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Abstract

In this paper we shall be concerned with the construction of an adaptive Landweber itera-
tion for solving linear ill-posed and inverse problems. Classical Landweber iteration schemes
provide in combination with suitable regularization parameter rules order optimal regular-
ization schemes. However, for many applications the implementation of Landweber’s method
is numerically very intensive. Therefore we propose an adaptive variant of Landweber’s iter-
ation that significantly may reduce the computational expense, i.e. leading to a compressed
version of Landweber’s iteration. We lend the concept of adaptivity that was primarily
developed for well-posed operator equations (in particular, for elliptic PDE’s) essentially ex-
ploiting the concept of wavelets (frames), Besov regularity, best N -term approximation and
combine it with classical iterative regularization schemes.

As the main result of this paper we define an adaptive variant of Landweber’s iteration.
In combination with an adequate refinement/stopping rule (a-priori as well as a-posteriori
principles) we prove that the proposed procedure is a regularization method which con-
verges in norm for exact and noisy data. The proposed approach is verified in the field of
computerized tomography imaging.

MSC: 15A29, 47A52, 68U10, 94A08, 94A40

Keywords: Compressive algorithms, linear ill-posed inverse problem, nonlinear and adaptive
approximation, sparsity

1 Introduction

We address the problem of computing an approximation to a solution of a linear operator
equation Lf = g, where L : H → H′ is a linear operator between Hilbert spaces H and H′
and where (in many relevant cases) only noisy data gδ with ‖gδ − g‖ ≤ δ are available. In this
framework we are often faced with the ill-posedness of the operator equation and therefore with
regularization issues.

In the last decades, several regularization methods have been established for linear as well as
nonlinear inverse problems. In principle, there exist regularization methods that are based on
Tikhonov’s approach (i.e. adding regularizing constraints), iteration methods and discretization
approaches. For a comprehensive discussion on this subject we refer the reader to the rich
literature, see e.g., [17, 20]. For each of those methods abundant refinements/generalizations
and different regularization parameter rules were established, e.g. the discrepancy principle [22,
33, 19], the monotone error rule [31], or, more recently, the Lepskii principle [2, 21], just to name a
few. The convergence of any of the investigated methods towards the solution of the equation can
be in general arbitrary slow. In order to obtain convergence rates, smoothness or range conditions
are commonly used. However, within the last 5 years it has been discovered that a sparsity
assumption also leads to highly stable algorithms. A sparse reconstruction, i.e. a reconstruction
that has only few non-zero frame coefficients, is usually obtained by adding a constraint that
penalizes non-sparse expansions. One of the first papers in which a comprehensive and coherent

1



analysis on linear inverse problems and sparsity was given is [10]. In this paper, the authors
consider the Tikhonov approach in which a sparsity constraints is involved and construct, based
on Gaussian surrogate extension methods, some sort of projected Landweber iteration. Several
generalizations of this approach, even to nonlinear problems, can be found in [1, 4, 12, 13,
14, 15, 28, 32]. If a proper basis or frame is chosen, then the use of the sparsity constraint
allows to capture local morphological properties of the solution, e.g. discontinuities, which are
represented with only few coefficients leading to very efficient expansions. In the past this could
only be achieved at a high computational complexity combined with a slow convergence speed
of the employed iteration method. Currently, there are several accelerated iteration methods
(or so-called compressed algorithms) on the market that yield for instance through domain
decomposition strategies, see [18], or through projection strategies, see [11], with much less
iterations reasonable results. These methods, however, act up to the domain decomposition or
projection step on all involved frame functions in a uniform way (even on those atoms that are
absolutely not involved in representing the solution). One way to circumvent this unprofitable
proceeding is to operate in an adaptive way, i.e. operate only with those frame coefficients or
matrix entries that really contribute to a good approximation of the solution. Such adaptive
strategies that bound the computational complexity and ensure an optimal approximation order
have been proposed in the past e.g. in [6, 29]. In this context, adaptivity is based on a well
selected discretization of the operator leading to compressible matrices that allow efficient matrix
vector multiplications. So far, these methods have been only used for well-posed operator
equations [29] or already regularized/stabilized ill-posed problems [3, 8].

To overcome this shortfall and provide adaptive techniques also for more general ill-posed
problems is the goal of the present paper. The analysis presented here essentially combines
building blocks from the theory of linear inverse problems and the theory of adaptive methods
for well-posed problems.

Main Result. As the main result we provide an adaptive Landweber iteration scheme to
approximate the solution of the inverse problem Lf = gδ for which we show norm convergence
for exact and noisy data and regularization properties for a-priori and a-posteriori parameter
selection rules.

Organization of the Paper. The remaining paper is organized as follows: In Section 2,
we review basic ideas and results on adaptive approximation, ill-posed inverse problems and
iterative regularization techniques. The main results are given in Section 3 and 4 in which we
show that an adaptive evaluation of Landweber’s iteration is indeed a regularization scheme
(for a-priori as well as for a-posteriori parameter rules). Finally, in Section 5 we present a first
numerical experiment in the context of computerized tomography.

2 Adaptivity, inverse problems and Landweber’s iteration

Within this section we briefly recall the setup of inverse problems as it is required for later
analysis. We are in particular interested in Landweber’s iteration which is known to be an order
optimal method both for a-priori or a-posteriori regularization parameter rules. As mentioned
above, our main focus will be on the development of a nonlinear and adaptive version of the
Landweber iteration, which requires an appropriate discretization of the operator equation Lf =
g. Here, we will use a discretization generated by a suitable wavelet basis or frame which will
allow us to treat the operator as a compressible infinite matrix (see Section 2.2).

The reason why to apply nonlinear and adaptive strategies is the expected performance of
the iteration. In principle, adaptive strategies perform better than standard linear methods only
if certain properties are fulfilled. To clarify this statement, we introduce by fN the best N -term
approximation for f , i.e., a vector with at most N nonzero coefficients that has distance to f
less than or equal to that of any vector with a support of that size. Considering bases or frames
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of sufficiently smooth wavelet type (e.g. wavelets of order n), it is shown in [6, 29] that if both

0 < s <
d− t
n

,

where n is the space dimension and t denoting the the smoothness of the Sobolev space where
L has its domain, and f is in the Besov space Bsn+t

τ (Lτ ) with τ = (1/2 + s)−1, then

sup
N∈N

N s‖f − fN‖ <∞ .

The condition here involving Besov regularity is much milder than requiring f ∈ Hsn+t that
would be needed to guarantee the same rate of convergence with linear approximation. Indeed, it
has been verified for some boundary value problems that the Besov regularity is much higher than
the Sobolev regularity, and in these cases adaptivity pays off. However, for inverse problems it is
in general not always possible to estimate the regularity of the solution from the regularity of the
right hand side due to the presence of the noise. Typically, convergence rates and optimality are
obtained by assuming so-called source conditions, which are based on specific a-priori knowledge
about the solution and/or the operator. In certain cases, the source condition directly translates
into smoothness in scales of Sobolev spaces. As pointed out in [23], for the particular tomographic
reconstruction problem, a suitable model class are piecewise constant functions with jumps
along smooth manifolds. It is shown that such functions belong to the Sobolev space Hsd with
sd < 1/2. An adaptive approximation of such functions (when carried out in L2) pays off if
the Besov regularity in the scale Bsd

τ (Lτ (Ω)), τ = (s + 1/2)−1 is significantly higher. This
issue is discussed in [29, Rem. 4.3] and [34] and indeed such functions belong to Bsd

τ (Lτ (Ω))
with sd < 1/τ = s + 1/2. For the two-dimensional case, which is the case in our application,
we therefore have that the solution to be reconstructed belongs to Hsd(Ω) for s < 1/4 and to
Bsd
τ (Lτ (Ω)) for s < 1/2. Consequently, the Besov regularity is indeed higher than the Sobolev

regularity. Hence, the application of adaptive schemes to solve the tomographic reconstruction
problem should be numerically more efficient.

However, for other frameworks/inverse problems no general results are available so far. Nev-
ertheless, numerical experiments indicate that even then it seems to be very reasonable and
worthy to apply the concept of best N -term approximations and associated numerical adaptive
schemes.

2.1 Brief review on inverse problems and regularization results

In inverse problems, the typical goal is to compute an approximation to a solution of the ill-posed
problem

Lf = g (1)

from noisy data gδ with ‖g − gδ‖ ≤ δ. For g ∈ Ran(L) ⊕ Ran(L)⊥ we apply the concept of
a generalized solution f † = L†g, which is defined as the minimizer of ‖Lf − g‖ with minimal
norm, or equivalently, as the minimum norm solution of the normal equation

L∗Lf = L∗g . (2)

For ill-posed operators one typically has Ran(L) 6= Ran(L), and the generalized inverse L† is
unbounded. In the presence of noisy data we therefore have to use regularization methods in
order to compute a stable approximation to the solution. A family of continuous operators
{Tα}α∈R+ with a parameter choice rule α = α(δ) with limδ→0 α(δ) = 0 is called a regularization
for L, if

lim
δ→0

Tα(δ)g
δ = f † . (3)

Well known examples for regularization methods are Tikhonov regularizations or iterative meth-
ods (e.g. the Landweber method). For a detailed investigation of regularization methods we
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refer to the textbooks [17, 20]. It is a well known result that the convergence in (3) can be arbi-
trarily slow. In order to derive convergence rate results, we need additional information on the
searched for solution f †. In particular, we will assume that f † ∈ Xν = {f ∈ X : f = (L∗L)ν/2ω}
with ‖f †‖ν := ‖(L∗L)−ν/2f †‖ = ρ < ∞. Then a regularization method with parameter choice
rule α(δ) is called of optimal order if

‖Tα(δ)g
δ − f †‖ ≤ c0δ

ν/(ν+1)ρ1/(ν+1) . (4)

Again we refer to [17, 20] for more details. In this paper, we will in particular focus on the
Landweber iteration, which is a gradient method for the minimization of the residual

‖gδ − Lf‖2 , (5)

i.e. the iteration is defined by

f δm+1 = f δm − βL∗(Lf δm − gδ) . (6)

As it can be retrieved, e.g. in [20], iteration (6) is for 0 < β < 2/‖L‖2 a linear regularization
method for problem (1) as long as the iteration is truncated at some finite index m∗. In order
to identify the optimal truncation index m∗, one may apply either an a-priori or an a-posteriori
parameter rule. The Landweber method (6) is an order optimal linear regularization method
[20] if the iteration is truncated at the a-priori chosen iteration index

m∗ = bβ
(
2
β

ν
e
)ν/(ν+1)(ρ

δ

)2/(ν+1)c , (7)

where the common notation bxc denotes the smallest integer less or equal x. If m∗ is chosen as
suggested in (7), then optimal convergence order with respect to f † can be achieved with the
constant c0 in (4) given by c0 = (1 + ν)(2νe)−ν(2ν+2). This proceeding, however, needs exact
knowledge of the parameters ν, ρ in the source condition. This shortfall can be avoided when
applying Morozov’s discrepancy principle. This principle performs the iteration as long as

‖Lf δm − gδ‖ > τδ (8)

holds with τ > 1, and truncates the iteration once

‖Lf δm∗ − g
δ‖ ≤ τδ (9)

is fulfilled for the first time. The regularization properties of this principle were investigated in
[16]. The authors have shown that, as long as (8) holds, the next iterate will be closer to the
generalized solution than the previous iterate. This property turned out to be very fruitful for
the investigation of discretized variants of (6). This can be retracted in greater detail [25] in
which a discretization of the form

f δm+1 = f δm − βL∗rδ(m)(Lrδ(m)f
δ
m − gδ) (10)

was suggested. The basic idea in [25] is the introduction of approximations Lrδ(m) to the operator
L that are updated/refined in dependance on a specific discrepancy principle.

2.2 Discretization and the adaptive evaluation of Landweber’s method

Let the space X be a separable Hilbert space and assume we are given a preassigned system of
functions {φλ : λ ∈ Λ} ⊂ X for which there exists constants A, B with 0 < A ≤ B < ∞ such
that for all x ∈ X,

A‖x‖2X ≤
∑
λ∈Λ

|〈x, φλ〉|2 ≤ B‖x‖2X . (11)
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For such a system, which is called a frame for X (ensuring more flexibility than bases), see [5],
we may consider the operator

F : X → `2 via x 7→ x = {〈x, φλ〉}λ∈Λ

with adjoint
F ∗ : `2 → X via f 7→

∑
λ∈Λ

fλφλ.

The operator F is often referred in the literature to as the analysis operator, whereas F ∗ is
referred to as the synthesis operator. The composition of both, F ∗F , is called the frame operator
which is by condition (11) an invertible map; guaranteing that each x ∈ X can be reconstructed
from its moments 〈x, φλ〉. Moreover, for the sequence space `2 one has `2 = Ran F ⊕Ker F ∗. In
order to create a discrete version of iteration (6), we discretize normal equation (2) by defining

S = FL∗LF ∗ , f = F ∗f and gδ = FL∗gδ

and obtain an equivalent `2 problem,
Sf = gδ . (12)

An approximate solution for (12) can be derived by the corresponding sequence space Landweber
iteration,

f δm+1 = f δm − β(Sf δm − gδ) . (13)

Note that the operator S : `2 → `2 is symmetric but through the ill-posedness of L not boundedly
invertible on `2 (even on the subspace Ran F ). This is the major difference to [29] in which
the invertibility of S on Ran F was substantially used to ensure the convergence of the damped
Richardson iteration (coinciding with Landweber iteration (13) in our setup).

Since in actual computations we can neither handle the infinite dimensional vectors f δm and
gδ nor apply the infinite dimensional matrix S, iteration (13) is not a practical algorithm. To
this end, we need to study the convergence and regularization properties of the iteration in
which f δm, gδ and S are approximated by finite length objects. Proceeding as suggested [29],
we assume that we have the following three routines at our disposal:

• RHSε[g]→ gε. This routine determines a finitely supported gε ∈ `2 satisfying

‖gε − FL∗g‖ ≤ ε .

• APPLY ε[f ] → wε. This routine determines, for a finitely supported f ∈ `2 and an
infinite matrix S, a finitely supported wε satisfying

‖wε − Sf‖ ≤ ε .

• COARSEε[f ]→ f ε. This routine creates, for a finitely supported with f ∈ `2, a vector
f ε by replacing all but N coefficients of f by zeros such that

‖f ε − f‖ ≤ ε ,

whereas N is at most a constant multiple of the minimal value N for which the latter
inequality holds true.

For the detailed functionality of these routines we refer the interested reader to [6, 29]. As
the COARSE routine is of particular interest, a detailed description will be given below.
For the sake of more flexibility in our proposed approach, we allow (in contrast to classical
setup suggested in [29]) ε to be different within each iteration step and sometimes different
for each of the three routines. Consequently, we set ε = εRm for the routine RHSε[·], ε = εAm
for APPLY ε[·] and, finally, ε = εCm for COARSEε[·]. The subscript m of the created error
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tolerance or so-called refinement sequences {εCm}m∈N, {εAm}m∈N and {εRm}m∈N will be related to
the iteration index by specific refinement strategies of the form

rδ : N→ N.

In principle, the refinement sequences are zero sequences and must be selected in advance; the
map rδ represents a specific integer to integer map (constructed below) that allows an adjustment
of the reconstruction accuracy within each iteration step m. As a simple example consider the
refinement rule rδ(m) = m that chooses for each iteration m the preselected error tolerances εCm,
εAm and εRm. Choosing proper refinement strategies rδ(m) enables us to establish convergence
results and, thanks to the introduced subtleness, several desired regularization results.

For ease of notation we often write, if not otherwise stated, instead of ε{C,A,R}
rδ(m)

just the

index rδ(m), i.e. we abbreviate COARSEεC
rδ(m)

[·], APPLY εA
rδ(m)

[·] and RHSεR
rδ(m)

[·], respec-

tively, by COARSErδ(m)[·], APPLY rδ(m)[·] and RHSrδ(m)[·], respectively. Note, this does
not mean the same accuracy for all three routines, it just means the same index for the accu-
racy/refinement sequences.

Summarizing our constructions, we define with the mentioned approximation procedures and
the shorthand notations the following inexact/approximative variant of (13)

f̃
δ
m+1 = COARSErδ(m)

[
f̃
δ
m − βAPPLY rδ(m)[f̃

δ
m] + βRHSrδ(m)[g

δ]
]
. (14)

In what follows, we shall discuss in greater detail the regularization properties of the latter
iteration for different regularization parameter rules.

3 Regularization theory for a-priori parameter rules

As reviewed in the previous section, the a-priori parameter rule (7) for the exact Landweber
iteration (6) yields an order optimal regularization scheme. The natural question is whether
the same holds true for the inexact (nonlinear and adaptive) Landweber iteration (14). A
positive answer of the latter question essentially relies on the construction of a suitable refinement
strategy rδ.

In order to achieve an optimal convergence rate, we have to establish some preliminary results
describing the difference between the exact iteration (6) and the inexact iteration (14).

Lemma 1. Let f δm and f̃
δ
m be defined as in (6) and (14), respectively. Then, for all m ≥ 0,

‖f δm+1 − f̃
δ
m+1‖ ≤ (1 + β‖S‖)‖f δm − f̃

δ
m‖+ εCrδ(m) + β(εArδ(m) + εRrδ(m)). (15)

Proof. This result can be easily deduced, since for any m ≥ 0 one has

‖f̃ δm+1 − f δm+1‖ ≤ ‖f̃ δm+1 − (f̃
δ
m − βAPPLY rδ(m)[f̃

δ
m] + βRHSrδ(m)[g

δ])‖

+‖f̃ δm − βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ]− (f δm − βSf δm + βgδ)‖

≤ εCrδ(m) + ‖f̃ δm − f δm − βSf̃
δ
m + βSf δm‖+ β‖RHSrδ(m)[g

δ]− gδ‖

+β‖APPLY rδ(m)[f̃
δ
m]− βSf̃

δ
m‖

≤ εCrδ(m) + β(εArδ(m) + εRrδ(m)) + (1 + β‖S‖)‖f̃ δm − f δm‖ .

By a recursive application of Lemma 1, we achieve an explicit description of the difference.
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Lemma 2. Assume, f δ0 = f̃
δ
0. Then, for all m ≥ 0,

‖f δm+1 − f̃
δ
m+1‖ ≤ β

m∑
i=0

(1 + β‖S‖)i(εCrδ(m−i)/β + εArδ(m−i) + εRrδ(m−i)). (16)

Proof. Thanks to Lemma 1, we have for m = 0

‖f δ1 − f̃
δ
1‖ ≤ εCrδ(0) + β(εArδ(0) + εRrδ(0)).

Now by induction for m→ m+ 1, we apply for m ≥ 1 (15) and obtain (16).

The latter lemmata allow now to prove that the truncated inexact Landweber iteration (14) is
an order optimal regularization method. The regularization method Tα can be described with
the help of an adequate refinement map rδ and the a-priori parameter rule (7).

Definition 1 (Regularization method with a-priori parameter rule).

i) Given sequences of error tolerances {ε{C,A,R}m }m∈N and routines COARSE, APPLY
and RHS defined as above,

ii) for δ > 0 with ‖gδ − g‖ ≤ δ derive the truncation index m∗ as in (7),

iii) define the quantities

Cm,rδ :=
m∑
i=0

(1 + β‖S‖)i(εCrδ(m−i) + β(εArδ(m−i) + εRrδ(m−i))) ,

iv) choose the map rδ such that Cm∗−1,rδ satisfies

Cm∗−1,rδ ≤ δν/(ν+1)ρ1/(ν+1) ,

v) define the regularization
Tαg

δ := F ∗f̃
δ
m∗

with regularization parameter α = 1/m∗(δ, ρ).

Theorem 1 (Regularization result). Let the truncation index m∗ = m∗(δ, ρ) be derived as in
(7). Then, the inexact Landweber iteration (14) truncated at index m∗ and updated with the
refinement strategy rδ (satisfying iv) in Definition 1) yields for α(δ, ρ) = 1/m∗(δ, ρ) a regulariza-
tion method Tα, which is for all ν > 0 and 0 < β < 2/‖S‖2 order optimal with constant ‖F‖+c0,
where c0 is the constant in (4) that can be achieved for classical Landweber regularization.

Proof. By Lemma 2, it follows that

‖f δm∗ − f̃
δ
m∗‖ ≤ δ

ν/(ν+1)ρ1/(ν+1).

Consequently, by iv) in Definition 1 and (4) we obtain

‖Tαgδ − f †‖ ≤ ‖F ∗f̃ δm∗ − F
∗f δm∗‖+ ‖f δm∗ − f

†‖
≤ (‖F‖+ c0)δν/(ν+1)ρ1/(ν+1).
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4 Regularization theory by a-posteriori parameter rules

As reviewed in Section 2.1, the exact Landweber iteration (6) combined with the discrepancy
principle (8)+(9) yields a regularization procedure for problem (1). Within this section, we
prove that this result still holds if the approximation is computed by the inexact Landweber
iteration (14).

4.1 Adaptive evaluation of the residual discrepancy

The application of the discrepancy principle (8)+(9) requires a frequent evaluation of the resid-
ual discrepancy ‖Lf δm − gδ‖. Therefore, we have to propose a function that is numerical
implementable and approximates the residual, preferably in terms of APPLY , RHS and
COARSE .

Definition 2. For some g ∈ H, f ∈ `2 and some integer m ≥ 0 the approximate residual
discrepancy RES is defined by

(RESm[f , g])2 := 〈APPLY m[f ],f〉 − 2〈RHSm[g],f〉+ ‖g‖2. (17)

The following lemma gives a result on the distance between the exact function space residual
discrepancy ‖Lf − g‖ and its inexact version RESm[f , g].

Lemma 3. For f ∈ `2 with Ff = f , g ∈ H and some integer m ≥ 0 holds

| ‖Lf − g‖2 − (RESm[f , g])2 | ≤ (εAm + 2εRm)‖f‖. (18)

This results follows easily by straightforward computations.

4.2 Decay of approximation errors

In order to achieve convergence of the inexact iteration (14), we follow basic ideas proposed in
[25]. Therefore, we have to elaborate under which conditions a monotone decay of the approxi-
mation errors ‖f̃ δm+1 − f †‖ can be ensured.

Lemma 4. Let δ > 0, 0 < c < 1, 0 < β < 2/(3‖S‖) and m0 ≥ 1. If there exists for 0 ≤ m ≤ m0

a refinement strategy rδ(m) such that the approximate discrepancies RESrδ(m)[f̃
δ
m, g

δ] fulfill

c(RESrδ(m)[f̃
δ
m, g

δ])2 >
δ2 + Crδ(m)(f̃

δ
m)

1− 3
2β‖S‖

, (19)

then, for 0 ≤ m ≤ m0, the approximation errors ‖f̃ δm − f †‖ decrease monotonically. The
constant Crδ(m)(f̃

δ
m), which is defined below in (59), depends on the iterate f̃

δ
m, the generalized

solution f † , ‖S‖, β and the error tolerances ε{C,A,R}
rδ(m)

.

The proof of this lemma can be found in Appendix.

4.3 Convergence of the inexact Landweber iterates for exact data

As an observation, Lemma 4 holds in particular for exact data, i.e. for gδ = g with δ = 0. In this
case, f̃

δ
m can be replaced by f̃m and rδ by r and therefore, quantity (59) reduces to Cr(m)(f̃m).

Hence, the condition to achieve a monotone decay of ‖f̃m − f †‖ simplifies to

c(RESr(m)[f̃m, g])2 ≥
Cr(m)(f̃m)

1− 3
2β‖S‖

, (20)

which can always be achieved if Cr(m)(f̃m) is chosen accordingly. In order to prove convergence,
we follow the suggested proceeding in [25] and introduce an updating rule (U) for the refinement
strategy r:
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U(i) Let r(0) be the smallest integer ≥ 0 with

c(RESr(0)[f̃0, g])2 ≥
Cr(0)(f̃0)

1− 3
2β‖S‖

, (21)

if r(0) with (21) does not exist, stop the iteration, set m0 = 0.

U(ii) if for m ≥ 1

c(RESr(m−1)[f̃m, g])2 ≥
Cr(m−1)(f̃m)

1− 3
2β‖S‖

, (22)

set r(m) = r(m− 1)

U(iii) if

c(RESr(m−1)[f̃m, g])2 <
Cr(m−1)(f̃m)

1− 3
2β‖S‖

, (23)

set r(m) = r(m− 1) + j, where j is the smallest integer with

c(RESr(m−1)+j [f̃m, g])2 ≥
Cr(m−1)+j(f̃m)

1− 3
2β‖S‖

, (24)

U(iv) if there is no integer j with (24), then stop the iteration, set m0 = m.

Lemma 5. Let δ = 0 (i.e. gδ = g) and {f̃m}m∈N be the sequence of iterates derived by (14).
Assume the updating rule (U) for r was applied. Then, if the iteration never stops,

∞∑
m=0

(RESr(m)[f̃m, g])2 ≤ 1
β(1− c)

(
1− 3

2β‖S‖
)‖f̃0 − f †‖2. (25)

If the iteration stops after m0 steps,

m0−1∑
m=0

(RESr(m)[f̃m, g])2 ≤ 1
β(1− c)

(
1− 3

2β‖S‖
)‖f̃0 − f †‖2. (26)

Proof. Suppose first that the iteration never stops. Then, updating rule (U) yields for any m ≥ 0

c(RESr(m)[f̃m, g])2 ≥
Cr(m)(f̃m)

1− 3
2β‖S‖

. (27)

Therefore, it follows from (60) for δ = 0,

(RESr(m)[f̃m, g])2 ≤ 1
β(1− c)(3

2β‖S‖ − 1)

(
‖f̃m − f †‖2 − ‖f̃m+1 − f †‖2

)
(28)

and summing with respect to m yields (25). If, on the other hand, the iteration terminates after
m0 steps, updating rule (27) holds for 0 ≤ m ≤ m0− 1. Consequently, one can apply again (28)
and summing over the first m0 summands yields the result.

Combining the monotone decay of the approximation errors and the uniform boundedness of
the accumulated residual discrepancies enables us to prove strong convergence of the inexact
iteration (14) towards a solution of (1) for exact data gδ = g.
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Theorem 2. Let f † denote a solution of the inverse problem (1) and let f † be the sequence of
associated frame coefficients, i.e. f † = F ∗f †. Suppose f̃m is computed by the inexact Landweber
iteration (14) with exact data g in combination with updating rule (U) for the refinement strategy
r. Then, for f̃0 arbitrarily chosen, the sequence f̃m converges in norm towards f †, i.e.

lim
m→∞

f̃m → f †.

Of course, the same holds true in the function space topology, i.e. F ∗f̃m =: f̃m → f †.

Proof. First, we consider the case in which the iteration stops after m0 steps. Thanks to (59) it
follows that Ci(f̃m0

)→ 0 as i→∞. Therefore, according to the updating rule (U), one has for
all j ≥ 1

0 ≤ c(RESr(m0−1)+j [f̃m0
, g])2 <

Cr(m0−1)+j(f̃m0
)

1− 3
2β‖S‖

→ 0 as j →∞ .

Moreover, by Lemma 3 formula (18) one has for any i ≥ 0

‖Lf̃m0 − g‖2 ≤ (RESi[f̃m0
, g])2 + (εAi + 2εRi )‖f̃m0

‖ → 0 as i→∞ ,

and therefore g = LF ∗f̃m0
. Consider now the case in which the iteration never stops. For norm

convergence it is sufficient to show that

ek := f † − f̃k

is a Cauchy sequence. From the updating rule (U) and Lemma 4 it is clear that ‖ek‖ forms a
decreasing sequence. For n ≥ k select an index l = l(k, n) such that k ≤ l ≤ n and that

RESr(l)[f̃ l, g] := min
k≤i≤n

{RESr(i)[f̃ i, g]} ≤ RESr(i)[f̃ i, g] for k ≤ i ≤ n.

Since
‖en − ek‖ ≤ ‖en − el‖+ ‖el − ek‖ ,

‖en − el‖2 = ‖en‖2 − ‖el‖2 + 2〈el − en, el〉
‖el − ek‖2 = ‖ek‖2 − ‖el‖2 + 2〈el − ek, el〉

and since ‖ei‖ are monotonically decreasing, i.e. there is some ε ≥ 0 with ‖ei‖ → ε as i → ∞,
it is sufficient to verify

|〈el − en, el〉| → 0 and |〈el − ek, el〉| → 0 for k →∞.

10



To this end, consider

1
β
|〈el − ek, el〉| =

1
β
|〈f̃k − f̃ l,f

† − f̃ l〉| ≤
1
β

l−1∑
i=k

|〈f̃ i+1 − f̃ i,f
† − f̃ l〉|

≤
l−1∑
i=k

|〈RHSr(i)[g]−APPLY r(i)[S, f̃ i],f
† − f̃ l〉|

≤
l−1∑
i=k

[
|〈RHSr(i)[g]− g,f † − f̃ l〉|

+|〈Sf̃ i −APPLY r(i)[S, f̃ i],f
† − f̃ l〉|

+|〈g − Sf̃ i,f
† − f l〉|

]
≤

l−1∑
i=k

[
(εRr(i) + εAr(i))‖f

† − f̃ l‖+ ‖g − LF ∗f̃ i‖‖g − LF ∗f̃ l‖
]

≤
l−1∑
i=k

[
(εRr(i) + εAr(i))‖f

† − f̃ i‖

+
1
2

(‖g − LF ∗f̃ i‖2 + ‖g − LF ∗f̃ l‖2)
]

≤
l−1∑
i=k

[
(εRr(i) + εAr(i))‖f

† − f̃ i‖

+
1
2

((RESr(i)[f̃ i, g])2 + (2εRr(i) + εAr(i))‖f̃ i‖

+(RESr(l)[f̃ l, g])2 + (2εRr(l) + εAr(l))‖f̃ l‖)
]
.

(29)

¿From (59) one has for all k ≤ i ≤ l − 1,

(εRr(i) + εAr(i))‖f
† − f̃ i‖ ≤ (εRr(i) + εAr(i))(‖f

†‖+ ‖f̃ i‖) ≤ Cr(i)(f̃ i)

and
(2εRr(i) + εAr(i))‖f̃ i‖ ≤ Cr(i)(f̃ i) .

Moreover, updating rule (U) yields

Cr(i)(f̃ i) ≤ c(1−
3
2
β‖S‖)(RESr(i)[f̃ i, g])2.

Consequently, since RESr(l)[f̃ l, g] ≤ RESr(i)[f̃ i, g], estimate (29) can be rewritten,

1
β
|〈el − ek, el〉| ≤

l−1∑
i=k

(
Cr(i)(f̃ i) +

1
2

[
(RESr(i)[f̃ i, g])2 + Cr(i)(f̃ i)

+(RESr(l)[f̃ l, g])2 + Cr(l)(f̃ l)
])

≤
l−1∑
i=k

(
(RESr(i)[f̃ i, g])2 + 2c(1− 3

2
β‖S‖)(RESr(i)[f̃ i, g])2

)

= const

l−1∑
i=k

(RESr(i)[f̃ i, g])2 ,
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which tends to zero as k →∞ thanks to Lemma 5. Analogously it can be shown that

|〈el − ej , el〉| → 0 as k →∞.

Thus, the sequence ek = f † − f̃k forms a Cauchy sequence with ‖ek‖ → 0 and therefore,

f̃k → f † as k →∞

implying
‖f̃k − f †‖ ≤ ‖F ∗‖‖f̃k − f †‖ → 0 as k →∞ .

4.4 Convergence of the inexact Landweber iterates for noisy data

The convergence proof of the truncated inexact Landweber method for noisy data essentially
relies on a comparison between noise free and noisy iterations. To apply this comparison prin-
ciple, one has to analyze the δ-dependence of COARSE, APPLY and RHS (in particular
for δ → 0). For our situation, it would be desirable that for a given error level ‖vδ − v‖ ≤ δ the
routines (exemplarily stated for COARSE) fulfill for any fixed ε > 0

‖COARSEε(vδ)−COARSEε(v)‖ → 0 as δ → 0. (30)

Such a property must hold for all the three routines. As we shall see below, this requires a
slight δ-adaptation of the routines that were proposed in [29]; which is here only explicitly
demonstrated for COARSE (but can be done analogously for APPLY and RHS).

Since the input of COARSE are finite length vectors, we limit the analysis to vectors v,vδ

that have finitely many non-zero elements. The definition of COARSE as proposed in [29]
(with a slight modified ordering of the output entries) is the following

COARSEε[v]→ vε

i) Let V be the set of non-zero coefficients of v, ordered by their original indexing in
v. Define q :=

⌈
log
(

(#V )1/2‖v‖
ε

)⌉
.

ii) Divide the elements of V into bins V 0, . . . ,V q, where for 0 ≤ k < q

V k := {v ∈ V : 2−k−1‖v‖ < |v| ≤ 2−k‖v‖}, (31)

and possible remaining elements are put into V q. Let the elements of a single V k be
also ordered by their original indexing in v. Denote the vector obtained by subse-
quently extracting the elements of V 0, . . . ,V q by γ(v).

iii) Create vε by extracting elements from γ(v) and putting them at the original indices,
until the smallest l is found with

‖v − vε‖2 =
∑
i>l

|γi(v)|2 < ε2. (32)

Remark 1. The integer q in i) is chosen such that
∑

v∈V q
|v|2 < ε2, i.e. the elements of V q

are not used to build vε in iii).

Remark 2. Keeping the original order of the coefficients of v in V k, the output vector of
COARSE becomes unique. This “natural” ordering does not cause an extra computational
cost.
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Remark 3. Since we aim to show that the noise dependent output vector converges to the noise
free output vector for δ → 0, the uniqueness of COARSE plays an important role. The main
problem is the non-uniqueness of bin sorting processed by COARSE (due to the noise). This,
unfortunately, leads to the problem that the index in γ(vδ) of some noisy element vδi can differ to
the index in γ(v) of it’s noise free version vi. To overcome this drawback, at least for sufficiently
small δ, we define a noise dependent version COARSEδ.

COARSEδ
ε[v

δ]→ vδε

i) Let V δ be the set of non-zero coefficients of vδ ordered by their indexing in vδ. Define
qδ :=

⌈
log
(

(#V δ)1/2(‖vδ‖+δ)
ε

)⌉
.

ii) Divide the elements of V δ into bins V δ
0, . . . ,V

δ
qδ , where for 0 ≤ k < qδ

V δ
k := {vδi ∈ V δ : 2−k−1(‖vδi ‖+ δ) + δ < |vδi | ≤ 2−k(‖vδ‖+ δ) + δ}, (33)

and possible remaining elements are put into V δ
qδ . Again, let the elements of a single

V δ
k be ordered by their indexing in vδ. Denote the vector obtained by the bin sorting

process by γδ(vδ).

iii) Create vδε by extracting elements from γδ(vδ) and putting them on the original places,
until the first index lδ is found with

‖vδ − vδε‖2 = ‖vδ‖2 −
∑

1≤i≤lδ
|γδi (vδ)|2 < ε2 − (lδ + 1)δ(2‖vδ‖+ δ). (34)

The latter definition of COARSEδ enables us to achieve property (30).

Lemma 6. Given ε > 0 and δ > 0. For arbitrary finite length vectors v, vδ ∈ `2 with ‖vδ−v‖ ≤
δ, the routine COARSEδ is convergent in the sense that

‖COARSEδ
ε[v

δ]−COARSEε[v]‖ → 0 as δ → 0. (35)

Proof. For δ = 0, it follows from the definition that COARSEδ coincides with COARSE.
Let δ > 0. For sufficiently small δ, the number #V δ of the coefficients of vδ is greater or

equal than #V . In fact, for all δ satisfying δ ≤ δ0 < infvi∈V |vi| we have due to ‖vδi − vi‖ ≤ δ
the relation |vδi | ≥ |vi| − δ > 0. Therefore, due to the definition of qδ, it follows

qδ =
⌈
log
((#V δ)1/2(‖vδ‖+ δ)

ε

)⌉
≥
⌈
log
((#V )1/2‖v‖

ε

)⌉
= q.

In what follows we show that for δ ≤ δ0 the elements of any V δ
k (for 0 ≤ k ≤ q − 1) are

exactly the noisy counterparts of the elements of V k (due to the indexing assumption they are
ordered in the same way). To this end, suppose that vδi belongs for some 0 ≤ k ≤ q − 1 < qδ to
V δ
k. Then, with the left inequality of (33) and the relations ||vi|−|vδi || ≤ δ and |‖v‖−‖vδ‖| ≤ δ,

we have
|vi| ≥ |vδi | − δ > 2−(k+1)(‖vδ‖+ δ) + δ − δ ≥ 2−(k+1)‖v‖.

By the right inequality of (33) we achieve for δ → 0 that |vi| ≤ 2−k‖v‖. Consequently, by (31),
we obtain vi ∈ V k. Conversely, if vi ∈ V k, the counterpart vδi must be in V δ

k, otherwise it
would contradict to the recently proven result.

Next, we prove that for δ small enough the thresholding index l in COARSE coincides
with lδ in COARSEδ. Let vε be the output of COARSE. Then, l is the smallest integer
with

‖v − vε‖2 = ‖v‖2 −
∑

1≤i≤l
|γi(v)|2 < ε2. (36)
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Since ‖vδ‖ is bounded for δ → 0 and l is fixed for a fixed v, there is some δ1 ≤ δ0 such that for
all δ ≤ δ1 ∑

1≤i≤l
|γi(v)|2 > ‖v‖2 − ε2 + 2(l + 1)δ(2‖vδ‖+ δ). (37)

The l-th element of γ(v) is in one of the containers V k with 0 ≤ k ≤ q − 1 (see Remark 1),
the first l elements of γδ(vδ) are exactly the noisy equivalents of the first l values of γ(v), i.e.
|γδi (vδ)− γi(v)| ≤ δ, 1 ≤ i ≤ l. Consequently, we get for 1 ≤ i ≤ l∣∣∣|γδi (vδ)|2 − |γi(v)|2

∣∣∣ ≤ δ(|γδi (vδ)|+ |γi(v)|) ≤ δ(‖vδ‖+ ‖v‖) ≤ δ(2‖vδ‖+ δ). (38)

Analogously,∣∣∣‖vδ‖2 − ‖v‖2∣∣∣ =
∣∣∣‖vδ‖ − ‖v‖∣∣∣(‖vδ‖+ ‖v‖) ≤ δ(‖vδ‖+ ‖v‖) ≤ δ(2‖vδ‖+ δ). (39)

Combining estimates (37)-(39), we have

∑
1≤i≤l

|γδi (vδ)|2
(38)

≥
∑

1≤i≤l
|γi(v)|2 − lδ(2‖vδ‖+ δ)

(37)
> ‖v‖2 − ε2 + 2(l + 1)δ(2‖vδ‖+ δ)− lδ(2‖vδ‖+ δ)

(39)

≥ ‖vδ‖2 − δ(2‖vδ‖+ δ)− ε2 + (l + 2)δ(2‖vδ‖+ δ)
= ‖vδ‖2 − ε2 + (l + 1)δ(2‖vδ‖+ δ). (40)

Therefore (by the last estimate (40)) l satisfies (34), i.e. lδ ≤ l. Conversely supposing that lδ < l
yields

∑
1≤i≤lδ

|γi(v)|2
(38)

≥
∑

1≤i≤lδ
|γi(vδ)|2 − lδδ(2‖vδ‖+ δ)

(34)
> ‖vδ‖2 − ε2 + (lδ + 1)δ(2‖vδ‖+ δ)− lδδ(2‖vδ‖+ δ)

(39)

≥ ‖v‖2 − δ(2‖vδ‖+ δ)− ε2 + δ(2‖vδ‖+ δ)
= ‖v‖2 − ε2,

which contradicts to the definition of l in COARSE. Consequently, we summarize that for
sufficiently small δ > 0 the labels lδ and l coincide; hence

‖vδε − vε‖ ≤ ‖vδ − v‖ ≤ δ,

i.e. COARSEδ converges in the sense of (35).

In order to prove convergence of the inexact iteration, we introduce (inspired by the proceeding
in [25]) as in the noise free case an updating rule which we denote (D). This updating rule is
based on the refinement strategy rδ(m).
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D(i) Let rδ(0) be the smallest integer ≥ 0 with

c(RESrδ(0)[f̃
δ
0, g

δ])2 ≥
δ2 + Crδ(0)(f̃

δ
0)

1− 3
2β‖S‖

, (41)

if rδ(0) does not exist, stop the iteration, set m∗ = 0.

D(ii) if for m ≥ 1

c(RESrδ(m−1)[f̃
δ
m, g

δ])2 ≥
δ2 + Crδ(m−1)(f̃

δ
m)

1− 3
2β‖S‖

, (42)

set rδ(m) = rδ(m− 1)

D(iii) if

c(RESrδ(m−1)[f̃
δ
m, g

δ])2 <
δ2 + Crδ(m−1)(f̃

δ
m)

1− 3
2β‖S‖

, (43)

set rδ(m) = rδ(m− 1) + j, where j is the smallest integer with

c(RESrδ(m−1)+j [f̃
δ
m, g

δ])2 ≥
δ2 + Crδ(m−1)+j(f̃

δ
m)

1− 3
2β‖S‖

(44)

and
Crδ(m−1)+j(f̃

δ
m) > c1δ

2. (45)

D(iv) if (43) holds and no j with (44),(45) exists, then stop the iteration,
set mδ

∗ = m.

Theorem 3. Let f † be again a solution of (1) for exact data g ∈ Ran L. Suppose that for
any δ > 0 and gδ with ‖gδ − g‖ ≤ δ, the adaptive approximation f̃

δ
m is derived by the inexact

Landweber iteration (14) in combination with updating rule (D) for the refinement strategy rδ

and the stopping index m∗ = mδ
∗. Then, the family of Tα defined as

Tαg
δ := F ∗f̃

δ
mδ∗

with α = α(δ, gδ) =
1
mδ
∗

yields a regularization of the ill-posed operator L, i.e.

‖Tαgδ − f †‖X = ‖f̃ δmδ∗ − f
†‖X → 0 as δ → 0, (46)

with f̃ δ
mδ∗

:= F ∗f̃
δ
mδ∗

.

Proof. The proof goes as follows (similar to the idea proposed in [25]): Exploiting induction
with respect to the iteration index m, we first show that for sufficiently small δ the refinement
strategy rδ(m) in the noisy case is equal to the refinement strategy r(m) in the noise-free case.
Therewith, for some fixed m, f̃

δ
m → f̃m as δ → 0. Second, we consider convergence properties

of the truncation indices mδn
∗ for some sequence δn tending to 0 as n → ∞. As a result of this

analysis we are able to deduce that in all possible cases the corresponding truncated adaptive
iterations f̃

δn
mδn∗

converge with n→∞.
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• We compare the noise free with the noisy iteration, i.e. f̃m+1 defined through (14)+(U)

and f̃
δ
m+1 defined through (14)+(D). We assume the initial values of both iterations to be

the same, i.e. f̃
δ
0 = f̃0. For sufficiently small values of δ we first aim to show rδ(0) = r(0).

Suppose for some m ≥ 0 that f̃
δ
m → f̃m as δ → 0. Then, Crδ(m)(f̃

δ
m)→ Crδ(m)(f̃m) as well

as RESrδ(m)[f̃
δ
m, g

δ]→ RESrδ(m)[f̃m, g] (which holds true due to convergence properties
of the modified routines APPLY and RHS). In particular, due to the initial value con-
dition f̃

δ
0 = f̃0 we have Crδ(0)(f̃

δ
0) → Crδ(0)(f̃0) and RESrδ(0)[f̃

δ
0, g

δ] → RESr(0)[f̃0, g].
With the help of (D) we deduce for δ → 0 that rδ(0) is the smallest integer ≥ 0 with

c(RESrδ(0)[f̃0, g])2 ≥
Crδ(0)(f̃0)

1− 3
2β‖S‖

,

which is equivalent to the definition of r(0) from (U). Consequently, for sufficiently small
δ this means rδ(0) = r(0) and thus convergence of the first iterates f̃

δ
1 → f̃1 for δ → 0.

Assume now for some m ≥ 1 that rδ(m − 1) = r(m − 1) and f̃
δ
m → f̃m as δ → 0. The

same argument as for m = 0 applies and we conclude that rδ(m) = r(m) for sufficiently
small δ, and therefore f̃

δ
m+1 → f̃m+1.

• Second, we prove convergence in sequence space, i.e.

‖f̃ δmδ∗ − f †‖ → 0 as δ → 0 . (47)

To this end, let δn be a positive sequence with δn → 0 as n→∞.

a) Consider first the case in which mδn
∗ converges to some integer m̃. Then, for sufficiently

large n it holds mδn
∗ = m̃. We denote mn := mδn

∗ . Since for a fixed k, mn−1 is the greatest
integer with

Crδ(mn−1)(f̃
δ
mn−1) > c1δn and c(RESr(mn−1)[f̃

δ
mn−1, g

δ])2 ≥
δ2
n + Cr(mn−1)(f̃

δ
mn−1)

1− 3
2β‖S‖

,

we obtain with n→∞ that m̃− 1 is the greatest integer with

cRESr(m̃−1)[f̃ m̃−1, g]2 ≥
Cr(m̃−1)(f̃ m̃−1)

1− 3
2β‖S‖

,

which is the definition of the stopping index m∗ in the noise-free case. Therefore, for
sufficiently large n we have mδn

∗ = m∗ and f̃
δn
mδn∗

= f̃
δn
m∗ → f̃m∗ = f † for n→∞.

b) Consider now the case in which mδn
∗ → ∞ (monotonically) as n → ∞. For n > l we

use that the errors ‖f̃ δm − f †‖ decrease with increasing m. The triangle inequality yields

‖f̃ δnmn − f †‖ ≤ ‖f̃ δnml − f †‖ ≤ ‖f̃ δnml − f̃ml‖+ ‖f̃ml − f †‖.

Since the noise free iterates f̃m converge to f †, choose l such that ‖f̃ml − f †‖ ≤ ε
2 .

Moreover, since f̃
δ
m → f̃m, choose n large enough such that ‖f̃ δnml− f̃ml‖ ≤

ε
2 . This finally

yields
‖f̃ δnmn − f †‖ → 0 as n→∞. (48)

c) Assume that f̃
δn
mn does not converge to f †. Then for any ε > 0 there exists a subsequence

f̃
δn(k)

mn(k)
of f̃

δmn
mn with

‖f̃ δn(k)

mn(k)
− f †‖ > ε. (49)
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If mn(k) is bounded, then it contains a convergent subsequence. Proceeding as in a), we
end up with a contradiction to (49). If mn(k) is unbounded, then it contains a mono-
tonically increasing unbounded subsequence. Proceeding as in b), we again end up with
a contradiction to (49). Consequently, (48) holds, and since the sequence δn was chosen
arbitrarily, we conclude (47). Due to

‖f̃ δmδ∗ − f
†‖X = ‖F ∗(f̃ δmδ∗ − f †)‖X ≤ ‖F ∗‖‖f̃

δ
mδ∗
− f †‖`2 ,

we achieve with (47) convergence in X:

‖f̃ δmδ∗ − f
†‖X → 0 as δ → 0 .

5 Numerical experiment

Within this section, we give a first experiment for the proposed adaptive regularization scheme
which we aim to apply to the inversion of the Radon transform.

5.1 Radon transform

Let Ω := [0, 1]2 and f ∈ L2(R2) having supp(f) ⊂ Ω the signal to be reconstructed. The linear
Radon transform R : L2(R2)→ L2(Z) is then defined by

(Rf)(s, ω) =
∫

R2

f(x)δ(s− 〈x, ω〉)dx,

where Z := R × S with S = {ω ∈ R2 : ω = (cos θ, sin θ), θ ∈ [0, π)}. For some g ∈ L2(Z), the
adjoint of R is given by

(R∗g)(x) =
∫ π

0
g(〈x, ω〉, ω)dθ.

The inverse problem is then to find an approximation to the solution of the linear equation

Rf = g, (50)

for which only noisy data gδ ∈ L2(T ) are given with ‖gδ − g‖ < δ (δ > 0 is known). As a fact,
the Radon operator R is compact and is therefore not continuously invertible. Consequently,
problem (50) is ill-posed and needs to be stabilized/regularized. For the case gδ 6∈ Ran R, we
consider instead of (50) the Gaussian data misfit term

‖Rf − gδ‖

for which a minimum has to fulfill the normal equation

R∗Rf = R∗gδ. (51)

The operator R∗R is not boundedly invertible and therefore the adaptive approach (as suggested
in [29]) for well-posed and symmetric problems is not applicable. For this problem our proposed
approach that combines regularization and adaptivity is adequate.
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5.2 Sequence space formulation and adaptive approximation

As mentioned above, we emphasize on a wavelet-based discretization of (51). The advan-
tages/capabilities of wavelets in the context of adaptive approximation have been extensively
analyzed, e.g. in [7, 9, 30]. As one important result, for many operator equations wavelet-based
discretizations yield compressible (or even sparse) stiffness matrices (which are in principle dense
when discretizing with respect to a single scale basis). Compressibility typically leads to low
cost matrix vector multiplications with minor loss of accuracy and essentially depending on the
properties of the operator and the involved wavelet systems. A well studied implementation of
such low cost matrix vector multiplication is the routine APPLY leading (in combination with
COARSE and RHS) to optimal computational complexity. Another advantage of adaptive
approximation (as mentioned in Section 2) is the improved convergence rate. It can be achieved
only in cases in which the solution has a Besov regularity that is higher than the Sobolev
regularity, which is the case for the tomographic reconstruction problem, see Section 2.

In order to study the usefulness (in the sense of optimal computational complexity) of
adaptive approximation for solving (51), we recapitulate the basic framework (as elaborated
in [7], [9] or [30]). Assume we are given a dual pair of wavelet frames Ψ, Ψ̃ with regularity
bounds γ, γ̃ and vanishing moments d, d̃. Suppose, moreover, the operator under consider-
ation is bounded and of the order 2t, i.e. for some σ > 0 the operator maps continuously
between Sobolev spaces Ht+σ and H−t+σ. Then, APPLY performs with optimal complexity
if s∗ = min {σ, γ − t, t+ d̃}/n− 1/2 > 0, where n denotes the spatial dimension. For a detailed
analysis we refer e.g. to [7], [9].

Let us now construct a setup in which the proposed adaptive approximation of a solution of
(51) meets the latter requirements. At first, we have to introduce adequate Sobolev spaces that
can be associated with the Radon transform, see [20]; for α ≥ 0 we define the norm

‖g‖2Hα(Z) =
∫ π

0
‖g(·, ω(θ)‖2Hα(R)dθ

and therewith for each α ≥ 0 Sobolev spaces on cylinders can be defined by

Hα(Z) = {g ∈ L2(Z) : ‖g‖Hα(Z) <∞} .

Within this topology one has R : Hα(R2) → Hα+ 1
2 (Z) (in two dimensions). Moreover, it

holds R∗R : Hα(R2) → Hα+1(R2), i.e. R∗R is of order t = −1/2. Since for noisy data we
have at most gδ ∈ L2(Z), the right hand side R∗gδ belongs to H1/2(R2) leading in the notion
R∗R : Ht+σ(R2) → H−t+σ(R2) to −t + σ = 1/2 and consequently to σ = 0. This, however,
does not assure optimal complexity (which is guaranteed at least for σ > 1). To circumvent this
misfortune, it is reasonable to assume the exact data R∗g to be of higher Sobolev smoothness.
To arrive although at the realistic measurement situation, we suggest to involve the so-called
Sobolev embedding, as e.g. considered in [26, 27],

idτR
∗g + noise = R∗gδ ∈ H1/2(R2) ,

where for arbitrary s ∈ R
idτ : Hs(R2) ↪→ Hs−τ (R2) .

Therefore, instead of (51), we may consider the problem

(idτ ◦R∗R)f = R∗gδ . (52)

Note that the incoporation of the Sobolev embedding operator may increase the overall ill-
posedness of the reconstruction problem. But nevertheless, it provides by reversing the operator
order a binding screw for theoretically fine tuning the procedure towards optimal performance.

18



In particular, equation (52) yields in the notion (idτ ◦ R∗R) : Ht+σ(R2) → H−t+σ(R2) a new
operator order, namely

t =
τ − 1

2
.

Due to the constraint R∗gδ ∈ H1/2(R2), it follows that σ = 1/2+ t. For the purpose of enabling
s∗ > 0 (in two dimensions), we have to restrict the choice of τ to

σ =
1
2

+
τ − 1

2
=
τ

2
> 1 .

This in turn yields a Sobolev source condition on the solution of the form f ∈ Hτ−1/2(R2). In or-
der to finally ensure s∗ > 0, one has to choose the regularity bounds γ, γ̃ and vanishing moments
d, d̃ of the wavelet systems large enough (which can be done without further difficulties).

We wish to remark, that in the presented numerical experiment we have used for the reason of
simplicity just Haar wavelet systems. Even in this situation, the numerical results of the proposed
adaptive scheme are already considerably sparse compared to the solution of the full system.
Moreover, the usage of Haar wavelets (or B-splines in general) allows an exact computation of
stiffness matrix entries avoiding additional numerical errors as usually introduced by quadrature
rules.

In particular, in our approach we have chosen a Haar wavelet frame Ψ = {ψλ}λ∈Λ with
bounds A,B and have transformed the function space equation (52) into an infinite dimensional
`2 system, see formula (12),

Sf = gδ, (53)

where S = D−tF (idτ ◦ R∗R)F ∗D−t is the stiffness matrix of (idτ ◦ R∗R) preconditioned by
a matrix D−t, F ∗D−tf = f , and gδ = D−tFR∗gδ is the preconditioned right hand side.
Wavelet based preconditioning is a widely used tool, which allows to speed up significantly the
computation of adaptive methods, cf. [9, 24]. In our case we use the wavelet-based preconditioner
D−t with Dλ,λ′ = 2|λ|δλ,λ′ , where 2t = (1− d)/2 is the order of the Radon operator R.

The resulting inexact (adaptive) iteration then reads as

f̃
δ
m+1 = APPROXrδ(m)[f̃

δ
m, g

δ]

:= COARSErδ(m)

[
f̃
δ
m − βAPPLY rδ(m)[f̃

δ
m] + βRHSrδ(m)[g

δ]
]
, (54)

with accuracy/refinement map rδ(m) and truncation index m∗ chosen by the adaptive discrep-
ancy principle (D). By f̃

δ
we denote the result of the truncated iteration (54) for given noise

level δ. A corresponding approximation f̃ δ of the continuous solution f can be computed from
the preconditioned iteration (54) by f̃ δ = F ∗D−tf̃

δ
.

For the numerical experiments we have used the so-called Shepp-Logan Phantom f and the
associated Radon transformed (noise free) data g, see Figure 1. As the main goal is to re-
duce the computational complexity, we illustrate the performance of the algorithm for a slightly
modified truncation rule, namely Crδ(m−1)+j(f̃

δ
m) ∼ δ. This rule yields also a convergent nu-

merical scheme but delivers a sparser approximation of the solution of the inverse problem while
having a remarkable better rate of the best N -term approximation as it is the case for the
Crδ(m−1)+j(f̃

δ
m) ∼ δ2 truncation criterion (see below a more precise reasoning). In Figure 4,

different approximations f̃ δ for different noisy right hand sides gδ are illustrated. The final frame
grids of the individual reconstructions are given in Figure 5. All the reconstructions were done
for different relative noise levels δrel = ‖gδ − g‖/‖g‖.

In order to verify the effectiveness of the proposed scheme, we compare in Figure 2 the con-
vergence rates as well as the computational complexity of the nonlinear approximation scheme
(our proposed adaptive schemes (54)) with a linear approximation method. For our comparison,
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Figure 1: Left: Shepp-Logan Phantom image, right: associated noise free sinogram.

the linear approximation method was obtained by carrying out all iterations of the Landweber
method with the full system matrix. As one can observe, for δ → 0, the convergence rates for
f̃ δ → f of the adaptive and non-adaptive approximations are nearly the same. The precon-
ditioning step does not effect the convergence rates. However, considering the computational
complexity (which is here defined as the total number of floating point operations), it can be
observed that adaptivity significantly reduces the number of operations (compared to the linear
approximation scheme) that are required to compute a good approximation to the solution of
the inverse problem. The gain of nonlinear approximation increases as δ → 0, see Figure 2. This
effect can be explained by the fact that for small δ the resolution of the solution becomes in
principle finer and finer. Therefore, an adaptive choice of relevant coefficients has much more
impact than representing the solution with respect to all possible coefficients (as usually done
by linear approximation schemes). One the other hand, the sparsity of the representation of the
reconstructed solution becomes for δ → 0 smaller, see Figure 3. But this is a natural consequence
of the defined iteration scheme (54). In particular, this becomes clear due to the truncation con-
dition (45) of the adaptive discrepancy principle (D), in which the accuracy term Crδ(m)(f̃

δ
m)

is compared with the squared noise level δ2 (the term Crδ(m)(f̃
δ
m) essentially involves of the

accuracy tolerance εrδ(m) of the routine APPROX implying that truncation accuracy also
tends to zero as δ → 0). As an very interesting numerical observation, comparing the truncation
rule Crδ(m)(f̃

δ
m) with δ instead of δ2, yields considerably sparser representations of the solution

as well as an increased rate of the best N-term approximation. Unfortunately, the convergence
order decreases from δ2/3 for Crδ(m)(f̃

δ
m) ∼ δ2 to δ1/3 for Crδ(m)(f̃

δ
m) ∼ δ, see Figure 3.
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Figure 2:
Left: total approximation error vs. noise level, right: total computational complexity vs. noise
level for 1. adaptive preconditioned iteration, 2. non-adaptive preconditioned iteration and 3.

non-adaptive iteration without preconditioning.

Figure 3:
Comparison of the truncation rules Crδ(m)(f̃

δ
m) ∼ δ2 and Crδ(m)(f̃

δ
m) ∼ δ. From top left to

bottom right: total error ε vs. noise level δ, estimates of the convergence order, number of the
non-zero coefficients at truncation step vs. noise level, total error vs. nonzero coefficients

number.
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Figure 4: Adaptive Landweber approximations with modified truncation rule Crδ(m)(f̃
δ
m) ∼ δ

for different noise levels δrel = 10%, 5%, 2%, 0.00625%. The left column shows the noisy data
gδ; the right column shows the reconstructions.22



Figure 5: Different resulting wavelet frame grids associated to different adaptive reconstructions
for noise levels δrel = 10%, 5%, 2%, 0.00625% shown in Figure 4. The individual sub-figures are
three-dimensional: the layer ordering is from coarse to fine scale frame coefficients (from top to
bottom). Within each layer we have visualized the label/location of the frame coefficients (not
its magnitude).
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Appendix

Proof of Lemma 4

At first, we observe that

‖f̃ δm+1 − f †‖2 − ‖f̃ δm − f †‖2 = 〈f̃ δm+1 − f̃
δ
m, f̃

δ
m+1 + f̃

δ
m − 2f †〉

= 〈f̃ δm+1 − f̃
δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ], f̃
δ
m+1 + f̃

δ
m − 2f †〉

+ 〈−βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ], f̃
δ
m+1 + f̃

δ
m − 2f †〉

= 〈f̃ δm+1 − f̃
δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ],

f̃
δ
m+1 − f̃

δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ]〉

+ 〈f̃ δm+1 − f̃
δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ], 2f̃
δ
m − 2f †〉

+ 2〈−βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ],

f̃
δ
m+1 − f̃

δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ]〉

+ 〈−βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ],

−βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ] + 2f̃
δ
m − 2f †〉

≤ (εCrδ(m))
2 + 2εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖)

+ 2〈βFL∗LF ∗f̃ δm − βAPPLY rδ(m)[f̃
δ
m] + βRHSrδ(m)[g

δ]− βFL∗gδ,

f̃
δ
m+1 − f̃

δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ]〉

+ 2〈−βFL∗LF ∗f̃ δm + βFL∗gδ, f̃
δ
m+1 − f̃

δ
m + βAPPLY rδ(m)[f̃

δ
m]− βRHSrδ(m)[g

δ]〉

+ β2‖APPLY rδ(m)[f̃
δ
m]−RHSrδ(m)[g

δ]‖2︸ ︷︷ ︸
=:T1

+ 2β〈−APPLY rδ(m)[f̃
δ
m] + RHSrδ(m)[g

δ], f̃
δ
m − f †〉︸ ︷︷ ︸

=:T2

≤ (εCrδ(m))
2 + 2εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖) + β(εArδ(m) + εRrδ(m))ε

C
rδ(m)

+ β‖FL∗‖‖Lf̃ δm − gδ‖εCrδ(m) + T1 + T2

≤ (εCrδ(m))
2 + 2εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖) + β(εArδ(m) + εRrδ(m))ε

C
rδ(m)

+
1
2
(
β2‖S‖‖Lf̃ δm − gδ‖2 + (εCrδ(m))

2
)

+ T1 + T2 , (55)

The quantities T1 and T2 can be estimated as follows

T1 = β2‖RHSrδ(m)[g
δ]−APPLY rδ(m)[f̃

δ
m]‖

≤ β2
(
‖RHSrδ(m)[g

δ]− FL∗gδ −APPLY rδ(m)[f̃
δ
m] + Sf̃

δ
m‖+ ‖FL∗gδ − Sf̃

δ
m‖
)2

≤ 2β2
(
(εRrδ(m) + εArδ(m))

2 + ‖S‖‖gδ − Lf̃ δm‖2
)

(56)
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and

T2 = 2β
[
〈f̃ δm,RHSrδ(m)[g

δ]−APPLY rδ(m)[f̃
δ
m]〉

− 〈f †,RHSrδ(m)[g
δ]−APPLY rδ(m)[f̃

δ
m]〉
]

= 2β
[
−‖gδ‖2 + 2〈RHSrδ(m)[g

δ], f̃
δ
m〉 − 〈APPLY rδ(m)[f̃

δ
m], f̃

δ
m〉

+ ‖gδ‖2 + 〈FL∗gδ −RHSrδ(m)[g
δ], f̃

δ
m〉 − 〈FL∗gδ, f̃

δ
m〉

+ 〈FL∗gδ −RHSrδ(m)[g
δ],f †〉 − 〈FL∗gδ,f †〉

+ 〈APPLY rδ(m)[f̃
δ
m]− Sf̃

δ
m,f

†〉+ 〈Sf̃
δ
m,f

†〉
]

≤ 2β
[
−(RESrδ(m)[f̃

δ
m, g

δ])2 + ‖gδ‖2 + εRrδ(m)‖f̃
δ
m‖ − 〈gδ, LF ∗f̃

δ
m〉

+ εRrδ(m)‖f
†‖ − 〈gδ, LF ∗f †〉+ εArδ(m)‖f

†‖+ 〈LF ∗f̃ δm, LF ∗f †〉
]

= 2β
[
−(RESrδ(m)[f̃

δ
m, g

δ])2 + εRrδ(m)‖f̃
δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖

+ ‖gδ‖2 − 〈gδ, LF ∗f̃ δm〉 − 〈gδ, g〉+ 〈LF ∗f̃ δm, g〉
]

= 2β
[
−(RESrδ(m)[f̃

δ
m, g

δ])2 + εRrδ(m)‖f̃
δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖

+ 〈gδ − g, gδ − LF ∗f̃ δm〉
]

≤ 2β
[
−(RESrδ(m)[f̃

δ
m, g

δ])2 + εRrδ(m)‖f̃
δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖

+ ‖gδ − g‖‖gδ − LF ∗f̃ δm‖
]

≤ 2β
[
−(RESrδ(m)[f̃

δ
m, g

δ])2 + εRrδ(m)‖f̃
δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖
]

+ β(δ2 + ‖gδ − Lf̃ δm‖2). (57)

Inserting the estimates (56) for T1 and (57) for T2 into (55) finally yields

‖f̃ δm+1 − f †‖2 − ‖f̃ δm − f †‖2

≤ 3
2

(εCrδ(m))
2 + 2εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖) + β(εArδ(m) + εRrδ(m))ε

C
rδ(m)

+
1
2
β2‖S‖‖Lf̃ δm − gδ‖2

+ 2β2(εRrδ(m) + εArδ(m))
2 + 2β2‖S‖‖gδ − Lf̃ δm‖2

− 2β(RESrδ(m)[f̃
δ
m, g

δ])2 + 2β
(
εRrδ(m)‖f̃

δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖
)

+ βδ2 + β‖gδ − Lf̃ δm‖2

=
3
2

(εCrδ(m))
2 + 2εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖) + β(εArδ(m) + εRrδ(m))ε

C
rδ(m)

+ 2β2(εRrδ(m) + εArδ(m))
2 + 2β

(
εRrδ(m)‖f̃

δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖
)

+ βδ2 − 2β(RESrδ(m)[f̃
δ
m, g

δ])2 + β
(
1 +

3
2
β‖S‖

)
‖gδ − Lf̃ δm‖2

≤ βCrδ(m)(f̃
δ
m) + βδ2 + β

(3
2
β‖S‖ − 1

)
(RESrδ(m)[f̃

δ
m, g

δ])2, (58)
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where we have introduced for ease of notation

Crδ(m)(f̃
δ
m) :=

3
2β

(εCrδ(m))
2 +

2
β
εCrδ(m)(‖f̃

δ
m‖+ ‖f †‖) + (εArδ(m) + εRrδ(m))ε

C
rδ(m)

+ 2β(εRrδ(m) + εArδ(m))
2 + 2

(
εRrδ(m)‖f̃

δ
m‖+ (εRrδ(m) + εArδ(m))‖f

†‖
)

+
(
1 +

3
2
β‖S‖

)
(εArδ(m) + 2εRrδ(m))‖f̃

δ
m‖ . (59)

Since (19) was assumed, and thanks to (58), monotony can be deduced

‖f̃ δm+1 − f †‖2 − ‖f̃ δm − f †‖2 < β
(3

2
β‖S‖ − 1

)
(1− c)(RESrδ(m)[f̃

δ
m, g

δ])2 < 0 . (60)
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