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Abstract – Efficient motion tracking of faces is an im-
portant aspect for Human Computer Interaction (HCI). In
this paper we combine the Condensation and the Wavelet
Approximated Reduced Vector Machine (W-RVM) approach.
Both are joined by the core idea to spend only as much
as necessary effort for easy to discriminate regions (Con-
densation) or vectors (W-RVM) of the feature space, but
most for regions with high statistical likelihood to contain
objects of interest. We adapt the W-RVM classifier for
tracking by providing a probabilistic output. In this paper we
utilize Condensation for template based tracking of the three-
dimensional camera scene. Moreover, we introduce a robust
multi-object tracking by extensions to the Condensation
approach. The novel coarse-to-fine Condensation yields a
more than 10 times faster tracking than state-of-art detection
methods. We demonstrate more natural HCI applications by
high resolution face tracking within a large camera scene
with an active dual camera system.

Keywords – Human Computer Interaction, Multi-Object
Face Tracking, Condensation, Coarse-to-fine Particle Filters,
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I. INTRODUCTION

Faces always have a high attraction to humans, they are
able to predict immediately the position, movements, or
expressions of faces. Eye-contact is an important aspect
for non-verbal interaction in the field of perception psy-
chology. In the future, Human Computer Interaction (HCI)
should be as natural as a conversation between humans. An
embodied conversational agent or humanoid robot must be
able to localize its ’conversational partner’ before it can
get in contact. A machine which can detect objects is an
important aspect of computer science. Especially that a
machine can localize a humans face and interact in some
manner with the person is a fascinating issue.

Image-based detection tasks are time consuming. For
instance, detecting a specific object in an image, such
as a face, is computationally expensive, as all pixels of
the image are potential object centers. Hence, all pixels
must be classified, for all possible object sizes. The fastest
state-of-the-art classifiers, for example the AdaBoost based
classifier of Viola and Jones [1] or the Wavelet Reduced
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Vector Machine introduced by Rätsch et al. [2], are applied
to detection algorithms near real-time. Detection uses
a sliding observation window strategy. The brute-force
search cuts out patches and classifies them for each pixel
location of the entered image. To detect objects of different
size (i.e. objects at different distances to the camera)
an image pyramid is used by down-sampling the image
several times till the object has the size of the observation
window. However, for video streams with high-resolution
cameras, covering a large range of distances between the
camera and the object, or/and if we want to detect different
object classes at the same time (e.g. facial features like
eyes, nose tip, and mouth corners) the sliding observation
window strategy quickly becomes intractable.
It is obvious that the object’s position and size vary only
slightly from one video frame to the next. Therefore, it
is possible to use information from the last time steps
to speed up the search in the next frame. The process
of seeking and following objects is called tracking. A
method that is capable of using information of the previous
iterations is the Condensation algorithm and was proposed
by Isard and Blake [3]. Condensation is able to track
objects in a highly cluttered background. The tracking
method is a good alternative to the Kalman Filter [4], be-
cause Condensation can estimate the unknown a-posteriori
probability function and does not need the assumption of
a Gaussian distribution. Therefore, the estimated density
function is multi-modal (i.e., it can have several maxima).
The system and measurement dynamics can be nonlinear
and they are suited for parallelization. The original Con-
densation approach by Isard and Blake is introduced to
track contours of objects. We adapted the approach for
tracking objects using template based classifiers. In this
paper we propose to combine Condensation tracking with
our efficient Wavelet Reduced Vector Machine (W-RVM)
[2, 5, 6]. The W-RVM uses a Double Cascade for early
rejections of easy to discriminate image locations. The
classifier gains a more than 500 fold speed-up compared
to an original Support Vector Machine [7]. The classifier
trains much faster as the Viola and Jones classifier [1] by
same detection accuracy and run-time performance and
detects about 25 times faster than the Rowley-Baluja-
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Kanade detector [8] and about 1e3 times faster than the
Schneiderman-Kanade [9] detector. The novel Cascaded
Condensation Tracking (CCT) unifies the core ideas of
the Condensation and W-RVM approach to spend less
computational effort for easy to discriminate feature space
locations. Instead measuring each pixel of the frame Con-
densation contracts particles at areas with higher interest.
Additionally, the W-RVM spends at each of these feature
space locations of the particles only as much as necessary
effort by adapting the core-to-fine Double Cascade to
the tracking approach and refining the measurement step
of the Condensation approach. The drawback of multi-
modal Condensation is that it cannot track stably multiple
objects over a longer time period. Kang et al. [10] changed
the Condensation algorithm to be usable with multiple
objects of the same class, e.g. faces. The main idea is
to build multiple trackers which are in concurrence and
hold only their main area. By Kang’s approach for every
object a tracker instance (with an own set of particles)
is needed. So the number of trackers depends on the
number of objects detected. In difference, our approach
will take advantage of the multi-modal density function
of Condensation. We will use one tracker with a single
set of multi-modal particles which handles the different
objects of the same class. As novelty we also introduce a
minimal density constraint for robust multi-object tracking.
The next limitation of tracking approaches is that they are
limited to track only the in-plane translations of objects
(x- and y-coordinates) and cannot be used for other feature
vectors or higher dimensions, e.g. the object distance to the
camera as a third tracking dimension. Bretzner et al. [11]
propose a specialized multi-scale tracking like for features
different in size or Yang et al. [12] and Huang et al. [13]
use specific deformable templates. In contrast, we want
to introduce a novel abstract multidimensional feature
vector tracking, able to distribute the density function
of the particles over higher dimensional abstract feature
vectors. For example our approach will be applied for
the three-dimensional Condensation tracking of the x-, y-,
and z-coordinates of objects, where the z-dimension is the
distance of the object to the camera [14]. Our approach
will be open for tracking abstract feature vectors and with
more than three dimensions, e.g. the orientation of the
objects or even abstract object or model parameters. If
faces and other facial features (e.g. eyes) can be tracked
stably, in real-time, and over larger distances Human
Computer Interactions become much more natural because
the interaction area is larger and more convenient. Current
systems mostly track faces only over low distances, e.g.
sitting in front of a camera. Moreover, for most facial
applications only high resolution images are suitable. For
example, to apply the 3D Morphable Face Model (3DMM,
[15]) for face or facial emotion recognition, we want to
use a dual camera system with a static and a Pan-Tilt-
Zoom (PTZ or active) camera which can be rotated and

optical zoomed. Prince et al. [16] propose a dual camera
system to deliver high resolution images. In the static
image the detection is based on background subtraction
and the skin/background-color of the body. They direct
the active camera on a face and apply a face recognition
system on the image section. In difference to them, we will
detect and track faces alternatively on the static or active
camera for most robust tracking [17]. By Yang et al. [12]
an approach with an active camera was realized. They do a
detection based on color combined with an online learning.
To detect new faces beside the online learning model a
face detector is used. It is not clear stated if the detector
is only based on color information. Our approach will use
a powerful classifier based on the double cascaded W-
RVM, using a Support Vector Machine as final validation
stage, known for best generalization performance [7]. It
is not detailed if Yang et al. use zoom facilities in case
an object is detected. So their system seems not able to
provide high resolution images of faces at larger distances.
Summarizing our approach, we will introduce inventive
extensions for the Condensation tracking by Isard and
Blake and unify the approach with our efficient double
cascaded coarse-to-fine W-RVM classifier. The core ideas
of the W-RVM classifier and its extension for probabilistic
outputs are summarized in Section II. The novel Cascaded
Condensation Tracking (CCT, Section III) joins the core
idea of both approaches to spend less computational effort
for easy to discriminate image regions (Condensation)
and vectors (W-RVM) of the feature space, but most for
locations with high statistical likelihood to contain the
object of interest. Moreover, we adapt Condensation from
tracking curves to general density functions over abstract
multidimensional feature vectors suitable for template
based classifiers. We apply the multidimensional CCT by
distributing the particles over the two in-plane translation
coordinates and additional over the distance of the object
to the camera as third dimension in the 3D feature vector.
Our 3D CCT is also able to track stably multiple objects
with one single set of particles by an adaptive multi-modal
probability distribution, a weighted drift function, and a
minimal density constraint (Section III-B). The proposed
approach can be used for any kind of objects. For our
experiments we use human faces or facial features like
eyes. We apply the new CCT approach to a PTZ-camera
and an active dual camera system and will demonstrate
HCI applications 10 times more efficient as state-of-the-
art detection methods (Section IV).

II. PROBABILISTIC WAVELET APPROXIMATED

REDUCED VECTOR MACHINE

Face detection or detection in general is the process to
search for a specific object-class (e.g. faces) and locate
the object in images. The goal is to classify a given
image point with a given patch size as object or non-
object. This means object detection is a binary pattern-
classification problem. Face detection is complex as faces

441



differ in size, rotation, pose and illumination. Furthermore,
glasses often occlude parts of the characteristic eyes and
specular highlights occur. By classification of every image
point as potential object center and for all possible object
sizes for a standard VGA frame over 3e5 classifications
are needed. With for example 1ms per classification more
than five minutes would be needed to process a single
frame. Therefore, reductions in classification and number
of sample points are required. The reduction of used
sample points is gained by tracking and the reduction per
sample by the coarse-to-fine W-RVM measurement.

We will now roughly introduce the core ideas of
the Wavelet Approximated Reduced Vector Machine (W-
RVM) and how to obtain a probabilistic measurement out-
put. The W-RVM classifier is a two stage approximation of
a Support Vector Machine (SVM). Suppose that we have
a labeled training set consisting of a series of e.g. 20×20
image patches xi ∈ X (arranged in a 400 dimensional
vector) along with their class labels yi ∈ {±1}. Support
Vector classifier implicitly map the data xi into a dot
product space F via a (usually nonlinear) map Φ : X →
F, x �→ Φ(x). Although F can be high dimensional, it is
usually not necessary to explicitly work in that space [7].
By Mercer’s theorem, it is shown that it exists a class of
kernels k(x,x′) to compute the dot products in associated
feature spaces, i.e. k(x,x′) = 〈Φ(x),Φ(x′)〉. The training
of an SVM provides a classifier with the largest margin
[7], i.e. with the best generalization performances for given
training data and a given kernel.

The following core ideas of the W-RVM provide an
optimal approximation of the decision hyper-plane for an
efficient and accurate classifier (For more details about the
used classifier, we refer the reader to [2, 5, 6].):

1) Support Vector Machine: Use of an SVM [7] clas-
sifier that is known to have optimal generalization
capabilities.

a) SVM: ΨSVM =
∑Nx

i=1 αi Φ(xi), xi are the
Supports Vectors (SSV’s)

b) Decision function:
y(x) = sgn

(∑Nx

i=1 αi k(x,xi) + b
)

with the

kernel function k(·, ·), e.g. Gaussian kernel
k(x,xi) = exp(−||x − xi||2/(2σ2)).

2) Reduced Support Vector Machine: The SVM is
reduced by a set of Reduced Set Vectors (RSV’s,
zi) [18]. Fig. 1 shows on a 2D toy example that
with only 9 RSV’s instead of 31 SSV’s (Nz � Nx)
the same decision accuracy can be obtained.

a) RVM: ΨRVM =
∑Nz

i=1 βi Φ(zi).
b) Decision function:

y(x) = sgn
(∑Nz

i=1 βi k(x, zi) + bi

)
.

3) Double Cascade: The RVM is reduced in a second
step by approximating each RSV by several lev-
els of Wavelet Approximated Reduced Set Vectors
(W-RSV’s). For non-symmetric data (i.e. only few

positives to many negatives) we achieve an early
rejection of easy to discriminate vectors using a
Double Cascade over coarse-to-fine W-RSV’s:

a) Cascade over the number of used W-RSV’s:
Using only the first reduced vectors yields
high error rates (Fig. 1), but data points (with
a large negative distance to the classification
boundary) can be early rejected as negative
points, without further evaluation cost.

b) Cascade over the resolution levels of each
W-RSV: Already using the first approxima-
tions stages of the 2nd cascade (e.g., Fig. 2,
left to right), first image locations, like ho-
mogenous background, can be rejected. Only
for more difficult image locations the full com-
plexity of the W-RSV’s must be used.

The Double Cascade constitutes one of the major
advantages of the W-RVM approach. The trade-off
between accuracy and speed is very continuous.

4) Integral Images: As the W-RSV’s are approximated
using a Haar wavelet transform, the Integral Image
method is used for their evaluation [5].

5) Wavelet Frame: We use an over-complete wavelet
system to find the best representation of the W-
RSV’s. The learning stage of the W-RVM is fast,
automatic, and does not require the manual selection
of ad-hoc parameters. For example, the training time
is about two hours [6], instead in the order of weeks
like the Viola and Jones classifier [1]. The Over-
Complete Wavelet Transform is applied at the W-
RVM training. That is opposite to several other ap-
proaches using a wavelet input space transformation
as a pre-processing at detection time.

Fig. 1. Cascaded application of RSV’s (stars) to a 2D
classification problem (black and white dots), showing (left to

right) the original SVM and the result of using 1, 2, and 9
Reduced Set Vectors.

The W-RVM classifiers support binary decision output
and a certainty which is related to the distance to the
decision hyper-plane. A large distance indicates a higher
classification certainty. However, for the Condensation ap-
proach probabilistic outputs of the measurement function
are needed. We tested for the estimation of the PDF (class-
conditional probability) histogram, parzen-window, and k-
NN methods, all were not stable enough. Best results we
obtained by fitting a sigmoid function for the posterior
probability. The sigmoid function fitting is a model-trust
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algorithm, based on the Levenberg-Marquardt algorithm
[19]. The method extracts probabilities from SVM outputs,
which is useful for classification post-processing. The
method adds a trainable post-processing step which is
trained with regularized binomial maximum likelihood. A
two-parameter sigmoid is chosen as the post-processing,
since it matches the posterior that is empirically observed.

Fig. 2. Example of coarse-to-fine W-RSV’s for the first RSV
(left). W-RSV’s at different resolution levels (bottom row) and

the related wavelet approximated residuals (above).

pffp (xffp|tffp) =
1

1 + exp (A tffp + B)
(1)

The sigmoid fitting trains iterative the parameters A and B
of the sigmoid function to map the W-RVM output tffp of
the feature point ffp (e.g. faces or eyes) into probabilities
pffp (xffp|tffp).

III. 3D CASCADED CONDENSATION TRACKING FOR

MULTIPLE OBJECTS

A. 3D Cascaded Condensation Tracking

Condensation invented by Isard and Blake [3] stands
for ’Conditional Density Propagation’ and is one of the
most successfully used approaches evaluated for different
tracking tasks. This algorithm uses statistics to distribute n
samples si with 0 ≤ i < n, by a conditional probabilistic
density function over an image and measures only at this
certain pixels of the frame if an object of interest is located
at these image positions. Instead of all pixels a much lower
number n of measurements is needed. This provides a
significant speedup. For the measurement function the W-
RVM is used.

The initial selection step distributes the set of sam-
ples randomly over the full frame. In our approach the
samples si ∈ X are distributes over all dimensions of
the feature vector space X (e.g., additionally over all
scales of the image pyramid (third dimension, si ∈ R

3)).
Then the measurement function evaluates the likelihood
πi = p(z|x = si) that the object of interest is represent
by the image section z (e.g., a 20 × 20 grey value
patch, z ∈ R

400) given the sample si is located on the
respective feature space location x for z. The selection step
contracts the density function around samples with a high
likelihood by selecting more samples at these locations.
The following prediction step estimates the drift of the
object from the last frames and adds the offset to the

samples. Also a Gaussian noise using a diffusion matrix is
added to the sample locations at the prediction step. The
next loop starts with the measurement function, again. Per
time step (frame) one loop over the three steps (selection,
prediction and measurement) is performed. For a detailed
description, we refer the reader to [3].

B. Tracking of Multiple Objects

An approach able to track multiple instances of the
same class of objects (e.g. faces) is substantial for many
applications. A drawback of original Condensation is that
multi-object tracking is not stable, although it provides a
multi-modal density function and probability distribution
(function with more than one maximum) as opposite to the
Kalman Filter [4]. For the maxima at the density function
we use the same clustering approach as in [6], but here by
assigning samples to clusters with respect to their weight
and Euclidian distance to the cluster centers.

Fig. 3 shows an example for a one dimensional density
function with two clusters. Original Condensation con-
tracts more and more samples around the cluster with a
higher probability to be an object of interest (left, cluster
1). The sample density of the not as probably cluster
cluster 2 is reduced to the background density and is not
tracked anymore or a swinging between the objects can
result. Only if two clusters would have the exact identical
response (what is not the case because of the influence of
random values) both would be stably tracked. We propose
a novel approach, inspired by Kang [10], but there multiple
instances of the tracking method (each with an own set of
particles) are used and the advantage of Condensation to
provide a multi-modal density function is not exploited.

Fig. 3. By original Condensation after some iterations (left,
T0 till T3) one cluster dominates. Therefore, we adaptively
manipulate the probability distribution (right, top), so that
samples of the other clusters (e.g. samples near cluster 2

(middle) or near cluster 1 (bottom)) are suppressed.

We use one multi-modal distributed set of samples but
adapt the density function individual for every cluster. The
original probability distribution is manipulated to suppress
samples of other clusters as Fig. 3, right shows. No
expensive computations are needed. The selection of new
samples is modified to use the individual distributions:
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• iterate over the adaptive probability distributions with
respect to the m clusters cj with 0 ≤ j < m:

– select n/m times a valid sample with each of the
m manipulations of the probability distribution.

This manipulation of the selection step of the Conden-
sation method has the effect that n/m samples are used
for every cluster and a balance between the different
clusters is obtained. For every cluster all certainties are
recalculated based on the distances di,k from the sample
to m−1 clusters (for the cluster to which the manipulated
probability distribution belongs no distance must be cal-
culated). The certainties are multiplied m − 1 times by a
factor r(di,k) = 1 − 1/(exp(di,k/p)q), where p and q are
empirical constants (we obtained good results with p = 40
and q = 6). The certainties πi,j for sample si with respect
to cluster cj are obtained by:

• calculate the distances to the clusters: di,k =√
(six

− ckx
)2 + (siy

− cky
)2 with 0 ≤ k ≤ m and

k �= j.
• multiply πi (measured likelihood for each si) with all

m − 1 factors r(di,k) to compute the likelihood πi,j

πi,j = πi

m−1∏

k=0,k �=j

r(di,k) (2)

• finally normalize the new certainties: πi,j =
πi,j/

∑n
l=0 πl,j . This process is done for all n samples

with respect to all m clusters (n∗m new certainties).

The number of objects can be limited (e.g., if only one
person is in the image) to cmax clusters. To profit from
this a-priori knowledge the multi-object certainties are
calculated for all found clusters and the best cmax clusters
are kept. After calculating the weighted certainties the
dispensable cluster regions (clusters not in cmax) obtain
fewer samples at the next iteration and most samples are
contracted on the expected clusters.

For multi-object CCT we additionally propose a
weighted drift function for the prediction of the next
sample positions. This yields a robust tracking, because the
objects can move in different directions and with different
speed. A linear combination of the 3D offsets of the
centers is used for drift of each sample. The weights are
evaluated by the Euclidian distance to the cluster centers
normalized by the number of clusters. That means the drift
of a sample is continually most influenced by the drift of
the nearest cluster. The different scalings for the x- and y-
dimension (measured in pixels) to the z-dimension (scales
on the image pyramid) must be considered.

Moreover, we developed a minimal density constraint.
If one object is tracked in a video stream most particles
are contracted near the object. If a second object enters
the scene it can take several frames till it is captured by
at least one sample. Therefore, we integrated a constraint
with a minimal density for each image area (defined by
an equidistant grid over the frame and scales of the image

pyramid). Within each image area additional samples are
randomly distributed until the minimal density constraint
is fulfilled.

IV. ACTIVE DUAL CAMERA SYSTEM FOR HCI
APPLICATIONS AND EXPERIMENTS

We applied the new 3D CCT to an active dual camera
system. The system (Fig. 4, left image) consists of a large
30” monitor, a static camera (red box: Basler A301fc,
8mm lens), a PTZ-camera (blue: Sony Evi D100) and
two 300W light panels. The monitor image of the dual
camera system shows a tracking with the samples (black
points: uncertain and red: high certainty). Fig. 4, right
presents results of the 3D CCT. The distribution of the

Fig. 4. Our active dual camera system (left) demonstrates
robust 3D CCT (right), even if the object is not visible for some

frames (right, 5th row) and for multiple objects (6th row).

samples respective to the density function of the CCT for
the third dimension is shown by the histograms in the
upper left corner of each tracking image. If many samples
are distributed on larger scales of the image pyramid (face
near to the camera) the maximum of the histogram moves
to the lower (green) bars and if many samples are on the
smaller scales (further away from the camera) it moves to
the upper (blue) bars (e.g., 1st row right). Even for larger
distances the PTZ-camera delivers a high resolution image
section of the face, making face or expression recognition
HCI applications feasible (right, 2nd and 4th row; Note
that the maximal optical zoom is already exceed at the
3rd frame at this rows). The active dual camera system
tracking is more robust to fast movements of the object
(CCT on the static camera, 1st row, controls the PTZ-
camera, 2nd row). However, the CCT direct on the PTZ-
camera stream (PTZ-camera controls itself, 3rd row, and
the static camera, 4th row, shows only an overview of the
scene) can track larger distances and angles because of the
larger visible scene area of the PTZ-camera (The Schema
at Fig. 4, bottom left compares the scene area (red triangle)
of the static camera and the PTZ-camera (blue).).
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In the experiments we compared the novel CCT with
tracking based on Kalman filters [4], on original Conden-
sation [3] and with state-of-art face detection methods [1,
6]. In opposite to the Kalman tracking CCT is able to
track multiple objects. Compared to the original Conden-
sation the extended approach can track multiple objects
stably over long time periods and on different distances
because of the density function on the third dimension
(Fig. 4, right, 6th row). CCT is more robust to temporary
occlusion. If objects get lost for some frames the particles
distribute faster over the frame and contract again when
the object is found back (Fig. 4, right, 5th row). The
introduced 3D CCT yields a more than 10 times faster
tracking as state-of-art detection methods.

The HCI application FaceSwap (Fig. 5) demonstrates
the high run-time performance and robustness of the
3D CCT. The faces areas are tracked by CCT in three
dimensions, cut out and swapped either between persons
on the scene or with faces on arbitrary photographs. The
demonstration of the CCT is an enjoying eye-capture
at presentations and touches questions from the field
of perception psychology, e.g., by taking over different
identities. The application was inspired by a joint project
with the Academy of Art and Design, Basel [20].

Fig. 5. The HCI application FaceSwap, based on 3D CCT, is
an enjoying eye-capture by touching questions from the field of

perception psychology.

V. CONCLUSION

The Condensation and the Wavelet Approximated Re-
duced Vector Machine approach are joined by the core
idea to contract the computational effort to regions (Con-
densation) or vectors (W-RVM) of the feature space with
high statistical likelihood to contain objects of interest.
We adapted the W-RVM classifier to tracking, refined the
Condensation approach by a coarse-to-fine measurement
function and unified both approaches. We applied the Con-
densation approach for abstract multidimensional feature
vectors, e.g. the samples are distributed, based on the now
three-dimensional density function, over the x-, y- (in-
plane translation) and also the z-dimension (distance) on
a camera scene. Moreover, we introduced a robust multi-
object tracking by extensions to Condensation. This en-
ables a more natural HCI by tracking a much larger range
of distances or tracking different object classes simultane-
ously in real-time. At the experiments the robustness and

efficiency of the novel 3D CCT approach is compared to
other tracking and detection methods on an active dual
camera system and integrated in HCI applications like
FaceSwap touching questions from the field of perception
psychology.
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