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ABSTRACT

An algorithm has been developed for the retrieval of mix-
ing layer heights (MLH) from ceilometer, or lidar, mea-
surements. The technique essentially relies on the com-
putation of gradient information by use of the wavelet
transform. The algorithm is described and a measurement
example is presented.

1. INTRODUCTION

Currently, two major types of algorithms for the determi-
nation of the MLH from backscatter profiles measured by
a lidar or ceilometer exist. The first one, which is some-
times called the peaks technique, is based on the anal-
ysis of the gradient and the variance of the backscatter
profile. The second one, the wavelet method, uses the
wavelet transform [1] of the backscatter profile. In prin-
ciple, MLH detection is a pattern recognition problem.
The basic assumption which is usually made is that the
vertical distribution of aerosol can be used as a tracer for
finding boundaries. The absolute value of the backscat-
ter is typically not needed since the relevant information
seems to be completely coded in the gradient (but pos-
sibly of different orders) of the backscatter profile. The
peaks algorithm was invented for the detection of the top
of multiple aerosol layers from backscatter profiles (see,
e.g., [2]). The method is based on the analysis of col-
located minima of the backscatter gradient and maxima
of the backscatter variance. The wavelet algorithm has
gained a great amount of popularity during the last years
(see, e.g., [3]). Typically, the Haar wavelet transform is
used because it is easy to implement and a powerful gra-
dient locator and therefore a very promising mathemat-
ical tool; but recently published wavelet-based methods
do not take full advantage of the wavelet theory. Here
we present first results of our efforts to develop an ad-
vanced version of the wavelet algorithm and, thus, a reli-
able MLH detector.

2. PREPROCESSING OF CEILOMETER DATA

2.1. Cloud Detection

Because cloud-free backscatter profiles are the basic re-
quirement for MLH detection, a cloud-detection algo-
rithm is needed.

In a first step, the backscatter profile β is re-normalized
by its variance σ (as taken from the ceilometer output

data file). By doing so, backscatter signals are increased
in measurement cases in which clouds are likely present:

βσ(h, t) = β(h, t)σ(t), (1)

where h denotes the height and t denotes the time vari-
able (Nh height bins, Nt profiles). Further, we define the
global mean and variance:

µ =
1

NhNt

∑
h

∑
t

βσ(h, t), (2)

Σ =
1

NhNt − 1

∑
h

∑
t

[βσ(h, t)− µ]2. (3)

Our studies show that a simple empirical estimate of a
pixel-wise cloud threshold is given by:

eC = µ+ 3
√

Σ. (4)

Based on eC a simple indicator function can be intro-
duced:

I(h, t) =
∫ h

0

χ{βσ(ξ,t)>eC}(ξ, t)dξ (5)

where χ is the characteristic function with χ(ξ, t) = 1
for βσ(ξ, t) > eC and χ(ξ, t) = 0 elsewhere. Therefore,
at locations (h, t) where I(h, t) = 0 we may assume that
no clouds are present. The integration/summation with
respect to ξ implies, that the first cloud layer marks the
maximum height up to which MLHs will be detected.
Hence, we may define cloud-free backscatter data f by

f(h, t) = β(h, t)χ{I(h,t)=0}(h, t), (6)

with χ(h, t) = 1 for I(h, t) = 0 and zero elsewhere. The
filtered ceilometer data f(h, t) is the basis for all subse-
quent signal processing.

2.2. Temporal and Spatial Averaging

The ceilometer data f(h, t) are averaged in time and
space. For temporal averaging, every k backscatter pro-
files are summed (thus reducing the number of profiles to
Nt/k). Spatial smoothing is accomplished with a sliding-
average length of l height bins (for ceilometer data with a
bin width of 15 m, l = 20 is typical). The averaged data,
F (h, t), are then used for the wavelet analysis.



3. WAVELET ANALYSIS AND MLH DETEC-
TION

The final step of the MLH detection procedure is the gra-
dient analysis of F (h, t) of each individual spatial mea-
surement, i.e. for each individual t. We define the wavelet
transform as

WψF (h, a; t) =
1
√
cψ

∫
F (γ, t)

1√
a
ψ

(
γ − h
a

)
dγ,

(7)
where the normalization constant cψ , given by

0 < cψ = 2π
∫
|ψ̂(ω)|2

|ω|
dω <∞, (8)

reflects the constraint on the analyzing wavelets to pro-
duce an invertible and isometric transform. The isometry
property is relevant since it ensures norm (or L2-energy)
equality between the signal F and its wavelet trans-
form (allowing a physical interpretation of the wavelet-
transformed signal). ψ̂ denotes the Fourier transform of
the analyzing wavelet.

In recent publications, only the Haar wavelet transform
has been considered. This was motivated by the fact that
the Haar wavelet transform is nothing but the difference
quotient at different scales a > 0. For a → 0, the Haar
wavelet transform converges to the derivative of the an-
alyzed signal. This permits a direct interpretation of the
wavelet transform, but is in principle just a different way
of computing the difference quotient as done in classical
approaches. However, the novelty (and the advantage) is
to obtain the difference quotient of all desired scales by
computing the wavelet transform once.

Remarkably, if ψ is chosen such that ψ = φ(k) (i.e., ψ is
defined via a derivative of some absolutely and quadrati-
cally integrable function φ, φ ∈ L1 ∩ L2), it follows that

lim
a→0

WψF (a, h; t) = CF (k)(h), (9)

which allows one to analyze also the behavior of deriva-
tives of F of higher order, and this can give a hint at
where the gradient growth (or decay) becomes maximum
or minimum (C is a constant).

Our algorithm uses the Daubechies wavelet family (1st,
2nd, 3rd order) [4], thus yielding more structural infor-
mation on the signals to be analyzed. In order to detect
MLHs, we evaluate the wavelet spectrum at all scales si-
multaneously. This can be easily done by temporal spec-
trograms,

S(h, t) =
∫
|WψF (a, h; t)|pda, (10)

with p > 0, which can alternatively be replaced by:

S(h, t)=
(∫
|WψF (a, h; t)|p sign[WψF (a, h; t)]da

)
+

.

(11)

Equation (11) additionally takes into account the sign of
the gradient information (which is, for our purpose, rather
important). Finally, since we are interested in local max-
ima, the negative part can be skipped (which is denoted
by (·)+).

In general, the evaluation of S(h, t) will not yield a sin-
gle, unique MLH but a set of MLH candidates. At this
point, as will be discussed below, empirical MLH criteria
(e.g., the range of gradients), or data from other instru-
ments, are required to select the most probable MLH. So
for maximum flexibility, we allow each profile to have
NMLH possible MLH events: For each t we consider
S(h, t) as a function of h only. Then, we derive the
NMLH maximum values

VMLH(·, t) = max
1,...,NMLH

S(·, t) (12)

and the corresponding NMLH positions

PMLH(·, t) = arg max
1,...,NMLH

S(·, t). (13)

For each t we thus obtain two corresponding vectors con-
taining at most NMLH candidates for MLHs (p-averaged
gradient values and spatial location; for different choices
of p, the gradient is amplified or attenuated; currently,
we use p = 1). To attribute a quality index to each of
these MLH candidates, we use the “noise” floor informa-
tion fnoise (as determined in the spatial-averaging pro-
cess). In the presence of clouds, the noise contains struc-
tured patterns (which typically manifests itself in singu-
larly appearing larger signal amplitudes). Therefore, the
local signal variance of fnoise around the MLH locations
stored in PMLH must differ compared to the total variance
of fnoise. This motivates the definition of the following
variance spot indicator at location PMLH(l, t):

Σm[PMLH(l, t)] =
∫ PMLH(l,t)+m

PMLH(l,t)−m

[
fnoise(h, t)−

∫ PMLH(l,t)+m

PMLH(l,t)−m
fnoise(ξ, t)dξ

]2

dh, (14)

where t is the particular time step and l the specific MLH
candidate. This quantity is then compared to the global
variance of fnoise(·, t):

Σ(t) =
∫ [

fnoise(h, t)−
∫
fnoise(ξ, t)dξ

]2
dh , (15)

which leads to a quality index for the MLH candidates:

P (l, t) = |Σm[PMLH(l, t)]− Σ(t)|q (16)

for some q ≥ 1. If P (l, t) is small, the local and global
noise characteristics are nearly the same [no rapid gra-
dient (flows) are within the wavelet transform]. In sum-
mary, values of P (l, t) close to zero indicate a large like-
lihood of a MLH events whereas larger values indicate



Figure 1: MLH retrieval for 8 July 2007, filtering of the raw
data. From top to bottom, re-normalized backscatter data βσ
[Equation (1)], characteristic function χ of Equation (6), and
filtered ceilometer data f [Equation (6)].

unlikely MLH events, or something completely differ-
ent (e.g., clouds). To obtain an intuitive from-zero-to-one
scale of decision numbers, we define

P̂ (l, t) =
1

1 + P 2(l, t)
. (17)

The function P̂ (l, t) gives an ordering of the MHL events
by its quality index. The most likely MLH at time t is
then the height with the maximum value of P̂ (·, t):

MHL(t) = arg max
l∈{1,...,NMLH}

P̂ (l, t). (18)

4. EXAMPLE

We apply our MLH detection algorithm to ceilometer
data obtained with the CHM-15K ceilometer [5] manu-
factured by Jenoptik, Germany, which is the new stan-
dard ceilometer of the German Meteorological Service
operational network. With its powerful diode-pumped
Nd:YAG laser and photon-counting receiver electronics
it is capable of detecting optically thin aerosol layers and
cirrus clouds. The data used to demonstrate MLH de-
tection is taken from the CHM-15K instrument which is
operating at the Meteorological Observatory in Linden-
berg and which is co-located with the water vapor Raman
lidar RAMSES.

Figure 1 visualizes the first step in the retrieval pro-
cess, which is cloud detection. The first six hours of
8 July 2007 showed cloud-free conditions with particle-
backscattering confined to the boundary layer. Boundary-
layer clouds started to develop at 06:00 UT, and were
intermittently present until ∼17:00 UT. Base height in-
creased over the course of time from near the ground to
about 2000 m. After 17:00 UT an optically thin cirrus
cloud was observed. Indicator function I [Equation (5)]
and, hence, characteristic function χ reliably filter out
ranges of the backscatter profiles with and above clouds
the ceilometer cannot penetrate.

Figure 2: MLH retrieval for 8 July 2007, determination of MLH
candidates at 18:10 UT. From top to bottom, backscatter profile
f , noise floor fnoise, averaged backscatter profile F , wavelet
transform WψF [Equation (7)], and temporal spectrogram S
[Equation (11)] with detected MLH candidates (red dots at y =
1).

The filtered ceilometer data are then used for the wavelet
analysis presented in Figure 2. The top panel shows a
backscatter profile in raw-data resolution (15 m and 30 s).
A profile at around 18:10 UT was selected to demon-
strate the effect of aerosols and clouds on the noise level
(as determined in the spatial-averaging process), which is
shown in the panel below. Note the pronounced features
of fnoise that are related to the cirrus cloud. These fea-
tures are later in the retrieval process used to assign a low
quality index to MLH candidates at cloud altitudes.

The averaged backscatter profile and its wavelet trans-
form are shown in the third and fourth panel of Figure 2,
respectively. The Daubechies wavelets of order one were
used here. Results for scales a between 10 and 100 are
shown, small values are coded in blue colors, large val-
ues in red colors. Finally, the bottom panel highlights the
temporal spectrogram of the wavelet transform. Because
Equation (11) is used, only heights with dominantly pos-
itive wavelet transform values produce significant spec-
trograms. The number and positions of MLH candidates
are derived from the spectrograms by Equations (12) and
(13), respectively. In this example, four MLH candidates
are found.

Figure 3 highlights the temporal evolution of the MLH
candidates over the course of the full day. In the
top panel, MLH candidates are superimposed over the
ceilometer raw data, in the panel below MLH candi-
date traces are color-coded according to MLH heights,
with the blue color for the MLH candidates closest to the
ground, the green color for the second-lowest, and so on.
In the boundary layer, there are only one or two MLH
candidates for most of the time (third and fourth MLH



Figure 3: MLH retrieval for 8 July 2007, retrieval of MLH op-
timum estimates. From top to bottom, ceilometer raw data with
superimposed MLH-candidate positions PMLH [Equation (13),
white diamonds], MLH-candidate positions PMLH, quality in-
dex P̂ [Equation (17)], and most likely MLH. The algorithm
detects up to four MHL candidates for each time step (color-
coded symbols: blue, green, red, cyan).

candidates are mostly restricted to cirrus altitudes). With
the help of the quality index one can now select the MLH
candidate that most likely is the correct MLH. As the two
bottom panels of Figure 3 show, the most likely MLH
is either the MLH candidate closest, or second-closest,
to the ground, MLH candidates at cirrus levels have low
quality index values and are rejected without exception.
Before 11:00 UT, there is virtually only one MLH candi-
date. Around that time, however, a second one appears
which is causing scatter in the most likely MLH in the
bottom panel. While the lower MLH candidate is station-
ary at heights around 1200 m, the higher boundary-layer
MLH candidate is trending upwards, reaching altitudes of
up to 2500 m. Until 18:00 UT, the quality index of the lat-
ter is significantly larger than that of the former, but after-
wards the spread diminishes. Around 20:45 UT, the qual-
ity index of the lowest MLH candidate even surpasses the
one of the next-higher candidate, causing the most likely
MLH to drop abruptly and significantly. However, the
quality indices of the two candidates remain both at high
values and close to one another until midnight, so the re-
trieval results can be considered ambiguous here.

In Figure 4 the results of the MLH retrieval are shown
together with the water-vapor and aerosol fields as mea-
sured with RAMSES. This lidar is currently only operat-
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Figure 4: Height versus time display of backscatter ratio at
355 nm (top) and water vapor mixing ratio (in g/kg; bottom)
measured with the water vapor Raman lidar RAMSES on 8
July 2007. Height resolution is 60 m, integration time is 120 s.
The temporal evolution of the two MLH candidates with highest
quality index are shown for comparison (blue and green curves,
cf. Figure 3).

ing at nighttime, so RAMSES data are not available be-
fore 21:45 UT. The MLH candidate second-lowest to the
ground follows nicely layered features of the aerosol and
water-vapor fields, while this is not obvious in the case of
the lowest MLH candidate. In summary, the first results
obtained with our MLH detection algorithm are promis-
ing, but the quality of the retrieval has to be assessed in
future studies. Questions that have to be addressed in
this context evolve around the definition of MLH in gen-
eral, and the threshold and parameter values used in the
retrieval algorithm.
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