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Summary. A new signal processing method is presented for the suppression of
intermittent clutter echoes in radar wind profilers. The technique presented makes
use of a discrete Gabor frame expansion in combination with a statistical significance
test. The rationale of this algorithm is outlined and an example using data obtained
with an operational 482 MHz wind profiler is given.

1 Introduction

Radar wind profilers (RWP) were developed from MST-Radars and have
meanwhile become standard instruments for measuring wind velocities in the
atmosphere. Overviews of the technical and scientific aspects of RWP includ-
ing its signal processing have been provided, among others, by e.g. [1]. Espe-
cially the routine application by weather services and the assimilation of the
data in Numerical Weather Prediction Models is an indicator for the degree
of maturation that this technology has achieved, see e.g. [6]. However, it is a
matter of fact that sometimes large and unacceptable differences are observed
between the profiler data and independent reference measurements. In many
cases these differences are clearly attributable to either clutter echoes or Ra-
dio Frequency interference. Especially the problem of bird contamination has
been well-known for more than a decade and it still is a research topic in RWP
signal processing. There exist many attempts to reduce bird contamination,
e.g. [5]. However, the disadvantage of all these methods is that the mitigation
processing builds upon the Doppler spectra (either before or after spectral in-
tegration). Given the highly non-stationary characteristics of the intermittent
clutter signal, it is necessary to deal with the problem before the Doppler
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spectrum is estimated, because Fourier methods are generally inadequate for
nonstationary signals. Further approaches that have tried to overcome these
deficiencies by using wavelet representations were suggested by [2] and fur-
ther by [4]. However, nonredundant wavelet filtering is in several cases also
not best suited and causes undesired artifacts leading to erroneous filtering
results. In this paper, we discuss a new signal-clutter separation method that
circumvents these problems. It is based on a Gabor frame decomposition of
the time series followed by the statistical filtering approach suggested by [5].
For an extensive description of the presented approach and a discussion in
much greater detail we refer the interested reader to [3].

2 Classical signal model and its limitations

The classical RWP signal model assumption can be written as

S[k] = I[k]eiωk∆t + N[k], (1)

where I[k] ∼ N(0, σ2
I ) and N[k] ∼ N(0, σ2

N) are independent complex zero-
mean Gaussian random vectors describing the atmospheric signal and the
receiver noise, ∆t is the sampling interval of the sequence and ω the mean
Doppler frequency. Furthermore I[k] is narrowband compared to the receiver
bandwidth and |ω| ≤ π/∆t (Nyquist criterion). Because S[k] is the result of
the demodulation of a real valued zero-mean and stationary Gaussian random
process, the resulting Gaussian complex random process is also wide-sense
stationary and zero-mean. Furthermore, the sequence has a vanishing pseudo-
covariance, that is we have E(S[k]S[l]) = 0. Such a process is usually called
proper, circular or phase-invariant. Therefore,

(R)k,l = Cov(S[k],S[l]) = E(I[k]Ī[l])eiω(k−l)∆t + E(N[k]N̄[l])

= σ2
I%[k − l]eiω(k−l)∆t + σ2

Nδk−l,0,

where % is specified below. While this is a classical assumption in radar signal
processing, it is unknown for which maximal time series length this assump-
tion can be made safely. We found that bird clutter signals are significantly
nonstationary over typically used dwell times of about 30 s to 60 s. The asso-
ciated autocovariance function can be expressed as follows

ACov(k) = σ2
I%[k]eiωk∆t + σ2

Nδk,0 = σ2ρ[k] , (2)

where we set σ2 := σ2
I + σ2

N and ρ[k] := σ2
I %[k]eiωk∆t+σ2

Nδk,0

σ2
I +σ2

N
, while assuming

%[k] = e−2π2w2k2∆t2 . In reality, however, there is sometimes a third component
contributing to the signal, namely clutter [7], so that the signal model must
be written as:

S[k] = I[k]eiωk∆t + N[k] + C[k] . (3)
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Clutter is the totality of undesired echoes and interfering signals, therefore it
is impossible to generalize the properties of C[k]. In the case of RWP, clutter
includes in particular echoes from airborne objects such as aircraft and birds
as well as returns from the ground. Interfering signals may be caused by other
radio transmitters operating in the RWP receiver band. In the remainder of
the paper, we restrict ourselves to intermittent clutter signals and it removal
from S.

3 Gabor frame expansions for discretely sampled signals

Assume we are given some discrete and finite time (periodic) signal S̃ with
sampling points n = 0, . . . , N − 1, that is S̃[n] = S̃[n + N ]. We therefore have
to periodize the analysis and synthesis windows as well,

h̃[n] =
∑

l

h[n + lN ] , g̃[n] =
∑

l

g[n + lN ].

Slightly abusing the notation, we omit the tilde denoting periodic (finite)
functions in the following. The signal S can be discretely represented by

S[n] =
M−1∑
m=0

K−1∑

k=0

am,khm,k[n] , (4)

whereas the Gabor coefficients can be derived from

am,k =
N−1∑
n=0

S[n]ḡm,k[n] . (5)

Introducing integers ∆M and ∆K and the toral component WN = exp [2πi/N ],
the discrete analysis and synthesis windows can be rewritten as

hm,k[n] = h[n−m∆M ]Wnk∆K
N ,

gm,k[n] = g[n−m∆M ]Wnk∆K
N .

As can be seen, ∆M denotes the time and ∆K the frequency step size. They
correspond to T and Ω. In our setting they are constrained by ∆M · M =
∆K ·K = N . The reconstruction formula becomes

S[j] =
M−1∑
m=0

K−1∑

k=0

am,khm,k[j] =
N−1∑

l=0

S[l]
M−1∑
m=0

K−1∑

k=0

ḡm,k[l]hm,k[j] ,

where we have assumed that the following biorthogonality relation is fulfilled,

M−1∑
m=0

K−1∑

k=0

ḡm,k[l]hm,k[j] = δl,j .
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It can be shown that the biorthogonality relation is satisfied if

N−1∑

j=0

h[j + qK]W−jpM
N ḡ[j] =

N

MK
δp,0δq,0 (6)

for 0 ≤ p ≤ ∆M − 1 and 0 ≤ q ≤ ∆K − 1. System (6) can be rewritten in
matrix form: Let v = (N/(MK), 0, . . . , 0)T be a vector of length ∆M∆K and
g = (g[0], . . . ,g[N − 1]) the vector representing the discretely sampled dual
frame, and let A be the matrix of size ∆M∆K × N with entries A(p,q),j =
h̄(j + qK)W jpM

N , then the dual frame atom g is the solution of the linear
system

Ag = v . (7)

For oversampling ∆M∆K < N , system (7) is under-determined, and the solu-
tion is no longer unique and therefore there is a variety of possible dual frame
atoms g. One suitable choice (beside optimal localizing window functions) is
given by the minimum norm solution gmin = AT (AAT )−1v.

4 Statistical significance, filtering and a real example

First, we observe that

|aλ|2 =
N−1∑
n=0

S[n]gλ[n]
N−1∑

l=0

S̄[l]ḡλ[l].

With ES[n] = 0 and ES[n]S̄[n + l] = σ2ρ[l] we obtain E|aλ|2 = σ2〈ρ ∗ gλ,gλ〉
and Cov(|aλ|2, |aη|2) = σ4|〈ρ ∗ gλ,gη〉|2. The ‘∗’-symbol stands here for the
discrete convolution. Therefore,

Var|aλ|2 = σ4|〈ρ ∗ gλ,gλ〉|2 = (E|aλ|2)2 and thus
(E|aλ|2)2
Var|aλ|2 = 1 (8)

which holds true for independent as well as dependent samples S[n] that follow
a distribution which is determined by its moments. In order to construct a
statistical test that verifies property (8), we have to find optimal estimators
for E|aλ|2 and Var|aλ|2 that are based on a finite number of observations. To
this end, we introduce an index subset Ωλ ⊂ Λ containing λ and L−1 further
different indices η, i.e. |Ωλ| = L. As an estimator for E|aλ|2 = σ2〈ρ ∗ gλ,gλ〉,
which is based on L neighboring observation variables, we define

Ê(Ωλ) :=
1

CΩλ

∑

η∈Ωλ

|aη|2 with CΩλ
=

∑

η∈Ωλ

〈ρ ∗ gη,gη〉
〈ρ ∗ gλ,gλ〉 > 1 . (9)

Assuming there exists some small ε > 0 with
∑

η′,η∈Ωλ
|〈ρ∗gη′ ,gη〉|2 ≤ C2−ε

Ωλ
,

estimator (9) consistent, for details see [3]. By the same reasoning, we define
a consistent estimator for variance,
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V̂ (Ωλ) := C
∑

η∈Ωλ

(|aη|2 − Ê(Ωλ))2 , (10)

where the constant is defined by

C−1 := 2
∑

η∈Ωλ

c2
η

c2
λ

+ (L− 2CΩλ
)
(

1 +
1

(
∑

η cη)2
∑

ξ,α∈Ωλ

c2
ξ,α

)
. (11)

To identify now intermittent clutter (the nonstationary signal component),
we proceed as follows: In a first step, define the index set representing the
k-th row, which we denote by Ωk = {(m, k) : m = 0, . . . , M − 1}, and
sort for each k the sequence {|am,k|2}(m,k)∈Ωk

in decreasing order. That
is, we derive the order statistic of {|am,k|2}(m,k)∈Ωk

which we denote by
{|[a]m,k|2}(m,k)∈Ωk

([·] stands for the order statistic map). Therefore, we
have |[a]m,k|2 ≥ |[a]m+1,k|2 for all (m, k) ∈ Ωk . For l = 0, . . . , M − 1,
we define subsets Ωk(l) = {(m, k) : m = l, . . . , M − 1}. The largest coef-
ficients are stepwise discarded, which has the goal of eliminating the clut-
ter signal component. Using the quantities Ê(Ωk(l)) and V̂ (Ωk(l)) of the
subset, the test statistics ϑ is computed for l = 0, . . . ,M − 1 as long as
ϑ(|[a]l,k|2) := (Ê(Ωk(l)))2

V̂ (Ωk(l))
< 1 holds. The largest coefficient of the first subset

for which the test (positive for clutter) is not satisfied (a clutter-free sub-
set) is then taken as a threshold for a frequency-dependent identification of
the clutter component. All coefficients |am,k|2 greater than the threshold are
regarded as clutter. Based on this test, we introduce a clutter index set as
Ωc

k := {(m, k) : ϑ(|[a]m,k|2) < 1 , m = 0, . . . , M − 1}. The coefficients
am,k ∈ Ωc

k are finally set to tkei arg am,k , where tk is the average value of the
remaining coefficients, tk = 1

|Ωk\Ωc
k|

∑
(m,k)∈Ωk\Ωc

k
|am,k|. Consequently, the

filtered signal S is given by

Φ(S)[n] =
K−1∑

k=0

{ ∑

(m,k)∈Ωk\Ωc
k

am,khm,k[n] +
∑

(m,k)∈Ωc
k

tkei arg am,khm,k[n]
}

.

(12)
To show the performance of the proposed algorithm, we process data that
were obtained during routine operation of a 482 MHz wind profiler radar
of the Deutscher Wetterdienst at Bayreuth, Germany in the fall of 2005. We
consider data taken in the south beam of the radar wind profiler at range gate
9 (1.6 km height agl, dwell at 00:09:45 UTC). Figure 1 shows a time series in
which strong intermittent clutter (bird echo) can be recognized. The results
of the filtering procedure illustrate that the method completely eliminates the
nonstationary signal component.
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Fig. 1. Top left: real time series; top right: Gabor spectrum of this time series;
bottom right: filtered Gabor spectrum; bottom left: reconstructed time series.
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