Inversion of the noisy Radon transform on SO(3)
by Gabor frames and sparse recovery principles
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Abstract

The inversion of the one-dimensional Radon transform on the rotation group SO(3)
is an ill-posed inverse problem that can be applied to X-ray tomography with poly-
crystalline materials. This paper is concerned with the development of a method to
stably approximate the inverse of the noisy Radon transform on SO(3). The proposed
approach is composed by basic building blocks of the coorbit theory on homogeneous
spaces, Gabor frame constructions and variational principles for sparse recovery. The
performance of the finally obtained iterative approximation is studied through several
experiments.
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1 Introduction

The Radon transform on SO(3) becomes an instrument in crystallographic texture analysis
as it relates the crystallographic orientation density function (ODF) and its experimentally
accessible pole density functions (PDFs), see [25, 4]. The determination of a suitable
ODF from pole intensity data can be done through the inversion of the Radon transform
on SO(3). Several inversion methods (mostly ad hoc procedures) have been studied in
the past, see e.g. [5, 17, 18, 24|. To our knowledge an important contribution with
mathematical rigor in this field was given by [16] in which a Fourier slice theorem for
the Radon transform on SO(3) characterizing the Radon transform as a multiplication
operator in Fourier space was elaborated. The authors of [16] present a fast algorithm
for the evaluation of the discrete inverse Radon transform in SO(3) based on fast Fourier
techniques on the two-dimensional sphere S? and the rotational group SO(3).
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The procedure presented in this paper is completely different and goes as follows. We
consider the Radon transform R as a map between Lo (S®) and Ly(S? x S?) (which is in this
setting an ill-posed operator). To numerically compute an approximation to the solution of
the inverse problem Rf = g, we have to establish a suitable and reasonable expansion for f.
Assuming sparsely localized orientation density functions (and also hoping to achieve some
technical operability), we focus on Gabor system expansions for Lo(S3). This also allows
us to work with a spherical grid (representing the translates of the window function), which
is given in terms of the binary icosahedral group (given by the vertices of the 600-cell).
Such a distribution seems to us suitably adapted to the study of ODF’s which are invariant
under a certain point group (hence, subgroup of the orthogonal group) determined by the
crystal under study. 14 crystallographic point groups (e.g. the cyclic groups Cy, and Cs,
the dihedral group Ds, and the tetrahedral group T') are (up to a covering) subgroups of
the binary icosahedral group. Therefore, it exists at least a large class of ODF’s for which
it makes sense to assume sparsity of the ODF with the respect to the translation grid of the
Gabor frame. In order to establish such a localized Fourier system on S, we shall involve
the machinery of group representation theory. The construction of associated function
spaces and suitable discretizations in them (i.e. the construction of frames) requires a
certain concept of function spaces. Here we shall rely on the coorbit theory as it was
developed in [8, 7]. With these concepts at hand, we then address the problem of computing
an approximate solution of the linear inverse problem. Unfortunately, the function ¢ is in
many practical situations not exactly given but only a noisy version g% of g with [|g—¢%| <
0 is available. Consequently, due to the ill-posedness of R we are therefore faced with
regularization issues. To stabilize the inversion process, we propose an iterative procedure
that will emerge from the minimization of a residual based variational formulation of
the inversion problem. This variational formulation also involves some sparsity constraints
leading to thrifty expansions of the ODF. The minimization procedure is close to techniques
that were proposed in [11, 12, 13, 26] and |9, 27].

The organization of the paper is as follows. In Section 2 we establish the analytical
framework that seems to be well-suited for the problem of inverting the Radon transform
on SO(3). In particular, we define the Gabor transform, its admissibility, corresponding
coorbit spaces, atomic decompositions and frames. In Section 3 we focus on the problem
of stably approximating the inverse of the Radon transform on SO(3). Due to the curse
of dimensionality, we discuss very efficient approximation techniques as well as thrifty
strategies for the computation of the stiffness matrix entries. In the end of this section we
consider solve several crystallographic problems (synthetic examples). The Annex contains
material on the algebra of quaternions.

2 Preliminaries and analytical framework

Within this section we set up the analytical framework suited for our problem of inverting
the Radon transform on SO(3). We start by introducing a group theoretical signal analysis
approach, namely the Gabor transform on SO(3), and verify by classical techniques that
this transform acts isometrically between Lo(S®) and Lo(Spin(4) x R?). Due to nice



localization properties the Gabor transform is well suited for expanding localized functions
on Ly(S3). In order to construct Gabor systems on Lo(S?), we briefly review the concept of
coorbit theory on homogeneous spaces that was developed in |7, 8]. The coorbit theory was
primarily designed to describe the much broader concept of Banach spaces on the basis of
square integrable group representations. But even the restriction to Hilbert spaces is very
helpful for our purposes as it furnishes the underlying function space Ly(S3) with frames
for adequately expanding the functions. Proceeding this way we have ansatz systems at our
disposal that allow sparse representations (efficient through localization) of ODF functions
that we aim to recover and feasible discretizations of the Radon transform operator.

2.1 Gabor transform on L,(SO(3))

In order to establish Gabor analysis for the Hilbert space Lo(SO(3)), we first have to
identify a suitable phase space G (as a substitute to the Weyl-Heisenberg group) for the
Gabor transform on L2(SO(3)). To relate the Gabor transform image space La(G) with
L2(S0O(3)), we need to construct a unitary representation of G on L2(SO(3)). This group
representation should be preferably square integrable, thus ensuring that the associated
Gabor transform is an isometry between L2(SO(3)) and La(G).

Let us first find a suitable characterization of SO(3). There are many coordinate
systems and set of parameters for describing the group of rotations in R3. The coordinate
system is typically chosen depending on the underlying application. For our purpose, we
consider instead of SO(3) its double covering group Spin(3), which is diffeomorphic to the
simplectic group Sp(1) of the unit quaternions (3—sphere). For details we refer to Annex
A.2. With this description, we can follow the ideas of Torrésani, see [28], and construct a
version of the windowed Fourier transform on the sphere. Since the usual Fourier transform
is generated by translations and modulations, we need similar transformations on the
sphere. A natural candidate is the Euclidean group G := E(4) = Spin(4) x R*. The group
operation in GG reads as

(51,p1) © (82, p2) = (S182, p1 + $1P251) (1)

and the inverse element of (s, p1) is

(s1,p1)"" = (51, —51p151), (2)

where 57 denotes the conjugate element of s; € Spin(4) (see [14]). As a natural analogue
to the Schrodinger representation of the Weyl-Heisenberg group on Ly (R™), we can define
the representation of G on L%(S3) :

Us,p)f(g) = € f(3qs)

with ¢ € S3. Recall that a unitary representation of a locally compact group G on a
Hilbert space is a homomorphism U from G into the group of unitary operators U (L2 (S?))
on Ly(S3) which is continuous with respect to the strong operator topology. It is easy to



check that U is a homomorphism. Indeed,

Uls1,p1) [U(s2,p2) f(@)] = Ulsi,pr) [ €729 f(s3gs2)

— ei(plv‘nei@%a‘]sl)f(?gﬁqslsg)
v +81P2§,Q>f(mq5152)

= U((s1,p1)© (s2,2))f(q).

We remark that U is the representation of F(4) induced from the one-dimensional repre-
sentation ¢ of its subgroup Spin(3) x R* given by (s, z) = eiwo:r) where wy € 53 is a
vector fixed by Spin(3). In particular, the Mackay machinery implies that U is irreducible.

As already mentioned in [28], this representation is not square-integrable. To overcome
this integrability problem we have to consider U restricted to a suitably chosen section
of a quotient group G/H. One natural candidate for H is given by the stability group
H ={(1,(0,0,0,p4)) € G : ps € R} of G (c.f. [28] for details). The following constructions
substantially depend on the choice of the section o of the principal bundle IT : G — G/H.
We choose the flat section o(s,p) with p = (p,0), where p = (p1,p2,p3) € R3, which is
sufficient for our purpose. Indeed, since each right coset in G/H is given by varying the
last component of p we can find a unique representative by choosing ps = 0. The flat
section o just corresponds to this representative.

Then, X = G/H carries the G—invariant measure du(z) = du(s,)dp,, where o(x) =
(82, px). In our case dp, is just the Lebesgue measure on R3 and dju(s;) is a Spin-invariant
measure on Spin(4). It remains to verify that U is indeed strictly square integrable modulo
(U, ). Therefore, we have to prove that there exists a window functions 1 € L'(S®) such
that

Vel(s:) = ([.U((s,0) ) )
= [ e i) s,

- /5 PTG (5q3) £()dS,. (1)

where dS, denotes the usual Lebesgue measure on S3, is an isometry. This we will show
by applying techniques of [8, 28].

Lemma 1 (admissibility and isometry) Assume that the window ¢ € Lo(S?) is such
that supp(y)) C S3 = {g € H: ||q|]| = 1 A qo > 0}, where qo denotes the real part of the
unit quaternion q (see Annex A.1). Furthermore, we assume it satisfies the admissibility

condition
2m w/2
0% Cy = 6470 / / / [$(a(0, e 9))F do dadf < 0. (5)

cos ¢

Then the map

feL*S? — \ﬁvzpf € L*(Spin(4) x R?)
¥



18 an isometry, i.e.

/ Vi (s,p) 2 dyu(s) dp = Cy / F(q)2ds,
Spin(4)xR3 S3

Proof: By a simple substitution we obtain

ot = [ ]
Spin(4) JR3
N /Sp'in(4) /R3

Let ¢ = A(0,a,¢), 0 € [0,2n], « € [0,n] and ¢ € [0, 7], where A denotes the map from
spherical to cartesian coordinates defined by

2
dp dp(s)

[ i) fayas,

2
dpdu(s).

[, €95 faspas,

go = cos¢
) @1 = cosasing
A(G,Ct,(b) - qo = SiI]&SiHOéSin(Z5 (6)
g3 = cosfsinasing

Let also v : Si — B3 denote the projection map from the upper hemisphere Sﬂ)’r onto the
unit ball B? (in R3) obtained by the change of variable ¢t = sin¢ in (6) and cutting the
real component qg. Consequently,

[, €05 fsas)as,

[ D (0, 0))) F 5o ({6, 0))s) S dtdd do
-/ B0 a6, )0 (n(16,0))5) 25 o a
(BT

- (609 o)

where p = (p1,p2,p3), and F denotes the Fourier transform on R3. Applying Plancherel’s
Theorem yields

2 2

P~()

P o > 3 =1
F sv (s = (2 sv ()s .
[ (Smpreon)| . = et S reon)|
Returning to the unit sphere S3 by setting ¢ = arcsint, we obtain
[9(A(0, @, 0))]

2 _ - 2
Werlft =" [ /S O (5 (6. 0,6)5) do e d(s).



By Fubini’s theorem and using the invariance of the measure du(s) (see [28]) we get

D(A(O 2
sl = st [ PECBSOE [n0,000)9) diuts) ds dacas
S Spin(4)

3 cos ¢

ol 2
— 87‘-3/5 |¢(A(9,0é, (b))‘ 8772Hf||312(53) dqbdozdt?

3 cos ¢
_ 5 [ [0, o, 9)) 2
— Gdr /Simdqbdadenfnwsg).

[
If ¢ fulfils (5), then v is called admissible with respect to o. In this case, (1, 0) is called
a strictly admissible pair.

As a consequence, the proposed windowed Fourier transform can be inverted via its
adjoint V7 //Cy (cf. Formula (65) in [28]).

Corollary 1 (reconstruction) Any f € L%*(S®) can be reconstructed from its Gabor
transform by

_ b —i(sps,q) _
flg) = cy /Spm(4) /R3 Vi f(s,p)e”"P>9p(sqs) dp dp(s).

2.2 Reproducing kernel Hilbert space and frame theory

In order to obtain Gabor frames we will employ coorbit space theory. To keep notations
and technicalities of coorbit space theory at a reasonable level, we only sketch the main
ingredients and review the main conditions that need to be verified for our specific situation.

Assume that (¢, o) is a strictly admissible pair. In order to establish frames in Lo(S3),
coorbit space theory restricted to Hilbert spaces suggests the following procedure. We first
have to establish a correspondence principle between Lo(S?) and an associated reproducing
kernel Hilbert space (as a subspace of La(Spin(4) x R?)). Then a suitable discretization
{x;}ier C Spin(4) x R3 must be chosen in order to derive frames.

Let us define the kernel function

RLK) = (,U(oh)ol)™ ) = VeU(o() ™)) (h)
and the reproducing kernel Hilbert space
My == {F € Ly(Spin(4) x R®) : (F,R(h,-)) = F} .
The following correspondence principle holds true, see [8].

Proposition 1 (correspondence principle) Let U be a square integrable representation
of the Euclidean group Spin(4) x R* mod (H, o) on Ly(S3) with a strictly admissible pair
(¢,0). Then Vy is a bijection of La(S3) onto the reproducing kernel Hilbert space Ma.



The next step is to derive frames for this space. The major tool in |7, 8| is the construc-
tion of a bounded partition of unity corresponding to some U-dense and relatively separated
sequence {z;}ier C X that represents then our desired discretization. A sequence {z;}icr
is called U-dense if | J;c; o(x;)U D o(X) for some relatively compact neighbourhood U of
the identity e € Spin(4) x R3 with non-void interior and is called relatively separated, if
sup,er{i € I : o)L No(x;)L # 0} < Cp for all compact subsets L C Spin(4) x R3. It
can be proved that there always exist such sequences {x; };cs for all locally compact groups,
all closed subspaces H and all relatively compact neighbourhoods U of e with non-void
interior. Note that the subsets X; := {z € X : o(z) € o(z;)U} clearly form a covering of
X with uniformly finite overlap.

In [7] a judicious discretization for rotations/translations was suggested based on an
Euler angle parametrization of the sphere (but no specific choice was made, just conditions
were verified). In there, the discrete frequencies were obtained by a straightforward uniform
spacing of the Euclidean space. However, in the present case of Spin(4) that would imply
dealing with 6 parameters. The high computational cost involved forces us to implement
a reduction of our parameter space to Spin(3) = S3. This reduction will be described in
the next section.

In this paper, we propose to obtain a translation grid by applying a direct spherical
discretization method that was elaborated in [21]. This method yields a ‘fair’ grid, i.e.,
a near-uniformly spaced spherical grid (up to certain precision of the uniform spacing).
To obtain the spherical grid points, a subdivision scheme is developed that is based on
the spherical kinematic mapping. This goes as follows: in a first step an elliptic linear
congruence is discretized by the icosahedral discretization of the unit sphere S3. Then the
resulting lines of the elliptic three-space are discretized such that the difference between the
maximal and minimal elliptic distance between neighbouring grid points becomes minimal.

Assume the grid is chosen as mentioned above and fulfils the requirements. Then the
problem arises under which conditions a function f has an atomic decomposition and the
set {U(o(x;))y : ¢ € I} forms a frame. To answer this question, we have to define the
oscy-kernel

osct(1,h) = sup | (.U (o) () ™) = U™ o 0)o(h) ™ Whiy(s0)-

On the basis of oscy we have the following two major statements at our disposal, see [7, 8].

Theorem 1 (atomic decomposition) Assume that the relatively compact neighborhood
U of the identity in Spin(4) x R3 can be chosen so small that

/ oscy(l, h)du(l) <~y and / oscy(l, h)du(h) <~ (7)
X X

with v < 1. Let {x;}icr be a U-dense, relatively separated family. Then Ly(S3) admits
the following atomic decomposition: if f € La(S3), then there exists a sequence ¢ = (¢;)ier
such that f can be represented as

f=Y aU(o(@),

i€l



where ¢ € ba and ||clle, < Al fl|L,(g8)- Moreover, if c € Lo, then f =), ciU(o(x:)) €
Ly(5%) and || f]|Ly(s2) < Bllclle,.-

Theorem 2 (frames) Impose the same assumptions as in Theorem 1 with the more re-
strictive condition

/ oscy(l, h)du(l) < = and / oscy(l, h)du(h) < - (8)
X Cy X Cly
where n < 1. Then the set
{i :=U(o(z;)): i€}
is a frame for Ly(S%). This means that

1. f € Ly(S?) & {{f, i) }ier € Lo,

2. there exists constants 0 < A < B < oo such that
Allfllzos2y < I i) Yierlle, < Bl fllzos#)

3. there exists a bounded, linear synthesis operator S : fy — Ly(S?)

such that S({(f,¥:)}icr) = f.

2.3 Verification of frame conditions

In order to establish Theorems 1 and 2 we have to verify conditions (7) and (8). To
simplify technicalities and later therewith the computational complexity, we reduce the
number of parameters in X = Spin(4) x R? (nine parameters) by restricting ourselves to
zonal window functions. Thus, we can consider the factorization of Spin(4) by Spin(3),
i.e. Spin(4)/Spin(3) ~ S which allows us to consider Lo(S% x R3).

Let us now check condition (7) in Theorem 1. Note that condition (8) in Theorem 2
can be verified analogously and is, therefore, omitted. Let h = (s1,p),l = (s2,7) € G/H
with p = (p1, p2,ps3,0) and r = (r1,72,73,0) be given. Then, by (2) and (1) we have

a(h)a(l)~" = (s1,p) o (32, —5arse) = (5152, p — 515275251)-

Consider the neighborhood of e given by Ue := {u = (su,pu) : su € Ce, pu € [—6, ¢} C
S$3 x R3, with C. = {A(0,,¢) : 6 € [0,27),a € [0,7),¢ € [0,em)} being a spherical
e-cap. The sampling grid {z;};c; can be specified by z; = T n) = (Sm,Pn), Where sy,
correspond to the grid points generated by the previously mentioned subdivision scheme
in [21] and p, are uniformly spaced points in R3. For each chosen e the sampling density
can be accordingly adjusted (on S? by the subdivision scheme and in R? simply by a finer
and finer spacing) such that X; = {z € X : o(x) € o(z;)U} forms a covering of X that
is U-dense and relatively separated. To show that the oscillation condition (7) can be
satisfied we proceed in a similar way as in [8]. With the help of

o(h)o(l) " u = (515250, p — $152(r — Pu)5957)



we obtain
/93(U(0(l)0(h)_1)¢(Q)11}(Q) —U(a(l)o(h) " u)v(q)d(q)) dS,
= /S (e g (sy57qs 53)Blg) — 0RO g (5578, g5 52)(4)) dSy
-/ , 7 (s ) o) Vo)
(1 - e“%&l%sﬁzp(sﬁsuqm@)@(q))} dS,.

This leads to

oscy(l,h) < sup
ueU

/ HOP=3152rS25T) (4 (5957q5153) — (595750 05us152)) P(q) Sy
s

3
+

/.

To bound I := [y oscy(I, h)du(h) we apply the last estimate and we get

sup | [ elomsisaressi) (1 - cilaoismposs ) g (sy575,05015) () dS,

ueU

3
+

1< /S (14 1) du(s)

where
L = / sup / e P 1528251 (4 (5957¢5153) — (5251 5uqBus152)] ¥(q) dSy | dp,
R3 ueld Sf’r
and
L= [ sup| [ eltowmsrsres (12 oo ) y(ssys, g s2) i) S, dp
R3 ueld Si
We first consider I. Projecting ¢ onto the unit ball B? yields
I, = / sup/ ei(x(t,@,a),g)e—i(x(t,&,a),ﬂ@r@ﬁ) [¢(82§v_1(1‘(t,9,04))81§)
R3 ueld |J B3
— t?sina
_ -1 .

—(89518, v (x(t, 0, a))5y515 z(t,0,a)) ——— dt df do| dp.

Introducing the functions

e~ (t,0,0),515275251) 4 /o) (z(¢,0,c
g(ty aua) == { \/17t2 w( ( ))7 t E [07 1]79 6 [_71-7 7T]7a E [0771-[7

0, otherwise,




and

[¢(s2sTo (2(t, 0, ) s152) te€[0,1],0 € [-7, 7], € [0, 7],
—(s2518,v @ (t, 0, )5y s152) |
ws, (t,0,0) = < x\/i(x(t,6,q)),

0, otherwise,

we can rewrite I; as

L = /sup
R3 ueld

< /Rgsgg| wsu)*j:g)@M@

/ / / @ B0e)phyy (1.0, a)g(t, 0, o) t% sin o df da dt| dp
oo J0O - o

< /sup Flws, ) O Fg((p) — €)\de dp. (9)
R

3 ueld

Observe that w,, has compact support. Now, if we choose 1 smooth enough, i.e. wg, €
CF(R3),k >4, and g € L1, then lim,, iq wgi) = 0 and by dominated convergence we get

lim ||wl[z, = 0.

Su—1

This also implies that
lim [|F(w{?)]|L,, = 0.
Sy —id “
Therefore, by using
Fw) (&) = (=i&)*F(ws,)(©)
we have
IF(w) ()] < 1+ [€)Fe(sa), (10)

where ¢(s,) denotes a continuous function with limg, _;q ¢(s,) = 0. Inserting (10) into (9),
we obtain

o< [ swels) [ 0+HE) Tl - Old dp

3 ueld

< NF@ i sup e(s) [ (14 1e) e
Su€Ce R3
< C sup ¢(su).

su€Ck

This expression becomes arbitrary small for sufficient small €. For the second integral I5 the

function wy, is given by (1 — ei<“’515p“52§>) \/%(q). Hence, imposing the same regularity
condition on v as in the estimate of I; one gets a similar result.

10



3 Inversion of the Radon transform

This section is concerned with the determination of the orientation density function f
(ODF) of a polycrystalline specimen from given pole density data. The major assumption
is that f can be sufficiently well represented by the spherical Gabor frames introduced in
the previous section. Then the remaining task is to solve a discretized operator equation,
i.e., to determine the synthesis coefficients (or the atomic representation) of f. As the
data are allowed to be noisy (which is for any practical measurement process impossible to
avoid), the Radon operator must be considered between Ly(S3) and Lo(S? x S?) and is,
therefore, ill-posed (and not as the operator properties suggest a map with negative order
between Sobolev spaces (see [3])). Consequently, we are faced with regularization issues,
i.e., the inversion procedure must be stabilized against the influence of noise.

Before we enter into the issue let us give a short remark on the spherical Radon trans-
form.

3.1 Crystallography and the spherical Radon transform

The orientation of an individual crystal is assumed to be unique and given by the rota-
tion ¢ € SO(3) which maps the specimen referential system K into coincidence with a
coordinate system K. fixed to the crystal, ¢ : K5 — K.. Hence the coordinates of the
initial direction represented by x € S? C R? (w.r.t. the crystal coordinate system K.) will
be related to the ones of the final direction represented by y € S? (w.r.t. the coordinate
system K) by y = grq. With other words we assume that a crystal is uniquely determined
by its invariance group (space group) G C O(3) x T'(3). We are here interested in the
part which corresponds to a subgroup (crystallographic group) G, := G/T(3) C O(3). A
nonnegative, integrable (possibly normalized) function

J:0(3)/Gy Ry

is called an orientation density function (ODF). The determination of such an ODF is
called quantitative texture analysis. The ODF f can only be measured in an indirect way
via the pole density function P(z,y) = T ((Rf)(z,y) + (Rf)(—z,y)), there is, by means
of two spherical Radon transforms of the orientation density function f ([25], [6]). The
principle problem consists in how to determine the ODF from the measurements (pole
figures).

Definition 1 [Spherical Radon transform] [6]) Let f be a L'(S3) function. We define the
spherical Radon transform of f as the mean over all rotations q mapping the direction
x € S? intoy € S? and we write

(RA@y) = — |  fla)dg (1)
210 J{qess:y=gaq}
1 27

T Jo

11



Xy
flzxyll

where q(z,y,t) = (Cosg + sin g) cost + ﬁ sint, with n = arccos({x,y)), denotes

the great circle in S® of all unit quaternions q which rotates x € S? into y € S>.

Note that the invariant Haar measure in (11) is uniquely defined by the assumption
that the measurements should be independent of the choices of the coordinate systems
K., K.

3.2 Inversion by accelerated steepest descent and /;-projections

In this section, we address the problem of computing an approximation of a solution to
the linear problem R(f) = g, where R denotes the Radon transform. The operator R is
an integral operator and therefore R(f) belongs to a certain smoothness (Sobolev) space.
But, usually, we deal with noisy data ¢° instead of g, with ||g — ¢°|| < . Consequently,
we only can assume R : Ly(S%) — Ly(S? x S%), at most. Therefore, we are faced with the
problem of ill-posedness (in the sense of a discontinuous dependence of the solution on the
data) and therefore with regularization issues.

The goal is to propose an iterative procedure for deriving an approximation to the solu-
tion of our inverse problem. To this end, we start by providing an adequate representation
of the solution. For this we use the Gabor frame for Ly(S®) established in the previous
section. Let A be the countable index set representing the frame grid and let the Gabor
frame be denoted by ¥ = {1y : A € A} C La(S?). An individual Gabor atom indexed by
the multi-index A is of the form

¥alg) = w(n,m) (@) = U(sn,pm)¥(q) = ei<q7pm>¢(§nq5n) .

In this notation n and m are also multi-indices. For ¥ we may consider the operator

F: Ly(S%) — ba(A) via f— {(f,¥x)}ren

with adjoint
F* i ly(A) — Lo(S®) via ¢ > exty .
A€A
Therefore, the inverse problem can be recast as follows: find a sequence ¢ € f5(A) such
that
R(F*c) =g.

Note that due to the overcompleteness of ¥, ¢ needs not to be unique. Since the data
might be inexact (no equality between R(f) and ¢°), we focus on minimizing the Gaussian
discrepancy

D(c) = |¢* = R(F*¢)|[7,(s2xs2) -

In this application we can assume that the solution ¢ to be reconstructed has a sparse
expansion, i.e. ¢ has only a few nonvanishing coefficients or can be nicely approximated
by a small number of coefficients. This can be ensured for a large number of ODF’s by
choosing the rotation grid to be the vertices of the 600-cell or a subdivision of it.

12



One well-understood approach to involve this sparsity constraint is given by adding an
¢1 penalty term to the Gaussian discrepancy leading to

D(c) +7llelle; ) -

The treatment of such functionals is not difficult to handle and was elaborated and suc-
cessfully applied in several papers, see, e.g., [10, 11, 12, 13, 26]. However, the resulting
iteration is known to converge usually quite slow and a detailed analysis of the character-
istic dynamics of the corresponding thresholded Landweber iteration has shown that the
algorithm converges initially relatively fast, then it overshoots the ¢; penalty, and it takes
very long to re-correct back. To circumvent this “external” detour it was proposed in [9, 27|
to force the iterates to remain within a particular ¢1 ball By = {z € fo; ||z, ) < K}
This leads to the constrained minimization approach

Crgjigr;{ D(c) . (12)

To accelerate the resulting iteration we may apply techniques from standard linear steepest
descent methods which is the use of adaptive step lengths. Therefore, a minimization of
(12) results in a projected iteration with step length control,

AT = P <c§ + gFR*(g - R(F*c”))> : (13)

The convergence of this method relies on a proper step length parameter rule for . With
respect to a sequence {c"},en the parameter 5 must be chosen such that

(B1) B i=sup{f"n €N} <oo and inf{3"necN}>1
(B2) BY|R(F*c™ ™) — R(F*e¢) | < 7| = | ¥n > ng

are fulfilled, where the constant 7 is an upper bound for ||RF*||2. Practically, the imple-

mentation of the proposed projected steepest descent algorithm is as follows
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Given operator R, some initial guess ¢, and K (sparsity constraint ¢1-ball By)

Initialization| ||RF*||? < r,
set ¢ = 0.9 (as an example)

Iteration for n =0,1,2,... until a preassigned precision / maximum number of
iterations

1. pn=C- g((iz)), C > 1 (greedy guess)

2. = Py (" + S FR (g - R(F(c"));
3. verify (B2): 8| R(F*c"Y) — R(F*c™)|]? < r| ™t — 2

if (B2) is satisfied increase n and go to 1.
otherwise set 8" = ¢ - 3" and go to 2.
end

When performing iteration (13) the main operating expense is due to the computation and
application of FR*RF™. Therefore, an adaptive variant of the full iteration by involving
adaptive matrix vector multiplications could significantly reduce the numerical complexity.
Unfortunately, the matrix FR*RF* belongs neither to the Jaffard nor to the Lemarie
class. Therefore, so far established adaptive strategies for operator equations cannot be
applied in a straightforward way as done in the Euclidean situation, see [23]. Nevertheless,
efficient strategies for computing the matrix entries are possible and allow thrifty linear
approximation techniques.

3.3 Efficient computation of matrix entries

In this section we discuss the efficient calculation of the matrix FR*RF*. Its entries read
as

<R¢m,n7me’,n’>L2(SQ><SZ) = /52 /52 me,n(%y)me’,n’(way) dy dx. (14)

In order to simplify the practical calculations we will consider ¥ to be a zonal window
function with support on the spherical cap Uy, = {q € S® : qo > h}, for some h €]0,1[. As
an immediate consequence the parameter space is reduced to X = 53 x R? and the action
5q5, s € Spin(4) can be replaced by the left translation action on S® defined by 5q, where
s € 3. This is a left transitive action on S3 such that the rotations from Spin(3) around
a point ¢ € S® are left out (see Annex A.2). In this way the Radon transform of our atoms
is given by

1 27 )
Ripmn(2,y) = o /0 e a@YD by (5oq (2, y, 1)) dt (15)

with s, € S% and p,, € R3.
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In order to reduce the computational cost of (14) we will look now for symmetry
properties of Ry, ,. Since

1 2r
Rimal@,y) = 5o [ w00y (Sg(a,y, 1)) dt (16)
= zi e Aey ) Pmy (5.q(x, y, 1)) dt (17)
™

—T

then it is easy to see that Ry, n(—2, —y) = Rmn(z,y). Therefore, the inner products
(14) reduce to

<R¢m,n7 me’,n’>L2(SQ><5’2) = 2 / me,n (33; y)me’,n’ (a:, y) dy dx

s2 Js2

12 / / Ribyon (0,9 By (@9) dy do . (18)
s2 Jsz

where S? and S? represents the upper (z3 > 0) and lower (z3 < 0) hemispheres respec-
tively.
The standard parametrization of great circles of S® by q(z,v,t) as given in Definition
1 has a singularity in y = —x, that is, if y = —z this parametrization is not well defined.
Moreover, the gradient of ¢(x,y,t) increases rapidly in a neighborhood of y = —z. To
overcome this problem we will make a reparametrization of the great circles ¢(z,y,t). By
[20] we can reparametrize the great circle g(z,y,t) introducing a vector v € S? in the
following way:
Q(x7y7t) = Q4U(t)Q3 ) (19)

where
i) g3 is any fixed quaternion such that g3zqz = v, with an arbitrarily given v € S?;
ii) v(t) = cost/2 +wsint/2 € S3 such that v(t)vv(t) = v;
iii) g4 € S3 is any fixed quaternion such that quvgz = y.

Choosing ¢4 = ﬁ and ¢3 = Hf;iizn the new parametrization (19) is given by

Y+ . T+ v
q(z,y,t) = —— (cost + vsint) ——. (20)
[y + vl ||z + ]|

Thus, we partitioned (18) into

(Rimms Rt i) Ly(s2x5?) = 2T1+2T2 +2T3 (21)
where

L= [ [ Ry B3] dy (2

S22 Js2?

TU0%
L= [ [ Rl n) R @) dy da, (23)

52 :01>0J52
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T, — / / Ribyn (s ) R (@23 dy d. (24)
Si:zlgﬂ 52

For each integral we will consider a new parametrization (20) with v € S? chosen in such

way that the singularities x = —v and y = —wv are far away from the region of integration.
For 77 we choose v = (0,0, 1), for Zo we choose v = (@,O, —@) and for Z3 we choose

V= (—@,0,—@ .

This leaves us with one major problem: how to calculate efficiently an integral of type
/ eI hAGOBD> £(q(6, 6, 0, B, 1)) dadSdbddt (25)

with k = (k1,...,k4),q = (q1,-..,q4), ¢; : R® — R which is a multidimensional integral of
highly oscillatory type.

There are several methods in the literature, such as Fillon-type or Leray-type methods.
But in order to apply these method we have to overcome one problem. Usually, in these
methods the exponent is linear, while here it is non-linear. An attempt to linearize it
could work, but it would create a huge number of individual integrals to compute which is
difficult to implement.

A way out is to use so-called adaptive multiscale local Fourier bases (see [1], [2] [19]).
These bases are generalizations of Malvar-Coifman-Meyer (MCM) wavelets. The basic
idea is to use so-called bell functions b; which provide a partition of unity, i.e. we have a
subdivision of our interval [0, 27| into M subintervals I; where each bell function is defined
in three adjacent intervals and given by

1+ Y2y isin((n + 1)mz) —l<a<d
bi(e) = T+ Sima(-D'gicos(n+ Dra) F<a<?
0 otherwise

Hereby, g; are solutions of a linear systems and tabulated in [19]. As remarked before, we
have S bi(z) = 1.
These bell functions allow us to introduce our local Fourier basis by

ul (0, ¢, a, 8,t) = CLL () CL2 (B)CE (8)Ck (¢)C (1)

1/2 —
. li _ 2 . ) 1 a‘lz’
with Cni(') - blz() (ali+1—azi) Sl <(nl + 5) Wa1i+1—al,; ) ’
The application of these LFB’s means that we have to calculate the Fourier coefficients

Ay = / ¢i<ka@.080>0 L (9 6 o B, t)dadBdodddt
Bn,l = /f(Q(9a¢7avﬁ’ t))uiz(ev¢7avﬁvt)dadﬁd9d¢dt7

separately. The integral is then given by Zn,l Ap B
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The calculation of the Fourier coefficients can be done either by corrected trapezoidal
rule/Richardson interpolation (taking into account the support of the bell functions, but
it requires caution with respect to the number of points one needs, see [1], table 2 on page
7) or by FFT (see [19]). In the case at hand, we will use FFT.

Furthermore, we need to study the sparsity condition by Averbuch, et al., for both
By,; and A,,; in order to determine how many coefficients are really required (see, [1], pg.
14-19). Let us consider our integral in the more shortened form

/ et <kal@)> £(9)dg, . . . ds.

For simplification we write just ¢; for all our variables. To apply our method we develop
our kernel in terms of LFB’s:

/ e <ka@)>Cy (1) ... C5(ds)dey . . . dps. (26)

Following the same ideas as in [2| we can study the sparsity of this development. The
principal condition for the sparsity considerations is that

WQ(¢17--~7¢5) <C, (27)

‘ ol
i.e. the derivatives of order |u| are bounded. Let us first remark that our function ¢
satisfies for each subdivision the above condition, but with a constant C' which will go to
infinity when the total degree for the derivatives goes to infinity, i.e. getting worse with
each derivation. Furthermore, we remark that we need at least two points per oscillation,
ie. N = 10v (for simplification we consider v oscillations in each direction). This will
result in vVN = /10 v bell functions.
Now, using as rescaling for the bells the maximum frequency, i.e. v = max;—123k; we
get via linearization for the coefficients (26)

/ei<k,q(¢i)>01(¢1) ... Cs(p5)dpy ... dps

o o D (T ki) T, ki 5 (67)¢7) / o et ki g (6)n

s (i R gt (6)),62 (S0 ki g (6))s i S0y b g (7)) s

o RS 9 0 (1) (62) O (3)Ca(64) O (65)ddhy dradbad badr

We collect all the exponentials together and denote the residual term (incl. Hessian) of
the linearization by H"x+(#1-:%5)  Using the rescaling of [1] (which corresponds to an
independent affine transformation in each variable) we can view our integral as the Fourier
transform of

k! (#1077195)

B(p1,- -+, P5) = b(¢1)b(2)b(¢3)b(P4)b(¢5)e
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Now, we prove that there exists a constant K such that

Hlon, - 00)| < K -
If this is true then we obtain
8|“|H;€’7k,
Oy~~~ Do

K
()

from the rescaling and the fact that at each derivative of ¢; a /v comes out. With other

<

(1, ¢s5)

words the residual (Hessian) has a gradient of order O \% .

This now allows us to get the result of Averbuch, et. al. ( |2], pag.18) in our case:

~ &1
’6(517--'765” 1 + max; |£“”

Estimate (28) follows immediately from estimating the derivatives of the parametriza-
tion (c.f. (20))
T+ v

|z + ol
Here we have to take into account the different nature of x,y on one side and ¢ on the
other. By straightforward calculations we get

otq(z,y,t)
R T

q(x,y,t) = H H(cost—i—vsint)

Cu
= |z 4 v||ratretus||y 4 v||patrstre ’

Let us remark that the denominator is always bounded, the bound growing with u. Also,
in the case of (22) we get the estimates ||y +v|| > 1/2 and ||z + v|| > 1/2, whereas for (23)
and (24) we have ||y +v|| > 2 —+v2 and ||z +v| > 2 — V2.

For practical implementation we are interested in the Hessian, that is to say in the
second derivatives. Here we can obtain a better estimate than above by directly using a
suitable system of spherical coordinates = z(0,¢) and y = y(«, $). The maximum will

be reached by the derivatives 3 ¢2 and 5 ﬁ2 For these derivatives we get
0%q
0?2

3| — v1 cos 6 cos ¢ — vy sin 6 cos ¢ + v3 sin P
- |lv + (6, 9)||*
|v1 cos @ sin ¢ + vg sin 0 sin ¢ + v3 cos @
[lv+ (6, 9)?
| — v1 cos B cos @ — vy sin b cos ¢ + vz sin | 1
v+ (6, 9)]? [lv+ z(6, ¢)|]

+2

and
Pq
032

3| — v1 cos a cos 3 — va sin avcos B + v3 sin ]2

lv+y(a, B)[*
|v1 cos asin 8 + vy sin acsin 3 + v3 cos (]

[lv+ (e, B)?
| — v1 cosacos B — vy sinacos [+ v3 sin [ 1

v+ y(a, B)| v+ y(o, B)I|

|

+2
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Figure 1: Section of the radial Gabor atom .

3.4 Crystallography and numerical experiments

For the numerical experiments we first have to specify the analyzing Gabor atoms. In the
present example we limit ourselves to radial functions over the real axis where 1 is defined
by

¥(q) = cos®(2.6arccos(qo)), 5~ <qo <1,

see Figure 1. If ¢ = A(0, o, ¢), 0 € [0,27[, o € [0, 7] and ¢ € [0, 7], where A is defined as
in (6) then the Gabor atom reads as

(0, a, ) = C086(2.6 ?),

The corresponding admissibility constant is

27 /2 9
- 647° / / / (g - jg;)“b))' dé dodf ~ 17.54532476 17 ~ 52992.
O

The overlapping of the corresponding frame system is as follows. Consider the Gabor atom

defined on the spherical cap
3
Uﬁ:{q€531QOZ\§}~
2

This cap is centered on the real axis and has a size of § radians. The rotation grid on
S3 is fixed by the 120 vertices of the 600-cell. This provides us with several advantages.
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Firstly, the vertices of the 600-cell represent a discrete subgroup of unit quaternions, the
binary icosahedral group, a double covering of the icosahedral group. While the group
itgelf is not crystallographic, 14 of the 32 crystallographic groups are subgroups of this
group, like the cyclic groups generated by the various elements or Ds. Secondly, finer but
still quasi-uniform grids can be created starting from this grid by subdivision schemes [21].
This also means that ODF’s for these groups will be sparse with respect to the rotation
grid.

As the distance between two neighboring vertices of the 600-cell is ¥ then the overlap-
ping between two caps is about % This gives a ratio of % between the overlapping chosen
and the maximum overlapping coincident with the distance between two neighboring ver-
tices of the 600-cell.

For the frequency grid we choose a 3—dimensional grid in Zs U {(0,0,0)} as follows

{(0,0,0),(1,1,1),(3,1,1),(1,3,1),(1,1,3),(3,3,1),(1,3,3),(3,1,3),(3,3,3), (6,1, 1),

(1,6,1),(1,1,6),(6,1,3),(6,3,1),(3,6,1),(1,6,3),(3,1,6),(1, 3,6), (6,6,1), (1,6,6),
(6,1,6),(6,3,3),(3,6,3),(3,3,6),(6,6,3),(3,6,6), (6,3,6), (6,6,6) }.

For the numerical experiment we choose a (synthetic) example of an ODF with orthorhom-
bic crystal symmetry and triclinic symmetry for the specimen. The ODF itself is simulated
in terms of our Gabor system. Based on our grid and the proposed symmetry the vector
c representing the coefficients of the ODF will be sparse. The numerical experiments are
done on a Quad-core PC with 4 Intel Xeons E5420@2.5GHz, 8GB RAM, Suse Linux 11,
the code is running under Matlab 7.6.0 without any parallelization or embedded C-code.
Our approach does not take any advantage of specific structure of the machine.

The numerical experiment is now organized as follows. First we simulate data by
choosing a vector ¢ that has only zero entries except at labels 1, 46, 47, 48, 49, 50, 51,
120 were the entries are one. The related pole figure is visualized in Figure 2. To simulate
measurements we derive R(F*c¢). In our example this corresponds to 16 equally distributed
incidences rays, taking 400 measures per ray. Hereby we use a surface grid which is given
by 20 Gauss quadrature nodes in each angular value. To evaluate the reconstruction
capacities of the proposed algorithm (13) especially with respect to noisy data, we add in
three individual experiments noise with different levels. Proceeding this way, we obtain
data with relative errors of 0, 5, and 10 percent. The reconstruction results and the
corresponding pole figures are illustrated in Figures 3, 4, 5, 6, 7, and 8.
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Figure 2: Pole figures for the crystal configuration.
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simulated c (blue)) noisy data, relative err=10
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Figure 3: Reconstruction process of iteration (13), relative error of 0.0 percent.
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Figure 4: Pole figures for the reconstructed crystal configuration with relative error of 0.0
percent.
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simulated c (blue)) noisy data, relative err =5.1996

08 ] “H||||H|I|
0B 1 : v‘ﬂ‘H‘ I. Il ”| p'-l"'lw-a’Jﬂ‘-‘au.”w

o]

—

_—

|1||j|Ji

Ric)+noise
_

04 i NI B S T ||f
) Ml i
0.z 1
| [
. 2
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
residual discrepancy - sparsity residual discrepancy (blug), &level (green), 7 (red)
LiLL
RLALLLLL )
10° N Y
™
£ 0 - ey
= ‘e
B 10’
2 4 B 5] 50 100 150
lc",
recanstruction ¢ (real, imaginary part) y-RE™M, Iy - REM 1 =1.8132
08 i 0.08
0.6 ] 0.06 g
0.4 . 004
n2f! . '
0 -WT 0.02
-0.2 l ]

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Figure 5: Reconstruction process of iteration (13), relative error of 5.19 percent.
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Figure 6: Pole figures for the reconstructed crystal configuration with relative error of 5.19
percent.
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simulated c (blue)) noisy data, relative err = 102077
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Figure 7: Reconstruction process of iteration (13), relative error of 10.21 percent.
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Figure 8: Pole figures for the reconstructed crystal configuration with relative error of
10.21 percent.
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A The algebra of quaternions

A.1 Definitions

The algebra of quaternions H is a four-dimensional real associative division algebra with
unit 1 spanned by the elements {ej, e, e3} endowed with the relations

e%:egze?)):—l,

€1€2 = —€2€1 = €3, €263 = —€3€2 = €1, €1€3 = —€3€] = €2.

This algebra is a non-commutative field. The real and imaginary parts of a given quaternion
q = x9l + x1€1 + T2€2 + X363

are defined as Re(q) = qo := w9, and Im(q) = ¢ := z1e1 + x2e2 + x3e3. Therefore, in
contrast to complex numbers, ¢ is not a real number. We have then natural embeddings
of the real numbers and of R? into quaternions given by

0 € R — 29l € H and (z1,29,23) € R3 — z1e1 + moes + x3e3 € H.

Moreover, we have the identifications H = R*, ImH = R?, ReH = R, where ImH is the
three dimensional space of imaginary quaternions, and H = R @ R3.
There is a suitable conjugation on H, given by

q=z0+q7—q=x0—¢q

and satisfying to the involution property gp = p g. The Euclidean scalar product is defined
on H=R*by < ¢q,p >= Re(qp) = %(qiﬂ—p@) and the corresponding norm ||q||? =< ¢,q >
verifies ||gp|| = |lq|| ||p||- The quaternionic multiplication can be expressed in terms of the
usual scalar and vector product on ImH = R? by

— —

ap = (90 + @) (po + P) = qopo — ¢ P+ qop + pod + ¢ X P.

A.2 Rotations in R? and R*

The set of unitary quaternions S® = {q € H, ||¢|| = 1} is a group under multiplication.
It can be interpreted also as a group of linear maps p € H — ¢p which preserves the
(H-valued) hermitian product p|qg = pq and it is usually called the symplectic group Sp(1).
The action of Sp(1) on H given by p(q) : H — H, p(q)p = qpq, q € Sp(1) preserves the
Euclidean scalar product on R*, it stabilizes R C H and its orthogonal complement ImH.
Also, we define the automorphic groups SO(3) and SO(4) as

SO(3) = {T € Aut(H) : (Tq) - (TP) = - p, ¢,7 € R® = ImH},
and

SO(4) ={Q € Aut(H) :< Qq,Qp >=<q,p >,q,p € H}.
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The restriction of the action of the group Sp(1) on R3 = I'mH is a representation
of Sp(1) by rotations and it induces a homomorphism p : Sp(1) — SO(3) which can be
shown to be the universal covering of the group SO(3) ~ Sp(1)/Zs. Hence Sp(1) is also
isomorphic to Spin(3).

Finally, the map p : Sp(1) x Sp(1) — SO(4), (u,v) — p(u,v)(q) = uqv preserves the
Euclidean norm in R%, that is,

|ugD||* = Re(ugv uqv) = Re(uqv vqu) = Re(qq) = |-

Therefore, we have a homomorphism of Sp(1) x Sp(1). Moreover, it can be shown that p
defines a two-fold covering of the special orthogonal group SO(4) and so, we have Spin(4) =
Sp(1) x Sp(1).
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