sine function. This function can be defined as the inverse Fourier
transform of the characteristic function of the frequency interval [−π, π], i.e.

√
2πsinc(πt) =

1√
2π

∫
R

χ[−π,π](ω)eitωdω .

Therefore, the resulting function spaces are spaces of bandlimited functions. The
inverse Fourier transform of the L2 normalized characteristic function 1√

2Ω
χ[−Ω,Ω]

yields
1√
2π

∫
R

1√
2Ω

χ[−Ω,Ω](ω)eitωdω =

√
Ω

π
sinc(Ωt)

leading to the following definition of L2 normalized and translated cardinal sine func-
tions,

φn(t) =
1√
Da

sinc
(
π

Da
(t− nTa)

)
, i.e. Ω =

π

Da
and (6.15)

sn(t) =
1√
Ds

sinc
(
π

Ds
(t− nTs)

)
, i.e. Ω =

π

Ds
(6.16)

that determine the two frames. The parameters Da and Ds are fixed and specify here
the frequency cut off, whereas Ta and Ts fix the time step sizes. For all n ∈ Z we have
‖φn‖2 = ‖sn‖2 = 1. Moreover, it can be easily retrieved that

〈φn, φm〉 = sinc
(
π

Da
(n−m)Ta

)
and 〈sn, sm〉 = sinc

(
π

Ds
(n−m)Ts

)
.

(6.17)
As long as Ta/Da, Ts/Ds ∈ Z, the frames form orthonormal systems. The inner
products (6.17) are the entries of the Gramian matricesFF∗ and SS∗, respectively, for
which we have ‖FF∗‖ = ‖F‖2 = ‖F∗‖2 ≤ C2 and ‖SS∗‖ = ‖S‖2 = ‖S∗‖2 ≤ S2.

Let us now determine r and L. To this end we have to estimate supc∈BR ‖F
′(c)‖2.

For given c ∈ BR, it follows that

‖F ′(c)‖ = sup
h∈`2,‖h‖=1

‖F ′(c)h‖ = ‖SM ′(F∗c)F∗h‖

≤ ‖S‖ ‖M ′(F∗c)‖ ‖F∗‖ .
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Figure 7. The left image shows the sparsity to residual plot. The black diamonds cor-
respond to the accelerated iteration. For the non-accelerated iteration we have plotted
every 20th iteration (gray dots). The right image visualizes the sequence of βn (black)
for the accelerated iteration. The gray line corresponds to β = 1.

Figure 8. These images represent the residual evolution with respect to the number of
iterations (left) and the computational time (right). The black dotted curves represent the
residual evolution for the accelerated and the gray dotted curves for the non-accelerated
scheme.

Moreover, due to (6.15),

‖M ′(F∗c)‖2 = sup
h∈Λ2,‖h‖=1

‖M ′(F∗c)h‖2

=
∫
R

|(F∗c)(t)|2|((F∗c)(t))2 + ε2|−1|h(t)|2dt

≤ 1
ε2

∫
R

(
∑
n

|cn||φn(t)|)2|h(t)|2dt ≤
‖c‖2

1
ε2Da

.
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Therefore, we finally obtain

sup
c∈BR

‖F ′(c)‖2 ≤ ‖S‖2 ‖F∗‖2 R2

ε2Da
≤ S2 C2

R2

ε2Da
. (6.18)

The Lipschitz continuity of F ′ is characterized by ‖F ′(c̃) − F ′(c)‖ ≤ L‖c̃ − c‖, for
all c, c̃ ∈ BR. In order to find the Lipschitz constant L, we directly derive

‖F ′(c̃)− F ′(c)‖ = sup
h∈`2,‖h‖=1

‖F ′(c̃)h− F ′(c)h‖

= sup
h∈`2,‖h‖=1

‖SM ′(F∗c̃)F∗h− SM ′(F∗c)F∗h‖

≤ ‖S‖ ‖M ′(F∗c̃)−M ′(F∗c)‖ ‖F∗‖ , (6.19)

and with M ′′(f) = ε2(f2 + ε2)−3/2 it follows

‖M ′(F∗c̃)−M ′(F∗c)‖2

= sup
h∈L2,‖h‖=1

∫
R

|M ′(F∗c̃(t))−M ′(F∗c(t))|2|h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

1
ε2 |F

∗c̃n(t)−F∗c(t)|2 |h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

1
ε2

(∑
n∈Z
|(c̃n − cn)| |φn(t)|

)2

|h(t)|2dt

≤ sup
h∈L2,‖h‖=1

∫
R

∑
n∈Z
|φn(t)|2 |h(t)|2dt

1
ε2 ‖c̃− c‖

2 .

To finally bound the last quantity, we have to estimate
∑

n∈Z |φn(t)|2 independently
on t ∈ R. With definition (6.15), we observe that

∑
n∈Z
|φn(t)|2 =

1
Da

∑
n∈Z

sinc2
(
π

Da
t− nπ Ta

Da

)
(6.20)

is a periodic function with period Ta. Therefore it is sufficient to analyze (6.20) for
t ∈ [0, Ta]. The sum in (6.20) is maximal for t = 0 and t = Ta. Consequently, with

∑
n∈Z

sinc2
(
n
π Ta
Da

)
= 1 +

∑
n∈Z\{0}

sinc2
(
n
π Ta
Da

)
≤ 1 +

2D2
a

π2 T 2
a

∑
n∈N\{0}

1
n2

= 1 +
4D2

a

π2 T 2
a
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we obtain by combining (6.19) and (6.20),

‖F ′(c̃)− F ′(c)‖ ≤ L ‖c̃− c‖ , with L :=
1
ε

√
1
Da

+
4Da

π2 T 2
a

√
S2
√
A2 . (6.21)

In our concrete example (visualized in Figure 9) the ansatz space A ⊂ L2(R) is
spanned by functions an with Da = 0.4 and time step size Ta = 0.1. The sampling
map S is determined by Ds = 0.2 and Ts = 0.1. The synthetic signal which we aim
to reconstruct is given by

f(t) = a−2(t)− 0.5a2.5(t) .

For the numerical implementation we have restricted the computations to the finite
interval [−10, 10] which was discretized by the grid tk = −10 + 0.05 k with k =
0, 1, 2, . . . . The bounds A2 and S2 are estimated by the eigenvalues of adequately
corresponding finite dimensional approximations of the Gramian matrices 〈an, am〉
and 〈sn, sm〉. For the radius of the `1 ball (determined the sparsity constraint) we have
picked R = 2. This choice of course includes some a-priori knowledge of the solution
to be reconstructed. Usually there is no a-priori information on R available. Even
if not proven so far, R plays the role of an regularization parameter (so far just with
numerical evidence). Therefore, we can observe in case of misspecifiedR a similar be-
havior as for inversion methods where the regularization parameter was not optimally
chosen. If R is chosen too large it may easily happen that the `1 constraint has almost
no impact and the solution can be arbitrarily far off the true solution. Therefore, it was
suggested in [15] to choose a slowly increasing radius, i.e.

Rn = (n+ 1)R/N ,

where n is the iteration index and N stands for a prescribed number of iterations. This
proceeding yields in all considered experiments better results. However, convergence
of a scheme with varying Rn is theoretically not verified yet.

In Figure 7 (right image) one finds that βn varies significantly from one to another
iteration. This verifies the usefulness of Condition (B). From the first iteration on, the
values for βn are obviously larger than one and grow in the first phase of the itera-
tion process (for the accelerated method only the first 60 iterations are shown). But
the main impact manifests itself more in the second half of the iteration (n > 20)
where the non-accelerated variant has a much less decay of

√
D(xn), see Figure 8.

There the values of βn vary around 103 and allow that impressive fast and rapid de-
cay of

√
D(xn) of the accelerated descent method. For the non-accelerated method

we had to compute 104 iterations to achieve reasonable small residuals
√

D(xn) (but
even then being far off the nice results achieved by the accelerated scheme). The
right plot in Figure 8 sketches the residual decay with respect to the overall com-
putational time that was practically necessary. Both curves (the black and the gray)
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Figure 9. This overview plot shows the used atoms a0 and s0 (1st row), the simulated
signal (2nd row), the nonlinearly and non-ideally sampled values (3rd row), and the final
approximation A∗x60 ∈ A that was computed with accelerated iteration scheme.

were of course obtained on the same machine under same conditions. The achieved
time reduction is remarkable as the accelerated iteration method has required many
additional loops of the individual fixed point iterations in order to find the optimal
βn. In particular, the final residual value after n = 10.000 iterations for the non-
accelerated method was

√
D(x10000) = 0.0172. This value was reached by the ac-

celerated method after n = 28 iteration steps (the final value after n = 60 iterations
was

√
D(x60) = 0.0065). The overall computational time consumption of the non-

accelerated method to arrive at
√

D(x10000) = 0.0172 was 45min and 2s, whereas
the time consumption for the accelerated method for the same residual discrepancy
was only 11.8s, i.e. 229 times faster. The finally resulting reconstruction including a
diagram showing the nonlinearly sampled data is given in Figure 9.
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Summarizing this numerical experiment, we can conclude that all the theoretical
statements of the previous sections can be verified. For this particular nonlinear sens-
ing problem we can achieve an impressive factor of acceleration. But this, however,
holds for this concrete setting. There is no proved guaranty that the same can be
achieved for other applications.
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