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ABSTRACT
The Condensation and the Wavelet Approximated Reduced
Vector Machine (W-RVM) approach are joined by the core
idea to spend only as much as necessary effort for easy to
discriminate regions (Condensation) and measurement lo-
cations (W-RVM) of the feature space, but most for regions
and locations with high statistical likelihood to contain the
object of interest. We unify both approaches by adapt-
ing the W-RVM classifier to tracking and refine the Con-
densation approach. Additionally, we utilize Condensation
for abstract multi-dimensional feature vectors and provide
a template based tracking of the three-dimensional cam-
era scene. Moreover, we introduce a robust multi-object
tracking by extensions to the Condensation approach. The
new 3D Cascaded Condensation Tracking (CCT) for mul-
tiple objects yields a more than 10 times faster tracking
than state-of-art detection methods. In our experiments we
compare different tracking approaches using an active dual
camera system for face tracking.

KEY WORDS
Cascaded Condensation Tracking, Wavelet Approximated
Reduced Vector Machine, Coarse-to-Fine Particle Filter,
Condensation, Multi-Object Face Tracking, Active Dual
Camera System

1 Introduction

Image-based detection tasks are time consuming. For in-
stance, detecting a specific object in an image, such as a
face, is computationally expensive, as all pixels of the im-
age are potential object centers. Hence, all pixels must be
classified, for all possible object sizes. The fastest state-
of-art classifiers, for example the AdaBoost based classi-
fier of Viola and Jones [1] or the Wavelet Reduced Vector
Machine introduced by Rätsch et al. [2], are applied to de-
tection algorithms near real-time. Detection uses a sliding
observation window strategy. The brute-force search cuts
out patches and classifies them for each pixel location of

the entered image. To detect objects of different size (i.e.
objects at different distances to the camera) an image pyra-
mid is used by down-sampling the image several times till
the object has the size of the observation window. How-
ever, for video streams with high-resolution cameras, cov-
ering a large range of distances between the camera and the
object, or/and if we want to detect different object classes
at the same time (e.g. facial features like eyes, nose tip,
and mouth corners) the sliding observation window strat-
egy quickly becomes intractable.

It is obvious that the object’s position and size vary
only slightly from one video frame to the next. Therefore,
it is possible to use information from the last time steps to
speed up the search in the next frame. The process of seek-
ing and following objects is called tracking. A method that
is capable of using information of the previous iterations
is the Condensation algorithm and was proposed by Isard
and Blake [3], [4]. Condensation is able to track objects
in a highly cluttered background. The tracking method is a
good alternative to the Kalman Filter [5], because Conden-
sation can estimate the unknown a posteriori probability
function and does not need the assumption of a Gaussian
distribution. Therefore, the estimated density function is
multi-modal (i.e. it can have several maxima). The system
and measurement dynamics can be nonlinear and they are
suited for parallelization. The original Condensation ap-
proach by Isard and Blake is introduced to track contours
of objects. We adapted the approach for tracking objects
using a template based classifier.

In this paper we propose to combine Condensation
tracking with the efficient Wavelet Reduced Vector Ma-
chine (W-RVM) [2], [6], [7]. The W-RVM uses a Dou-
ble Cascade for early rejections of easy to discriminate im-
age locations. The classifier gains a more than 500 fold
speedup compared to an original Support Vector Machine
[8]. The classifier trains much faster as the Viola and
Jones classifier [1] by same detection accuracy and run-
time performance and detects about 25 times faster than the
Rowley-Baluja-Kanade detector [9] and about 1e3 times
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faster than the Schneiderman-Kanade [10] detector.
The novel Cascaded Condensation Tracking (CCT)

unifies the core ideas of the Condensation and W-RVM ap-
proach to spend less computational effort for easy to dis-
criminate feature space locations. Instead measuring each
pixel of the frame Condensation contracts particles at areas
with higher interest. Additionally, the W-RVM spends at
each of these feature space locations of the particles only
as much as necessary effort by adapting the coarse-to-fine
Double Cascade to the tracking approach and refining the
measurement step of the Condensation approach.

The drawback of multi-modal Condensation is that it
cannot track stably multiple objects over a longer time pe-
riod. Kang et al. [11] changed the Condensation algorithm
to be usable with multiple objects of the same class, e.g.
faces. The main idea is to build multiple trackers which are
in concurrence and hold only their main area. By Kang’s
approach for every object a tracker instance (with an own
set of particles) is needed. So the number of trackers de-
pends on the number of objects detected. In difference, our
approach will take advantage of the multi-modal density
function of Condensation. We will use one tracker with a
single set of multi-modal particles which handles the differ-
ent objects of the same class. As novelty we also introduce
a minimal density constraint for robust multi-object track-
ing.

A limitation of tracking approaches is also that they
are limited to track only the in-plane translations of objects
(x- and y-coordinates) and cannot be used for other fea-
ture vectors or higher dimensions, e.g., the object distance
to the camera as a third tracking dimension. Bretzner et
al. [12] propose a specialized multi-scale tracking like for
features different in size or Yang et al. [13] and Huang
et al. [14] use specific deformable templates. In contrast,
we want to introduce a novel abstract multi-dimensional
feature vector tracking, able to distribute the density func-
tion of the particles over higher dimensional abstract fea-
ture vectors. For example our approach will be applied for
the three-dimensional Condensation tracking of the x-, y-,
and z-coordinates of objects, where the z-dimension is the
distance of the object to the camera as in [15]. Our ap-
proach will be open for tracking abstract feature vectors
and with more than three dimensions, e.g. the orientation
of the objects or even abstract object or model parameters.

If faces and other facial features (e.g. eyes) can be
tracked stably, in real-time, and over larger distances Hu-
man Computer Interactions become much more natural be-
cause the interaction area is larger and more convenient.
Current systems mostly track faces only over low distances,
e.g. sitting in front of a camera. Moreover, for most facial
applications only high resolution images are suitable. For
example, to apply the 3D Morphable Face Model (3DMM,
[16]) for face or facial emotion recognition, we want to use
a dual camera system with a static and a Pan-Tilt-Zoom
(PTZ or active) camera which can be rotated and optically
zoomed. Prince et al. [17] propose a dual camera sys-
tem to deliver high resolution images. In the static image

the detection is based on background subtraction and the
skin/background-color of the body. They direct the active
camera on a face and apply a face recognition system on
the image section. In difference to them, we will detect
and track faces alternatively on the static or active camera
for most robust tracking as in [15]. By Yang et al. [13]
an approach with an active camera was realized. They do
a detection based on color combined with an online learn-
ing. To detect new faces beside the online learning model a
face detector is used. It is not clear stated if the detector is
only based on color information. Our approach will use a
powerful classifier based on the double cascaded W-RVM,
using a Support Vector Machine as final validation stage,
known for best generalization performance [8]. It is not
detailed if Yang et al. use zoom facilities in case an object
is detected. So their system seems not able to provide high
resolution images of faces at larger distances.

The main contribution of this paper is the unification
of the Condensation tracking by Isard and Blake and the
double cascaded W-RVM classifier by Rätsch et al. The ob-
tained novel Cascaded Condensation Tracking (CCT) joins
the core idea of both approaches to spend less computa-
tional effort for easy to discriminate image regions (Con-
densation) and vectors (W-RVM) of the feature space, but
most for locations with high statistical likelihood to con-
tain the object of interest. In this paper we will introduce
the CCT based on the following core ideas:
• Adaptation of the W-RVM classifier for tracking and

providing a probabilistic output (Section 2).
• Condensation for abstract multi-dimensional feature

vectors usable for template based tracking instead
tracking of object curves. Distribution of the density
function and tracking objects over the three dimen-
sions of the camera scene (Section 3).

• Extension of Condensation by a dynamic and adaptive
stochastic prediction of the object dynamics (dynamic
and adaptive diffusion matrix, Section 3.1).

• Stable multi-object tracking (Section 3.2) by:
– Adaptive multi-modal probability distribution,
– Weighted drift function, and
– Minimal density constraint.

We apply the CCT on an active dual camera system
with a still and PTZ camera providing high resolution im-
age sections for Human Computer Interaction (HCI) appli-
cations within large camera scenes. In Section 4 we also
compare the robustness and run-time performance with
state-of-art face detection and tracking approaches.

2 Probabilistic Wavelet Approximated Re-
duced Vector Machine

We will now roughly introduce the core ideas of the
Wavelet Approximated Reduced Vector Machine (W-
RVM) and how to obtain a probabilistic measurement out-
put. The W-RVM classifier is a two stage approximation of
a Support Vector Machine (SVM). Suppose that we have a
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labeled training set consisting of a series of e.g. 20×20 im-
age patches xi ∈ X (arranged in a 400 dimensional vector)
along with their class labels yi ∈ {±1}. Support Vector
classifier implicitly map the data xi into a dot product space
F via a (usually nonlinear) map Φ : X → F, x 7→ Φ(x).
Although F can be high dimensional, it is usually not nec-
essary to explicitly work in that space [8]. By Mercer’s the-
orem, it is shown that it exists a class of kernels k(x,x′) to
compute the dot products in associated feature spaces, i.e.
k(x,x′) = ⟨Φ(x),Φ(x′)⟩. The training of a SVM provides
a classifier with the largest margin [8], i.e. with the best
generalization performances for given training data and a
given kernel.

The following core ideas of the W-RVM provide an
optimal approximation of the decision hyper-plane for an
efficient and accurate classifier (For more details, we refer
the reader to [2], [6], [7].):

1. Support Vector Machine: Use of a SVM [8] classi-
fier that is known to have optimal generalization capa-
bilities.

(a) SVM: ΨSVM =
∑Nx

i=1 αi Φ(xi), xi are the Sup-
port Set Vectors (SSV’s)

(b) Decision function:
y(x) = sgn

(∑Nx

i=1 αi k(x,xi) + b
)

with the
kernel function k(·, ·), e.g. Gaussian kernel
k(x,xi) = exp(−||x− xi||2/(2σ2)).

2. Reduced Support Vector Machine: The SVM is re-
duced by a set of Reduced Set Vectors (RSV’s, zi)
[18]. Fig. 1 shows on a 2D toy example that with only
9 RSV’s instead of 31 SSV’s (Nz ≪ Nx) the same
decision accuracy can be obtained.

(a) RVM: ΨRVM =
∑Nz

i=1 βi Φ(zi).
(b) Decision function:

y(x) = sgn
(∑Nz

i=1 βi k(x, zi) + bNz

)
.

3. Double Cascade: The RVM is reduced in a sec-
ond step by approximating each RSV by several lev-
els of Wavelet Approximated Reduced Set Vectors
(WRSV’s) to obtain a Double Cascade. For non-
symmetric data (i.e. only few positives to many neg-
atives) an early rejection of easy to discriminate vec-
tors is achieved. It is obtained by the two following
cascaded evaluations over coarse-to-fine W-RSV’s:

(a) Cascade over the number of used W-RSV’s:
Using only the first reduced vectors yields high
error rates (Fig. 1), but data points (with a large
negative distance to the classification boundary)
can be early rejected as negative points, without
further evaluation cost.

(b) Cascade over the resolution levels of each
W-RSV: Already using the first approximation
stages of the 2nd cascade (e.g., Fig. 2, left to
right), first image locations, like homogenous
background, can be rejected. Only for more dif-
ficult image locations the full complexity of the
W-RSV’s must be used.

The Double Cascade constitutes one of the major ad-

vantages of the W-RVM approach. The trade-off be-
tween accuracy and speed is very continuous.

4. Integral Images: As the W-RSV’s are approximated
using a Haar wavelet transform, the Integral Image
method is used for their evaluation [6].

5. Wavelet Frame: An over-complete wavelet system is
used to find the best representation of the W-RSV’s.
The learning stage of the W-RVM is fast, automatic,
and does not require the manual selection of ad-hoc
parameters. For example, the training time is about
two hours [7], instead in the order of weeks like the
Viola and Jones classifier [1]. The Over-Complete
Wavelet Transform is applied at the W-RVM train-
ing. That is opposite to several other approaches us-
ing a wavelet input space transformation as a pre-
processing at detection time.

Figure 1: Cascaded application of RSV’s (stars) to a 2D classi-
fication problem (black and white dots), showing (left to right)
the original SVM and the result of using 1, 2, and 9 Reduced Set

W-RVM classifiers support binary decision output
and a certainty which is related to the distance to the de-
cision hyper-plane. A large distance indicates a higher
classification certainty. However, for the Condensation
approach probabilistic outputs of the measurement func-
tion are needed. We tested for the estimation of the PDF
(class-conditional probability) histogram, parzen-window,
and k-NN methods, all were not stable enough. Best results
we obtained by fitting a sigmoid function for the posterior
probability.

Figure 2: Example of coarse-to-fine W-RSV’s for the first RSV
(left). W-RSV’s at different resolution levels (bottom row) and

the related wavelet approximated residuals (above).

The sigmoid function fitting is a model-trust algo-
rithm, based on the Levenberg-Marquardt algorithm [19].
The method extracts probabilities from SVM outputs,
which is useful for classification post-processing. The
method adds a trainable post-processing step which is
trained with regularized binomial maximum likelihood. A

         Vectors.
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two parameter sigmoid is chosen as the post-processing,
since it matches the posterior that is empirically observed:
(xffp|vffp) = 1/ (1 + exp (c1 vffp + c2)). The sigmoid
fitting trains iterative the parameters c1 and c2 of the sig-
moid function to map the W-RVM output vffp of the
feature point ffp (e.g. faces or eyes) into probabilities
pffp (xffp|vffp).

3 3D Cascaded Condensation Tracking for
Multiple Objects

3.1 3D Cascaded Condensation Tracking

Condensation, invented by Isard and Blake [3], [4], stands
for ’Conditional Density Propagation’ and is one of the
most successfully used approaches evaluated for different
tracking tasks. The main principle of the algorithm is to
propagate a density function from one iteration to the next.
To this end it uses factored sampling in which the proba-
bility distribution of possible interpretations is represented
by a randomly generated set. This is called a particle filter,
also known as Sequential Monte Carlo methods. The result
is highly robust tracking of agile motion. Despite the use
of stochastic methods, the algorithm runs in real-time.

Notations: The state of the modeled object at time t is de-
noted as x(t). The history of the modeled object at time
t is denoted X(t) = {x(1), . . . ,x(t)}. This represents the
model feature vector. The state of the observation at time t
is denoted z(t), its history Z(t) = {z(1), . . . , z(t)}. Further,
there is a set of samples {s(t−1)

1 , . . . , s
(t−1)
n } and a set of

probabilities {π(t−1)
1 , . . . , π

(t−1)
n }. Samples are elements

of the model feature space which also contain x(t).

3D Object Tracking: Instead of tracking object curves, the
proposed CCT is utilized for template based tracking and
can be used for abstract multi-dimensional feature vectors.
Therefore, the feature vectors x(t) and the observation z(t)

can have any dimensions.
In this paper we introduce a tracking of objects

within the three-dimensional camera scene. In opposite
to other tracking approaches (e.g. [13], [14]) we dis-
tribute the samples and track objects not only over the x-
and y-coordinates of the image plane, but also over the
z-dimension, which is the distance of the camera to im-
age plane (see Fig. 3). Hence, the feature vector x(t) is
three-dimensional (x(t), s

(t)
i ∈ R3). Similar to conven-

tional object detection approaches [9], an image pyramid
of the frame is used in order to locate objects of different
sizes and the distance to the camera is represented by the
scale of the image pyramid. The observation z(t) represents
the image features from a section of a video frame (e.g. a
20 × 20 grey value patch, z(t) ∈ R400) modeled by the
center point x(t).

Assumptions: The detection of the likelihood of the object’s
position within the model p

(
x(t)|z(t)

)
, given the image

signal information at time step t, is not trivial. Therefore,

Figure 3: CCT enables tracking of multiple hypotheses in tree
dimensions (chain dotted lines indicate the end positions). Red
samples belong to the 1st, pink to the 2nd and blue to the last frame
(top row, left to right). The green line indicates the track of the
left person from left to right and then to the front. The sizes of the
samples indicate the weight per sample. The experiment demon-
strates the dynamic probability distribution over tree dimensions.

the Bayesian theorem is applied to simplify computation:

p
(
x(t)|z(t)

)
=

p
(
z(t)|x(t)

)
p
(
x(t)

)
p
(
z(t)
)

= kp
(
z(t)|x(t)

)
p
(
x(t)

)
(1)

The quotient 1/p
(
z(t)
)

is independent of x(t) and can be
expressed by a constant term k. Evaluation of p

(
z(t)|x(t)

)
instead of p

(
x(t)|z(t)

)
is one of the central concepts of the

Condensation approach. It tries to estimate the probability
density function for areas of the image with high a-priori
likelihood. The prior obtained from the last frame is used
to control the density of the samples over the model space.
At the sampled feature points of the model the likelihood is
measured anew.

Furthermore, we assume for this problem that all ob-
servations during the process are independent from each
other. This means that:

p
(
Z(t)|X(t)

)
=

t∏
i=1

p
(
z(i)|x(i)

)
(2)

The second assumption states that the process is a Markov
chain, i.e. observations are independent of earlier states:

p
(
x(t)|X(t−1)

)
= p

(
x(t)|x(t−1)

)
(3)

This expresses that observations are only dependent on the
last state.
Initialization: For initialization the samples are distributed
in the image feature space, which means scattering them
over the frame and, because we aspire a three-dimensional
object tracking and density function, additional over the
scales of the image pyramid. This can be done e.g. ran-
domly or aligned in a grid. For this experiment, we de-
cided to scatter the samples according to a two-dimensional
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normal distribution in the x, y-plane and uniformly in the
scales. All samples are assigned with the same probability
of 1/n.
Selection: Factored sampling is utilized in this step to se-
lect the samples that are used for one iteration loop. The
probabilities of the samples sum up to one. We can as-
sign a subinterval to every sample in [0, 1] such that the
length of the interval is equal to the probability. We now
generate a random number r between zero and one and se-
lect the sample in whose subinterval the number is situated.
Let’s say the random number is within the j’th subinterval
(Fig. 4). We therefore choose the sample s

(t−1)
j and set

s̃
(t)
i = s

(t−1)
j . This is repeated until all n samples are cho-

sen.

Figure 4: Selection of a sample.

Dynamic Adaptive Prediction: In this step, we want to pre-
dict the new position of the samples. Prediction means
sampling from p(x(t)|x(t−1) = s̃

(t)
i ) to choose each s

(t)
i .

It is attempted to predict the object’s position x(t) given
that the model of the last step was at position s̃

(t)
i . If the

dynamics are modeled as a linear stochastic process, we
can compute new samples in the following way:

s
(t)
i = As̃

(t)
i +Bw

(t)
i (4)

A deterministic and a stochastic component is used, where
A is a translation matrix (drift due to the deterministic
component of object dynamics), B a diffusion matrix and
w(t) a vector of standard normal variates (random compo-
nent of object dynamics). Matrix A accounts for the move-
ment of the samples and is detailed in Section 3.2. The
matrix B can be learned a-priori and used constantly [3],
[4], [20].

One goal of the proposed work was to find and com-
pare alternatives to control the diffusion matrix B. We
realized a constant diffusion matrix, a dynamic diffusion
matrix, and a dynamic and adaptive approach. A dynamic
diffusion matrix can be computed for each frame from the
covariance matrix, i.e. with B = 1/ (n− 1)DDT , where
D is the mean-free data matrix constructed from the n sam-
ples. As novelty we introduce a dynamic and adaptive ap-
proach to compute the diffusion, namely

s
(t)
i = As̃

(t)
i + C

(
1− π

(t)
i

)
Bw

(t)
i (5)

where C is a constant that represents the scatter. The ap-
proach is adaptive because it diffuses samples with low
weight more than samples with high weight and is dynamic
because the diffusion is new adapted at each time step t.
This extension increases the localization accuracy of the
tracked object (because on samples s̃(t)i with higher weight

π
(t)
i less noise is added) by no additional computational ef-

fort. A smaller density is needed for background image ar-
eas, because on samples s̃(t)i with smaller weight π(t)

i more
noise is added. Entering objects into the camera scene or
lost objects are faster detected by fewer samples at these
feature space areas.

The dynamic adaptive diffusion matrix enables a
higher accuracy of the tracking locations by no increase of
complexity. The scatter parameter C controls the trade-off
between the robustness of the tracking on one hand and a
complexity reduction and an increase of the localization ac-
curacy on the other hand. Moreover, the multi-modality of
the density function can be controlled by the dynamic adap-
tive diffusion. However, for a stable multi-object tracking
over a longer time period more extensions are necessary
and introduced in Section 3.2.

Measurement: In this step, the samples are measured and
their probabilities are updated. Now that the samples are
placed in the area where the object is presumed to be, they
are measured in terms of z(t): π

(t)
i = p(z(t)|x(t) = s

(t)
i )

which means that we assign to π
(t)
i the likelihood that the

object is observed in the image at the position x(t) of the
model, represented by the drifted and diffused feature vec-
tor s(t)i . Condensation uses statistics to distribute the sam-
ples s(t)i , i = 1, . . . , n by a conditional probabilistic density
function over the feature model space (e.g. an image pyra-
mid) and measures only at this certain pixels of the image if
an object of interest is located at these image positions. In-
stead of all pixels, used for object detection, a much lower
number n of measurements is needed. This provides a sig-
nificant speedup. The W-RVM approach joins the same
concept only to spend as many operations as necessary to
easy to discriminate model space regions, but most for lo-
cations where objects of interest are predicted by statisti-
cal assumptions. As novelty we combine both approaches
for a reduction of computational complexity by refining the
measurement function. Instead using a constant number of
operations, as used in former Condensations methods, we
adapted and integrated the W-RVM as measurement func-
tion. The W-RVM uses a Double Cascade and other meth-
ods to contract computational complexity only to vectors
with higher statistical interest as summarized in Section 2.

The proposed Cascaded Condensation Tracking
yields an optimal contraction of computational complexity
per region (based on Condensation) and per vector (based
on W-RVM) of the feature space. This twice stochastically
contracted complexity per region (symbolized by Voronoi-
diagram areas) is demonstrated on an example image in
Fig. 5 where for difficult to discriminate feature space re-
gions (pink) more operations per vector (W-RVM) and a
higher sample density (Condensation) are used, than for
homogenous background (white). The complexity per re-
gion is colorized as number of operations (used by W-
RVM) per sample and dived by the size of the Voronoi area
(symbolizing the density function obtained by Condensa-
tion).
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Figure 5: The computational complexity is twice contracted to re-
gions with high probability to contain objects of interest. For dif-
ficult to discriminate feature space regions (pink) more operations
per measurement location (W-RVM) and a higher sample density

(Condensation) are used, than for homogenous areas (white).

Object Position: The position of the object can be esti-
mated using the following formula for the expectation (the
object location estimation is detailed for multi-objects in
Section 3.2):

E
[
x(t)

]
=

n∑
i=1

π
(t)
i s

(t)
i (6)

The CCT performs one loop per time step (frame)
consisting of selection, prediction and measurement. Sam-
ples are selected, then drifted and diffused. Finally, the new
weights are measured, the next iteration can start.

3.2 Tracking of Multiple Objects

An approach able to track multiple instances of the same
class of objects (e.g. faces) is substantial for many applica-
tions. A drawback of the original Condensation algorithm
is that a multi-object tracking is not stable over longer time
periods, although it provides a multi-modal density func-
tion and probability distribution (function with more than
one maximum) as opposite to the Kalman Filter [5]. For
the maxima at the density function we use the same clus-
tering approach as in [7], but here by assigning samples
to clusters with respect to their weight and their Euclidian
distance to the cluster centers. The object positions (cluster
centers c) are estimated by (6) over the assigned samples
to each cluster.

In the original Condensation algorithm the cluster
with a higher probability to be an object of interest draws
off samples from improbably clusters (see Fig. 7, top). The
not as probably cluster is not tracked anymore or a swing-
ing between the objects can result. Only if two clusters
would have the exact identical response (what is not the
case because of the influence of random values) both would
be stably tracked. We propose a novel approach, inspired
by Kang [11], but there multiple instances of the tracking
method (each with an own set of particles) are used and the
advantage of Condensation to provide a multi-modal den-
sity function is not exploited.

The novel adaptive multi-modal probability distribu-
tion uses one multi-modal distributed set of samples but
adapt the probability distribution individual for every clus-
ter. The original probability distribution is manipulated to
suppress samples of other clusters (Fig. 7, bottom shows
stable multi-object tracking). No expensive computations
are needed. From the probability distribution vector a ma-
nipulated probability distribution matrix with size n × m
is calculated where n is the number of samples and m the
number of clusters. The manipulated likelihoods πi,j :

πi,j = πi

m−1∏
k=0,k ̸=j

1− 1

exp
((

di,k

p

)q)
 (7)

where di,k is a distance measurement and p, q are empirical
constants (we obtained good results with p = 40 and q =
6). The new πi,j are normalized.

The selection process is also adapted so that n/m-
times every column of the manipulated probability distri-
bution matrix is used. This balances the amount of samples
per cluster. A stable tracking of multiple objects is obtained
over long time periods.

The number of objects can be limited (e.g., if only one
person is in the image) to cmax clusters. To profit from this
a-priori knowledge the multi-object certainties are calcu-
lated for all found clusters and the best cmax clusters are
kept. After calculating the weighted certainties the dis-
pensable cluster regions (clusters not in cmax) obtain fewer
samples at the next iteration and most samples are con-
tracted on the expected clusters.

The drift in Blake’s approach is calculated by a
stochastic differential equation for single movements [20].
For multi-object CCT we additionally propose a weighted
drift function for the prediction of the next sample posi-
tions. This yields a robust tracking, because the multiple
objects can move in different directions and with different
speed. We obtain a weighted deterministic component of
object dynamics in (4) by defining the translation matrix A
by:

A =


1 0 0 fx
0 1 0 fy
0 0 1 fz
0 0 0 1

 (8)

For A and Equation (4) and (5) homogeneous coordi-
nates are used. The translation vector f is defined by:

f =
m∑
i=1

(
1− 1∑m

j=1 ∆c
(t−1)
j

(
s− c

(t−1)
i

))
∆c

(t−1)
i

(9)
The cluster offsets are described by ∆c(t) = c(t) −

c(t−1). The weights are evaluated by the component wise
distance to the cluster centers and normalized. The drift of
a sample is continually most influenced by the drift of the
nearest cluster.

Moreover, we developed a minimal density con-
straint. If one object is tracked in a video stream most
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particles are contracted near the object. If a second ob-
ject enters the scene it can take several frames till it is cap-
tured by at least one sample. Therefore, we integrated a
constraint with a minimal density for each image area (de-
fined by an equidistant grid over the frame and scales of
the image pyramid). Within each image area additional
samples are randomly distributed until the minimal density
constraint is fulfilled.

4 Active Dual Camera System for CCT Ex-
periments and Results

We applied the new 3D CCT to an active dual camera sys-
tem. The system (Fig. 6, left image) consists of a large 30“
monitor, a static camera (red box: Basler A301fc, 8mm
lens), a PTZ-camera (blue: Sony Evi D100) and two 300W
light panels. Fig. 6, right demonstrates results of the 3D
CCT. The distribution of the samples respective to the den-
sity function of the CCT for the third dimension is shown
by the histograms in the upper left corner of each tracking
image. If many samples are distributed on larger scales of
the image pyramid (face near to the camera) the maximum
of the histogram moves to the lower (green) bars and if
many samples are on the smaller scales (further away from
the camera) it moves to the upper (blue) bars (right, 1st

row). Even for larger distances the PTZ-camera delivers a
high resolution image section of the face, making face or
expression recognition HCI applications feasible (2nd and
4th row, Note that the max. optical zoom is already exceed
at the 3rd frame). The active dual camera system tracking
is more robust to fast movements of the object (CCT on the
static camera, 1st row, controls the PTZ-camera, 2nd row).

Figure 6: Our active dual camera system (left) demonstrates ro-
bust CCT in three dimensions (right), even for short occlusion of

the object and for multiple objects (right, 5 th and 6 th row).

However, the CCT direct on the PTZ-camera stream
(PTZ-camera controls itself, 3rd row, and the static camera,
4th row, shows only an overview of the scene) can track
larger distances and angles because of the larger visible
scene area of the PTZ-camera (The Schema at Fig. 6, bot-
tom left compares the scene area (red triangle) of the static

camera and the scene area (blue) of the PTZ-camera.).
To compare different approaches in the experiments

we used a video sequence of 1000 frames collected with the
dual camera system. On each frame the faces of two per-
sons are visible. We compared the novel CCT with tracking
based on Kalman filters [5], with the original Condensation
[4] and with state-of-art face detection methods [1], [7].

In opposite to the Kalman tracking Condensation is
able to track multiple objects. On the test set in 228 of 1000
frames both faces where correctly detected by the original
Condensation. In comparison the CCT tracked 994 frames
correctly. This experiment demonstrates that the CCT can
track multiple objects stably over long time periods. Be-
cause of the density function on the third dimension the
tracking is also stable on different distances (Fig. 6, right,
6th row shows examples of the test set). Compared to orig-
inal Condensation, CCT was more robust to temporary oc-
clusion at the experiments. If objects get lost for some
frames (e.g. Fig. 6, right, 5th row), the particles distribute
faster over the frame and contract again when the object is
found back, because of dynamic adaptive diffusion matrix.

Fig. 7 shows on a subset of the test set (see example
frames in Fig. 6, right, 6th row) that the CCT can stably
track two persons, taking advantage of the adaptive multi-
modal probability distribution. The density function is pro-
jected onto the horizontal translation axis.

We also compared the run-time performance at the ex-
periments on a standard PC (Dual-Core, 2.3GHz) for detec-
tion on an equidistant grid and for the Condensation track-
ing (both using different number of scales, therefore the
time is given per scale of the image pyramid). As clas-
sifier either a standard SVM [8] or the W-RVM (training
and data as described in [7]) is used with comparable de-
tection accuracy. Table 1 shows that the contraction of the
computational complexity either per region (based on Con-
densation) or per location (based on the double cascaded
W-RVM) of the feature space improves the run-time signif-
icantly. However, best performance, by no significant loss
of accuracy, is gained joining both contractions of compu-
tational complexity over the feature space by the Cascaded
Condensation Tracking. The introduced 3D CCT yields a
more than 10 times faster tracking as state-of-art detection
methods.

Approach sec per scale
Detection with SVM classifier 6.76
Detection with double cascaded W-RVM 0.0135
Condensation with SVM classifier 0.329
Condensation with W-RVM (CCT) 0.00133

Table 1: Comparison of run-time performance.

5 Conclusion

The Condensation and the Wavelet Approximated Reduced
Vector Machine approach are joined by the core idea to
spend only as much as necessary effort for easy to dis-
criminate regions (Condensation) or vectors (W-RVM) of

367



Figure 7: The projection onto the horizontal translation axis of the
density function demonstrates that after some iterations one clus-
ter can dominate by taking over all samples (top, original Con-
densation). Based on the novel adaptive multi-modal probability

distribution the multi-object CCT is stable (bottom).

the feature space, but most for locations with high statis-
tical likelihood to contain the object of interest. In this
paper both approaches are unified. We adapted the W-
RVM classifier to tracking (e.g., the W-RVM provides now
a probabilistic output) and refined the Condensation ap-
proach by a Double Cascade measurement function. Ad-
ditionally, we generalized the Condensation approach for
abstract multi-dimensional feature vectors, e.g., the sam-
ples are distributed, based on the now three-dimensional
density function, over the x-, y- (in-plane translation) and
also the z-dimension (distance) on a camera scene. More-
over, we introduced a robust multi-object tracking by ex-
tensions to Condensation like the adaptive probability dis-
tribution or the minimal density constraint. The robustness
and efficiency of the 3D CCT approach is demonstrated
on an active dual camera system and compared with other
approaches. The introduced 3D Cascaded Condensation
Tracking for multiple objects yields a more than 10 times
faster tracking as state-of-art detection methods. This en-
ables more natural HCI by tracking a much larger range
of distances or tracking different object classes (like faces,
eyes, and mouth corners) simultaneously in real-time.
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