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1 Introduction

In this paper, we discuss several iterative strategies for solving inverse problems in the
context of signal and image processing. We are essentially focusing on problems where it
is reasonable to assume that the solution has a sparse expansion with respect to a wavelet
basis or frame. In each case, we consider a variational formulation of the problem, and
construct an iteration scheme for which the iterates approximate the solution. To this
end, we apply surrogate functionals; the corresponding strategy was shown to converge
in norm and to regularize the problem, see (Daubechies et al., 2004). We discuss special
cases and generalizations.

The surrogate functional method in its initial setup as described in (Daubechies et al.,
2004) amounts to a combination of Landweber’s method and a shrinkage operation, ap-
plied in each iteration step. The shrinkage is due to the presence of the `1-penalization
term in the functional. Recent developments in the field of signal and image processing
have shown the importance of sparse representations for various tasks in inverse prob-
lems (such as compression, denoising, deblurring, decomposition, texture analysis etc.);
`1-constraints select for such sparsity. We limit ourselves here to illustrating a small num-
ber of concrete inverse problems, for which we show in detail the variational formulations
and the resulting expressions for the iteration. For all cases we discuss convergence and
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give detailed numerical illustrations. In addition to these case studies, we also present
strategies for more general constraints.

We start with the concrete problem of simultaneously denoising, decomposing and
deblurring a given image. The associated variational formulation of the problem contains
terms that promote sparsity as well as smoothness. We show how to transform the
problem such that the basic method of (Daubechies et al., 2004) applies. In a second
example, we discuss a natural extension to vector-valued inverse problems. Potential
applications include seismic or astrophysical data decomposition/reconstruction and color
image reconstruction. The illustration presented here contains audio data coding. After
these two case studies, we turn to more general formulations. We allow the constraint
to be some other positive, homogeneous and convex functional than the `1-norm. In
the linear case, and under fairly general assumptions on the constraint, we prove that
weak convergence of the iterative scheme always holds. In certain cases, i.e. for special
families of convex constraints, this weak convergence implies norm convergence. The
presented technique covers a wide range of problems. Here we discuss in greater detail
image restoration problems in which Besov– or BV–constraints are involved. We close
this paper with sketching the design of hybrid wavelet–PDE image restoration schemes,
i.e. with variational problems that contain wavelet as well as BV constraints.

2 Simultaneous decomposition, deblurring and de-

noising of images by means of wavelets

This section is devoted to wavelet–based treatments of variational problems arising in the
field of image processing. In particular, we follow approaches presented in (Meyer, 2002;
Vese and Osher, 2003, 2004; Osher et al., 2003) and discuss a special class of variational
functionals that induce a decomposition of images into oscillating and cartoon compo-
nents and possibly an appropriate ‘noise’ component. In the setting of (Vese and Osher,
2003) and (Osher et al., 2003), the cartoon component of an image is modelled by a
BV function (bounded variation); the corresponding incorporation of BV penalty terms
in the variational functional leads to PDE schemes that are numerically intensive. By
replacing the BV penalty term by a B1

1(L1) term (which amounts to a slightly stronger
constraint on the minimizer), and writing the problem in a wavelet framework, we obtain
elegant and numerically efficient schemes with results very similar to those obtained in
(Osher et al., 2003), and superior to those from (Rudin et al., 1992). This approach allows
us, moreover, to incorporate bounded linear blur operators into the problem so that the
minimization leads to a simultaneous decomposition, deblurring and denoising.
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2.1 Wavelet–based reformulation of the variational problem

As mentioned above, we focus on a special class of variational problems which induce
a decomposition of images into ‘texture’ and ‘cartoon’ components; the cartoon part is,
ideally, piecewise smooth with possibly abrupt edges and contours; the texture part on the
other hand ‘fills’ in the smooth regions in the cartoon with, typically, oscillating features.
Inspired from (Meyer, 2002), the authors of (Vese and Osher, 2003; Osher et al., 2003)
propose to model the cartoon component by the space BV ; this induces a penalty term
that allows edges and contours in the reconstructed cartoon images, leading however to
a numerically intensive PDE based scheme.

Our main goal is to provide a computationally thriftier algorithm by using a wavelet–
based scheme that solves not the same but a very similar variational problem, in which the
BV –constraint, which cannot easily be expressed in the wavelet domain, is replaced by a
B1

1(L1)–term, i.e. a slightly stricter constraint (since B1
1(L1) ⊂ BV in two dimensions).

Moreover, we can easily incorporate the action of linear bounded blur operators; we also
show convergence of the proposed scheme.

In order to give a brief description of the underlying variational problems, we recall the
methods proposed in (Vese and Osher, 2003; Osher et al., 2003). They follow the idea of
Y. Meyer (Meyer, 2002), proposed as an improvement on the total variation framework
of (Rudin et al., 1992). In principle, the models can be understood as a decomposition of
an image f into f = u + v, where u represents the cartoon part and v the texture part.
In the (Vese and Osher, 2003, 2004) model, the decomposition is induced by solving

inf
u,g1,g2

Gp(u, g1, g2) , where (2.1)

Gp(u, g1, g2) =

∫
Ω

|∇u|+ λ‖f − (u+ divg)‖2
L2(Ω) + µ‖|g|‖Lp(Ω) ,

with f ∈ L2(Ω), Ω ⊂ R2, and v = divg = div(g1, g2). The first term is the total variation
of u. If u ∈ L1 and |∇u| is a finite measure on Ω, then u ∈ BV (Ω). This space allows
discontinuities, therefore edges and contours generally appear in u. The second term
represents the restoration discrepancy; to penalize v, the third term approximates (by
taking p finite) the norm of the space G of oscillating functions introduced by Y. Meyer
(with p = ∞) which is in some sense dual to BV (Ω). (For details we refer the reader to
(Meyer, 2002).) Setting p = 2 and g = ∇P +Q, where P is a single–valued function and
Q is a divergence–free vector field, it is shown in (Osher et al., 2003) that the v–penalty
term can be expressed by

‖|g|‖L2(Ω) =

(∫
Ω

|∇(∆)−1v|2
)1/2

= ‖v‖H−1(Ω) .

(The H−1 calculus is allowed as long as we deal with oscillatory texture/noise components
that have zero mean.) With these assumptions, the variational problem (2.1) simplifies
to solving

inf
u,g1,g2

G2(u, v) , where (2.2)
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G2(u, v) =

∫
Ω

|∇u|+ λ‖f − (u+ v)‖2
L2(Ω) + µ‖v‖H−1(Ω) .

In general, one drawback is that the minimization of (2.1) or (2.2) leads to numerically
intensive schemes.

Instead of solving problem (2.2) by means of nonlinear partial differential equations
and finite difference schemes, we propose a wavelet–based treatment. We are encouraged
by the fact that elementary methods based on wavelet shrinkage solve similar extremal
problems where BV (Ω) is replaced by the Besov space B1

1(L1(Ω)). Since BV (Ω) can
not be simply described in terms of wavelet coefficients, it is not clear that BV (Ω) min-
imizers can be obtained in this way. Yet, it is shown in (Cohen et al., 1999), exploiting
B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω)) − weak, that methods using Haar systems provide

near BV (Ω) minimizers. So far there exists no similar result for general (in particular
smoother) wavelet systems. We shall nevertheless use wavelets that have more smooth-
ness/vanishing moments than Haar wavelets, because we expect them to be better suited
to the modeling of the smooth parts in the cartoon image. Though we may not obtain
provable ‘near–best–BV –minimizers’, we hope to nevertheless be ‘not far off’. Limiting
ourselves to the case p = 2, replacing BV (Ω) by B1

1(L1(Ω)), and, moreover, extending
the range of applicability by incorporating a bounded linear operator K, we end up with
the following variational problem:

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) . (2.3)

In order to establish now a wavelet–based scheme that solves the latter problem, we firstly
need to recall some basic facts on wavelets.

2.2 Preliminaries on wavelets

Let us briefly recall some facts on wavelets that are needed later on. Especially impor-
tant for our approach are the smoothness characterization properties of wavelets: one can
determine the membership of a function in many different smoothness functional spaces
by examining the decay properties of its wavelets coefficients. For a comprehensive intro-
duction and overview on this topic we would refer the reader to the abundant literature,
see e.g. (Daubechies, 1992, 1993; Cohen et al., 1992; Dahmen, 1996; DeVore et al., 1992,
1988; Frazier and Jawerth, 1990; Triebel, 1978).

For readers interested more in the gist of the theory than in a more elaborate, mathe-
matically precise description, it suffices to know that:

• wavelet expansions provide successive approximations at increasingly finer scales. If
a function f is given, and f〈J〉 is its approximation at scale 2−J , then the next finer
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approximation f〈J+1〉 can be written as

f〈J+1〉 = f〈J〉 +
∑
i,k

〈f, ψ̃i
J,k〉ψi

J,k,

where ψi
j,k(x) = 2jψi(2jx1 − k1, 2

jx2 − k2) are the wavelets used in the expansion,
and ψi

J,k a corresponding dual family. The index i indicates that in dimensions
larger than 1 one typically uses several wavelet templates. In 2 dimensions, there
are usually 3 different wavelets, and i takes the values 1,2,3. (Note that the details of
the approximation scheme that computes f〈J〉 from f depend on the wavelet family
under consideration.) If ψ ∈ Cs (i.e. ψ has ‘differentiability’ of order s, where s
need not to be integer), then f has differentiability of order r < s if and only if

|〈f, ψ̃i
j,k〉| ≤ C2−j(r+s) . (2.4)

For the sake of convenience, we shall often ‘bundle’ i, j, k into one index λ, and write
〈f, ψ̃λ〉 simply as fλ. In this case |λ| stands for j. In this notation, the requirement
(2.4) becomes |fλ| ≤ C2−|λ|(r+s).

• one can characterize the smoothness of f in detail by using several parameters to
describe it, such as e.g. in Besov spaces. For smoothness r < 1, for instance, we
define

ωl(f ; t)p = sup
|h|≤t

[ ∫
|f(x + h)− f(x)|pdx

]1/p

(this is an ‘Lp–measured modulus of continuity’ for f), and

|f |Br
q (Lp(Ω)) =

(∫ ∞

0

(t−rω(f ; t)p)
qdt/t

)1/q

.

(Basically, this measures, in a fine ‘q–gained scale’, whether ω(f ; t)p decays at least
as fast as tr when t → 0.) For instance, if we consider, on Ω = (0, 1]2 the function
f(x) = x1 + x2 − bx1 + x2c, where bxc = max{n ∈ Z;n ≤ x}, which has a
discontinuity along the diagonal x1 + x2 = 1 in the square, then we find

ω(f ; t)1 ∼ C|t| as |t| → 0

and one easily checks, |f |B1−ε
1 (L1(Ω)) < ∞ for all ε > 0. In fact, one has f ∈

B1
1(L1(Ω)) (i.e. with r = 1) as well, but to verify this we need a fancier ‘L1–measured

modulus of continuity’. One important link of wavelets to these detailed smoothness
spaces is that they provide a good estimate of Besov norms. In particular, in 2
dimensions,

f ∈ Bs+1
1 (L1(Ω)) ⇔

∑
λ

2|λ|s|fλ| <∞ ;

for s = 0 this shows that f ∈ B1
1(L1(Ω)) if and only if its coefficients are in `1. An-

other special case, again in 2 dimensions, is p = q = 2; the Besov spaces then reduce
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to Sobolev spaces: Bs
2(L2(Ω)) = W s

2 , which can on Ω also be easily characterized in
terms of Fourier coefficients:

f ∈ W s
2 ⇔

∑
k

(|k1|+ |k2|)2s|f̂k|2 <∞ .

For these spaces, we have

f ∈ W s
2 = B2

2(L2(Ω)) ⇔
∑

λ

22|λ|s|fλ|2 <∞ .

This holds even for s < 0; in that case, functions with modest W s
2 –norm have large

amplitude high frequency oscillations.

2.3 Iterative strategy for image decomposition

We aim to find the minimizer of the functional

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) . (2.5)

At first, we may observe the following

Lemma 2.1 If the null–space N (K) of the operator K is trivial, then the variational
problem (2.5) has a unique minimizer.

This can be seen as follows:

Ff (µ(v, u) + (1− µ)(v′, u′))− µFf ((v, u))− (1− µ)Ff ((v
′, u′)) =

−µ(1− µ)
(
‖K(u− u′ + v − v′)‖2

L2(Ω) + γ‖v − v′‖2
H−1(Ω)

)
+2α

(
|µu+ (1− µ)u′|B1

1(L1(Ω)) − µ|u|B1
1(L1(Ω)) − (1− µ)|u′|B1

1(L1(Ω))

)
(2.6)

with 0 < µ < 1. Since the Banach norm is convex the right hand side of (2.6) is non-
positive, i.e. Ff is convex. Since N (K) = {0}, the term ‖K(u− u′ + v− v′)‖ can be zero
only if u − u′ + v − v′ = 0, moreover, ‖v − v′‖ is zero only if v − v′ = 0. Hence, (2.6) is
strictly less than zero if (v, u) 6= (v′, u′), i.e. Ff is strictly convex. On the other hand,
because Ff (v, u) →∞ as ‖v‖, ‖u‖ → ∞, Ff must have a minimizer. �

In order to solve this problem by means of wavelets we have to switch to the sequence
space formulation. When K is the identity operator the problem simplifies to

inf
u,v

{∑
λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|2 + 2α|uλ|

)}
, (2.7)
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where J = {λ = (i, j, k) : k ∈ Jj, j ∈ Z, i = 1, 2, 3} is the index set used in our separable
setting. The minimization of (2.7) is straightforward, since it decouples into easy one–
dimensional minimizations. This results in an explicit shrinkage scheme, presented also
in (Daubechies and Teschke, 2004):

Proposition 2.1 Let f be a given function. The functional (2.7) is minimized by the
parameterized class of functions ṽγ,α and ũγ,α given by the following non-linear filtering
of the wavelet series of f :

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
fλ − Sα(22|λ|+γ)/γ(fλ)

]
ψλ

and
ũγ,α = f〈j0〉 +

∑
λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator, Jj0 all indices λ for scales larger than j0 and
f〈j0〉 is the approximation at the coarsest scale j0.

In the case where K is not the identity operator the minimization process results in a
coupled system of nonlinear equations for the wavelet coefficients uλ and vλ, which is not
as straightforward to solve. To overcome this problem, we adapt an iterative approach. As
in (Daubechies et al., 2004) we derive the iterative algorithm from a sequence of so-called
surrogate functionals that are each easy to minimize, and for which one hopes that the
successive minimizers have the minimizing element of (2.5) as limit. However, contrary to
(Daubechies et al., 2004) our variational problem has mixed quadratic and non-quadratic
penalties. This requires a slightly different use of surrogate functionals. In (Defrise and
DeMol, 2004b,a) a similar u + v problem is solved by an approach that combines u and
v into one vector–valued function (u, v).

We will follow a different approach here, in which we first solve the quadratic problem
for v, and then construct an iteration scheme for u. To this end, we introduce the
differential operator T := (−∆)1/2. Setting v = Th the variational problem (2.5) reads as

inf
(u,h)

Ff (h, u) , with (2.8)

Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Minimizing (2.8) with respect to w results in

h̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently
ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for h̃γ(f, u) in (2.8) and defining

fγ := Tγf, T 2
γ := I −KT (T ∗K∗KT + γ)−1T ∗K∗ , (2.9)
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we obtain
Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) . (2.10)

Thus, the remaining task is to solve

inf
u
Ff (h̃γ(f, u), u) , where (2.11)

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

The corresponding variational equations in the sequence space representation are

∀λ : (K∗T 2
γKu)λ − (K∗fγ)λ + αsign(uλ) = 0 .

This gives a coupled system of nonlinear equations for uλ. For this reason we construct
surrogate functionals that remove the influence of K∗T 2

γKu. First, we choose a constant
C such that ‖K∗T 2

γK‖ < C. Since ‖Tγ‖ ≤ 1, it suffices to require that ‖K∗K‖ < C.
Then we define the functional

Φ(u; a) := C‖u− a‖2
L2(Ω) − ‖TγK(u− a)‖2

L2(Ω)

which depends on an auxiliary element a ∈ L2(Ω). We observe that Φ(u, a) is strictly
convex in u for any a. Since K can be rescaled, we limit our analysis without loss of
generality to the case C = 1. We finally add Φ(u; a) to Ff (h̃γ(f, u), u) and obtain the
following surrogate functional

F sur
f (h̃γ(f, a), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a)

=
∑

λ

{u2
λ − 2uλ(a+K∗T 2

γ (f −Ka))λ + 2α|uλ|}

+‖fγ‖2
L2(Ω) + ‖a‖2

L2(Ω) − ‖TγKa‖2
L2(Ω) . (2.12)

The advantage of minimizing (2.12) is that the variational equations for uλ decouple. The
summands of (2.12) are differentiable in uλ except at the point of non-differentiability.
The variational equations for each λ are now given by

uλ + αsign(uλ) = (a+K∗T 2
γ (f −Ka))λ .

This results in an explicit soft-shrinkage operation for uλ

uλ = Sα((a+K∗T 2
γ (f −Ka))λ) .

The next proposition summarizes our findings; it is the specialization to our particular
case of a more general theorem in (Daubechies et al., 2004).

Proposition 2.2 Suppose K is a linear bounded operator modeling the blur, with K
maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is defined as in (2.9) and
the functional F sur

f (h̃, u; a) is given by

F sur
f (h̃γ(f, u), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a) .
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Then, for arbitrarily chosen a ∈ L2(Ω), the functional F sur
f (h̃γ(f, u), u; a) has a unique

minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a+K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ .

The proof follows from (Daubechies et al., 2004). One can now define an iterative algo-
rithm by repeated minimization of F sur

f :

u0 arbitrary ; un = arg min
u

(
F sur

f (h̃γ(f, u), u;u
n−1)

)
n = 1, 2, . . . (2.13)

The convergence result of (Daubechies et al., 2004) can again be applied directly:

Theorem 2.1 Suppose K is a linear bounded operator, with ‖K∗K‖ < 1, and that Tγ is
defined as in (2.9). Then the sequence of iterates

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α of the functional

Ff (h̃γ(f, u), u) = ‖Tγ(f −Ku)‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of iterates
converges to ũγ,α in norm.

Combining the result of Theorem 2.1 and the representation for ṽ we summarize how the
image can finally be decomposed in cartoon and oscillating components.

Corollary 2.1 Assume that K is a linear bounded operator modeling the blur, with
‖K∗K‖ < 1. Moreover, if Tγ is defined as in (2.9) and if ũγ,α is the minimizing element
of (2.11), obtained as a limit of un

γ,α (see Theorem 2.1), then the variational problem

inf
(u,h)

Ff (h, u), with Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class

(ũγ,α, (T
∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) ,

where ũγ,α is the unique limit of the sequence

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . .
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Figure 1: An initial geometric image f (left), and two versions of f (the middle de-
composed with the Haar wavelet basis and the right with the Db3 basis) where the
soft-shrinkage operator with shrinkage parameter α = 0.5 was applied.

2.4 Redundancy and adaptivity to reduce artifacts

The non-linear filtering rule of Proposition 2.1 gives explicit descriptions of ṽ and ũ that
are computed by fast discrete wavelet schemes. However, non-redundant filtering very
often creates artifacts in terms of undesirable oscillations, which manifest themselves as
ringing and edge blurring, see Figure 1. Poor directional selectivity of traditional ten-
sor product wavelet bases likewise cause artifacts. In this section we discuss various
refinements on the basic algorithm that address this problem. In particular, we shall use
redundant translation invariant schemes, complex wavelets, and additional edge depen-
dent penalty weights. We describe these generalizations here, and leave examples to the
next section.

2.4.1 Translation invariance by cycle–spinning

Assume that we are given an image with 2M rows of 2M pixels, where the gray value of
each pixel gives an average of f on a square 2−M × 2−M , which we denote by fM

k , with k
a double index running through all the elements of {0, 1, . . . , 2M −1}×{0, 1, . . . , 2M −1}.
A traditional wavelet transform then computes f〈j0〉 and fj,l,i with j0 ≤ j ≤M , i = 1, 2, 3
and l ∈ {0, 1, . . . , 2j−1}×{0, 1, . . . , 2j−1} for each j, where the fj,l,i stand for the different
species of wavelet coefficients (in two dimensions, there are three), mostly localized on
(and indexed by) the squares [l12

−j, (l1 + 1)2−j]× [l22
−j, (l2 + 1)2−j].

Because the corresponding wavelet basis is not translation invariant (as can be seen
from the localization of the wavelet coefficients; f〈j0〉 has a similar translation non–
invariance which we did not denote explicitly), Coifman and Donoho proposed in (Coif-
man and Donoho, 1995) to recover translation invariance by averaging over the 22(M+1−j0)

translates of the wavelet basis; since many wavelets occur in more than one of these
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translated bases (in fact, each ψi
j,k(x − 2Mn) in exactly 22(j+1−j0) different bases), the

average over all these bases uses only (M + 1 − j0)2
2M different basis functions (and

not 24(M+1−j0) = number of bases × number of elements in each basis). This approach is
called cycle–spinning. Writing, with a slight abuse of notation, ψi

j,k+2j−Mn for the translate

ψi
j,k(x− 2Mn), this average can then be written as

fM = f cycled
〈j0〉 + 2−2(M+1)

2M−1∑
l1,l2=0

M−1∑
j=j0

22j

3∑
i=1

f i
j,l2−M+jψ

i
j,l2−M+j .

Carrying out our nonlinear filtering in each of the bases and averaging the result then
corresponds to applying the corresponding nonlinear filtering on the (much smaller number
of) coefficients in the last expression. This is the standard way to implement thresholding
on cycle–spinned representations.

The resulting sequence space representation of the variational functional (2.7) has to
be adapted to the redundant representation of f . To this end, we note that the Besov
penalty term takes the form

|f |Bs
p(Lp) ∼

 ∑
|λ|≥j0

2(j(s−1+2/p)+2(j−M))p|f i
j,l2−M+j |p

1/p

.

The norms ‖ · ‖2
L2

and ‖ · ‖2
H−1 change similarly. Consequently, we obtain the same

minimization rule but with respect to a richer class of wavelet coefficients.

2.4.2 Directional sensitivity by frequency projections

It has been shown by several authors (Kinsbury, 1999; Selesnick, 2001; Fernandes et al.,
2000) that if one treats positive and negative frequencies separately in the one–dimensional
wavelet transform (resulting in complex wavelets), the directional selectivity of the cor-
responding two–dimensional multi–resolution analysis is improved. This can be done by
applying the following orthogonal projections:

P+ : L2 → L2,+ = {f ∈ L2 : supp f̂ ⊆ [0,∞)}
P− : L2 → L2,− = {f ∈ L2 : supp f̂ ⊆ (−∞, 0]} .

The projectors P+ and P− may be either applied to f or to {φ, φ̃} and {ψ, ψ̃}. In a
discrete framework these projections have to be approximated. This has been done in
different ways in the literature. In (Kinsbury, 1999; Selesnick, 2001) Hilbert transform
pairs of wavelets are used. In (Fernandes et al., 2000) f is projected (approximately)
by multiplying with shifted generator symbols in the frequency domain. We follow the
second approach, i.e.

(P+f)∧(ω) := f̂(ω)H(ω − π/2) and (P−f)∧(ω) := f̂(ω)H(ω + π/2) ,
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where f denotes the function to be analyzed and H is the low–pass filter for a conjugate
quadrature mirror filter pair. One then has

f̂(ω) = (B+P+f)∧(ω) + (B−P−f)∧(ω) , (2.14)

where the back–projections are given by

(B+f)∧ = f̂H(· − π/2) and (B−f)∧ = f̂H(·+ π/2)

respectively. This technique provides us with a simple multiplication scheme in Fourier,
or equivalently, a convolution scheme in time domain. In a separable two–dimensional
framework the projections need to be carried out in each of the two frequency variables,
resulting in four approximate projection operators P++, P+−, P−+, P−−. Because f is
real, we have

(P++f)∧(−ω) = (P−−f)∧(ω) and (P+−f)∧(−ω) = (P−+f)∧(ω) ,

so that the computation of P−+f and P−−f can be omitted. Consequently, the modified
variational functional takes the form

Ff (u, v) = 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+ 2α|u|B1

1(L1)

≤ 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+

4α
(
|P++u|B1

1(L1)
+ |P+−u|B1

1(L1)

)
,

which can be minimized with respect to {P++v, P++u} and {P+−v, P+−u} separately.
The projections are complex–valued, so that the thresholding operator needs to be adapted.
Parameterizing the wavelet coefficients by modulus and angle and minimizing yields the
following filtering rules for the projections of ṽγ,α and ũγ,α (where ·· stands for any com-
bination of +, −)

P ··ṽγ,α =
∑
|λ|≥j0

(1 + γ2−2|λ|)−1
[
P ··fλ − Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)

]
ψλ

and
P ··ũγ,α = (P ··f)〈j0〉 +

∑
|λ|≥j0

(1 + γ2−2|λ|)−1Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)ψλ .

Finally, we have to apply the back-projections to obtain the minimizing functions

ṽBP
γ,α = B++P++ṽγ,α +B−−P++ṽγ,α +B+−P+−ṽγ,α +B−+P+−ṽγ,α

and
ũBP

γ,α = B++P++ũγ,α +B−−P++ũγ,α +B+−P+−ũγ,α +B−+P+−ũγ,α .
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2.4.3 Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a positive
weight sequence wλ in the H−1 penalty term. Consequently, we aim at minimizing a
slightly modified sequence space functional∑

λ

(
|fλ − (uλ + vλ)|2 + γ2−2|λ|wλ|vλ|2 + 2α|uλ|

)
. (2.15)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑
|λ|≥j0

(1 + γwλ2
−2|λ|)−1

[
fλ − Sα(22|λ|+γwλ)/γwλ

(fλ)
]
ψλ

and
ũw

γ,α = f〈j0〉 +
∑
|λ|≥j0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ .

The main goal is to introduce a control parameter that depends on the local structure
of f . The local penalty weight wλ should be large in the presence of an edge and small
otherwise; the result of this weighting is to enhance the sensitivity of u near edges. In
order to do this, we must first localize the edges, which we do by a procedure similar to an
edge detection algorithm in (Mallat and Zhong, 1992). This scheme rests on the analysis
of the cycle-spinned wavelet coefficients fλ at or near the same location but at different
scales. We expect that the fλ belonging to fine decomposition scales contain informations
of edges (well localized) as well as oscillating components. Oscillating texture components
typically show up in fine scales only; edges on the other hand leave a signature of larger
wavelet coefficients through a wider range of scales. We thus apply the following not very
sophisticated edge detector. Suppose that f ∈ VM and je denotes some ‘critical’ scale, then
for a certain range of scales |λ| = |(i, j, k)| = j ∈ {j0, . . . , j1− je− 2, j1− je− 1} we mark
all positions k where |fλ| is larger than a level dependent threshold parameter tj. Here the
value tj is chosen proportional to the mean value of all wavelet coefficients of level j. We
say that |fλ| represents an edge if k was marked for all j ∈ {j0, . . . , j1− je−2, j1− je−1}.
Finally, we adaptively choose the penalty sequence by setting

wλ =

{
Θλ if j ∈ {M − 1, . . . , j1 − je} and k was marked as an edge ,
ϑλ otherwise ,

where ϑλ is close to one and Θλ is much larger in order to penalize the corresponding vλ’s.

2.5 Image examples

In this section, we present some examples of images decomposed, deblurred and denoised.

We start with the case where K is the identity operator. In order to show how the
nonlinear (redundant) wavelet scheme acts on piecewise constant functions we decompose
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Figure 2: From left to right: initial geometric image f , ũ, ṽ + 150, computed with Db3
in the translation invariant setting, α = 0.5, γ = 0.01.

Figure 3: Left: noisy segment of a woman image, middle and right: first two scales of
S(f) inducing the weight function w.

a geometric image (representing cartoon components only) with sharp contours, see Figure
2. We observe that ũ represents the cartoon part very well. The texture component ṽ (plus
a constant for illustration purposes) contains only some very weak contour structures.

Next, we demonstrate the performance of the Haar shrinkage algorithm successively
incorporating redundancy and local penalty weights. The redundancy is implemented by
cycle spinning as described in Section 2.4.1. The local penalty weights are computed in
the following way: first, we apply the shrinkage operator S to f with a level dependent
threshold (the threshold per scale is equal to two times the mean value of all the wavelet
coefficients of the scale under consideration). Second, for those λ according to the non–
zero values of Sthreshold(fλ) we set wλ to Θλ = 1 + C ′ (here C ′ = 10, moreover, we set
wλ equal to ϑλ = 1 elsewhere). The coefficients Sthreshold(fλ) for the first two scales of
a segment of the image ‘Barbara’ are visualized in Figure 3. In Figure 4, we present
our numerical results. The upper row shows the original and the noisy image. The next
row visualizes the results for non-redundant Haar shrinkage (Method A). The third row
shows the same but incorporating cycle spinning (Method B), and the last row shows the
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Haar Shrinkage SNR(f , fε) SNR(f ,u+ v) SNR(f ,u)

Method A 20,7203 18,3319 16,0680
Method B 20,7203 21,6672 16,5886
Method C 20,7203 23,8334 17,5070

Table 1: Signal–to–noise ratios of the several decomposition methods (Haar shrinkage,
translation invariant Haar shrinkage, translation invariant Haar shrinkage with edge en-
hancement).

Data basis ”Barbara” image (512x512 pixel)

Hardware Architecture PC
Operating System linux
OS Distribution redhat7.3
Model PC, AMD Athlon-XP
Memory Size (MB) 1024
Processor Speed (MHz) 1333
Number of CPUs 1

Computational cost (average over 10 runs)
PDE scheme in Fortran (compiler f77) 56,67 sec
wavelet shrinkage Method A (Matlab) 4,20 sec
wavelet shrinkage Method B (Matlab) 24,78 sec
wavelet shrinkage Method C (Matlab) 26,56 sec

Table 2: Comparison of computational cost of the PDE– and the wavelet–based methods.

incorporation of cycle spinning and local penalty weights. Each extension of the shrinkage
method improves the results. This is also confirmed by comparing the signal–to–noise-
ratios (which is here defined as follows: SNR(f, g) = 10 log10(‖f‖2/‖f − g‖2)), see Table
1.

The next experiment is done on a fabric image, see Figure 5. But in contrast to the
examples before, we present here the use of frequency projection as introduced in Section
2.4.2. The numerical result shows convincingly that the texture component can be also
well separated from the cartoon part.

In order to compare the performance with the BV − L2 model (Rudin et al., 1992)
and with the BV − H−1 model (Osher et al., 2003), we apply our scheme to a woman
image (the same that was used in (Vese and Osher, 2003; Osher et al., 2003)), see Figure
6. We obtain very similar results as obtained with the model proposed in (Osher et al.,
2003). Compared with the results obtained with the BV −L2 model (Rudin et al., 1992)
we observe that our reconstruction of the texture component contains much less cartoon
information. In terms of computational cost we have observed that even in the case of
applying cycle spinning and edge enhancement our proposed wavelet shrinkage scheme is
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less time consuming than the BV −H−1 restoration scheme, see table 2, even when the
wavelet method is implemented in Matlab, which is slower than the compiled version for
the (Osher et al., 2003) scheme.

We end this section with an experiment where K is not the identity operator. In our
particular case K is a convolution operator with Gaussian kernel. The implementation
is simply done in Fourier space. The upper row in Figure 7 shows the original f and the
blurred image Kf . The lower row visualizes the results: the cartoon component ũ, the
texture component ṽ, and the sum of both ũ+ ṽ. One may clearly see that the deblurred
image ũ + ṽ contains (after a small number of iterations) more small scale details than
Kf . This definitely shows the capabilities of the proposed iterative deblurring scheme
(2.13).
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Figure 4: Top: initial and noisy image, 2nd row: non-redundant Haar shrinkage (Method
A), 3rd row: translation invariant Haar shrinkage (Method B), bottom: translation invari-
ant Haar shrinkage with edge enhancement (Method C); 2nd-4th row from left to right:
ũ, ṽ+150 and ũ+ ṽ, α = 0.5, γ = 0.0001, computed with Haar wavelets and critical scale
je = −3. 17



Figure 5: From left to right: initial fabric image f , ũ, ṽ + 150, computed with Db4
incorporating frequency projections, α = 0.8, γ = 0.002.

Figure 6: Top from left to right: initial woman image f , ũ and ṽ + 150, computed with
Db10 (Method C), α = 0.5, γ = 0.002; bottom from left to right: u and v obtained by
the BV −H−1 model (Osher et al., 2003) and the v component obtained by the classical
TV model (Rudin et al., 1992).
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Figure 7: Top from left to right: initial image f , blurred image Kf ; middle from left to
right: deblurred ũ, deblurred ṽ+150; bottom: deblurred ũ+ ṽ, computed with Db3 using
the iterative approach, α = 0.2, γ = 0.001.
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3 Vector-valued regimes and mixed constraints

In the previous Section 2 we have considered a concrete image decomposition problem
where the solution was assumed to be a vector of functions, namely (v, u). Since the
constraint on v was a quadratic one, we were able to derive for the component v an
explicit expression. Therefore, problem (2.5) could be transformed into the much simpler
form (2.11) for which we could directly apply the basic algorithm of (Daubechies et al.,
2004).

It is now quite natural to generalize the iterative approach proposed in (Daubechies
et al., 2004) to the vector–valued situation, i.e. we now assume to have an m–dimensional
data vector (f1, . . . , fm) available from which we wish to reconstruct an n–dimensional
object (v1, . . . , vn) and where, moreover, the constraints on the object might be a mix-
ture of smoothness and sparsity measures. Similar problems were discussed in (Defrise
and DeMol, 2004a; Anthoine, 2005; Fornasier and Rauhut, 2006; Elad et al., 2005; Starck
et al., 2005). We limit ourselves here to the special case m = 1, with the extra assumption
that (v1, . . . , vn) has a sparse expansion (or satisfies some other constraint) with respect
to several bases or frames; the main difference with the preceding section is that we we
provide a rich dictionary of bases/frames that serves as a reservoir of building blocks for
(v1, . . . , vn). Our main motivation for this work was an approach in audio data coding by
B. Torrésani et.al. (Molla and Torresani, 2005; Jaillet and Torresani, 2005; Daudet and
Torrsani, 2002), who represented audio signals by means of wavelets for transients and
local cosine functions for tonal components. Their approach produces sparse representa-
tions of audio signals that are very efficient in audio coding. We shall illustrate at the
end of this section how the scheme developed here works for such audio coding.

3.1 Some remarks on frame dictionaries and sparsity

Sparsity can be achieved by using a suitable basis in the underlying function space. In the
preceding section, we introduced redundant systems to reduce artifacts. However, recent
studies indicate that redundant systems, such as frames, or dictionaries of ‘waveform’ sys-
tems may also lead to better, i.e. sparser representations. When dealing with dictionaries
of ‘waveform’ systems, there exist several methods, e.g. best orthogonal basis, matching
pursuit, basis pursuit etc., see, e.g., (Chen et al., 1999), that allow a decomposition of a
signal into an ‘optimal’ superposition of dictionary elements, where optimal means having
the smallest `1 norm of coefficients among all such decompositions. Numerical schemes
to implement these iterative ‘pursuit’ schemes in highly overcomplete dictionaries often
lead to very large scale optimization problems.

As an alternative to these methods, we discuss a method for finding the `p–optimal
decomposition (1 ≤ p ≤ 2) for which the skeletal structure is taken from the iterative
strategy proposed in (Daubechies et al., 2004). The advantage of the discussed method
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is that to achieve convergence of the iteration process, we do not need to make strong
assumptions on the preselected family of frames.

3.1.1 Frames, sparsity and inverse problems

A frame {φλ : λ ∈ Λ} in a Hilbert space H is a set of vectors for which there exist
constants 0 < A ≤ B <∞ such that, for all v ∈ H,

A‖v‖2
H ≤

∑
λ∈Λ

|〈v, φλ〉H|2 ≤ B‖v‖2
H .

Frames are typically ‘overcomplete’, i.e. for a given vector v ∈ H, one can find many
different sequences g ∈ `2 of coefficients so that

v =
∑
λ∈Λ

gλφλ. (3.1)

Some of these sequences have special properties, for instance, one may prefer the sequence
with minimal `2 norm. The problem of finding sequences g can be considered as an inverse
problem. To this end, let us introduce the operator F (often called the frame operator)
that maps a function v ∈ H to the element Fv of `2 by Fv = {〈v, φλ〉H}λ∈Λ. The adjoint
F ∗ maps a sequence g ∈ `2 to the element F ∗g of H via F ∗g =

∑
λ∈Λ gλφλ, i.e. solving

(3.1) amounts to solving F ∗g = v.

The sequence g with minimal `2–norm is obtained by standard least–squares methods
for these equation. It is often of interest to find sequences that are sparser than the
minimum `2–norm solution. For instance, if the object v is known to be a (noisy version
of a) sparse linear combination of the φλ, it makes sense to seek a coefficient sequence
with small `p-norm (e.g. p = 1), see (Daubechies et al., 2004). It then makes sense to
compute the sequence g that minimizes

‖v − F ∗g‖2
H + α‖g‖p

`p
. (3.2)

In many applications, the features or signals of interest cannot be observed directly,
but have to be inferred from other, observable quantities. Very often, there is a linear
relationship K : H 7→ H′ between the feature, modelled by a function v, and the derived
quantities, modelled by another function z, which often has additional noise; the relation
between v and z can then be written as

f = z + e = Kv + e .

To find an estimate for v from observed f , one can minimize the discrepancy

‖f −Kv‖2
H′ . (3.3)

Combining (3.2) and (3.3), we end up with

Φ(g) = ‖f − AF ∗g‖2
H′ + α‖g‖p

`p
, (3.4)
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where we allow 1 ≤ p ≤ 2. As we have seen in the previous Section 2, for this variational
problem an iterative method to approximate the minimizer was suggested (Daubechies
et al., 2004).

3.1.2 Extension to frame dictionaries

Instead of using one single frame only, we aim now to represent the function we are
searching for by several different frames. This makes sense since there are certain classes
of signals where one particular frame (or basis) is not optimally suited (in the sense
of locally best sparse approximation). Since a finite union of frames is again a frame,
variational formulation (3.4) applies here as well. But when putting mixed or different
constraints on the different frames, a setup where each frame is treated individually is
better suited. An extensive discussion on this subject can be found, e.g. in (Teschke,
2007).

We denote with {φi
λ : λ ∈ Λi, i = 1, 2, . . . , n} the finite family (or dictionary) of frames

where each individual collection {φi
λ : λ ∈ Λi} is assumed to be a frame for H. For each

frame, we may consider the associated frame operator Fi : H → `2 which is defined by
the map v 7→ vi := {〈v, φi

λ〉}λ∈Λi
. A natural composition of all frame operators is given

by the sum of its adjoints,

(v1, . . . , vn) 7→
n∑

i=1

F ∗
i v

i .

Involving our linear relationshipK : H → H′, we may define the operatorKn : (`2)
n → H′

by

Kn : (`2)
n : (v1, . . . , vn) 7→

n∑
i=1

KF ∗
i v

i

where the adjoint (Kn)∗ : H′ 7→ (`2)
n is given by

g 7→ K∗
Ag = (F1A

∗g, . . . , FnA
∗g) .

With this specific operator Kn we may define the following variational functional

Φ(g) := ‖f −Kng‖2
H′ + α · |||g||| , (3.5)

where g = (g1, . . . , gn) ∈ (`2)
n, |||g||| := (‖g1‖p1

p1
, . . . , ‖gn‖pn

pn
) and α = (α1, . . . , αn) repre-

sents n positive regularization parameters. As before, we restrict ourselves to 1 ≤ pi ≤ 2,
but not necessarily requiring pi = pj. For n = 2, several concepts to minimize (3.5) are
suggested in (Daubechies and Teschke, 2004, 2005; Defrise and DeMol, 2004a). In what
follows, we adapt the strategy that was proposed in (Daubechies et al., 2004).
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3.2 Iterative approach by surrogate functionals

At first, one easily verifies that Φ as defined in (3.5) is convex. In order to apply the
technique of Gaussian surrogate functionals, we define a constant C := C̃

√
B1 + . . .+Bn,

where C̃ is an upper bound for K and Bi stands for the upper frame bound with respect
to Fi. Then, for some auxiliary element a ∈ (`2)

n, the Gaussian surrogate extension for
the data misfit term takes the form

Γsur(g; a) = ‖f −Kng‖2
H′ + C2‖g − a‖2

(`2)n − ‖Kng −Kna‖2
H′ .

This functional is again convex and it holds Γsur(g; a)− ‖f −KAg‖2
H′ ≥ 0. Therefore, it

is reasonable to consider instead of Φ the surrogate functional

Φsur(g; a) := Γsur(g, a) + α · |||g||| , (3.6)

satisfying for all a ∈ (`2)
n, Φsur(g; g) = Φ(g) and Φsur(g; a) ≥ Φ(g). To approach the

minimizer g? of (3.5), we consider the following iteration:

g0 arbitrary ; gm+1 = arg min
g

Φsur(g; gm) m = 0, 1, . . . (3.7)

In order to execute iteration (3.7), we have to evaluate the necessary conditions for a
minimum of (3.6). For some generic a ∈ (`2)

n we have

Φsur(g; a) =
n∑

i=1

∑
λ∈Λi

(
C2(gi

λ)
2 − 2gi

λ

[
FiA

∗f + C2ai − FiK
∗Kna

]
λ

+ αi|gi
λ|pi

)
+‖f‖2

H′ + C2‖a‖2
(`2)n − ‖Kna‖2

H′ , (3.8)

where gi
λ stands for the coefficients of gi. We observe that through the Gaussian surrogate

extension the variational equations for the individual gi
λ decouple which allows - as we

shall see - an explicit computation of the minimizer.

Each summand in (3.8) is differentiable in gi
λ except for pi = 1 at gi

λ = 0. For pi > 1,
the minimization reduces to solving

gi
λ +

αi

2C2
pisign(gi

λ)|gi
λ|pi−1 = C−2

[
FiK

∗f + C2ai − FiK
∗Kna

]
λ
. (3.9)

As it can be retraced in (Daubechies et al., 2004), the map Fτ,p(x) = x+ τpsign(x)|x|p−1

is for any p > 1 a one-to-one map from R to itself, we thus find that for all i = 1, . . . , n
and λ ∈ Λi,

gi
λ = Sαi/2C2,pi

(C−2
[
FiK

∗f + C2ai − FiK
∗Kna

]
λ
) ,

where Sαi/2C2,pi
is defined by Sαi/2C2,pi

:= (Fαi/2C2,pi
)−1. For pi = 1, let the sign function

be set-valued (because of the non-differentiability of | · | at 0), i.e. sign(t) = ±1 for t ≷ 0
and sign(t) ∈ [−1, 1] for t = 0, leading to

gi
λ +

αi

2C2
sign(gi

λ) 3 C−2
[
FiK

∗f + C2ai − FiK
∗Kna

]
λ
. (3.10)
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In this case the associated operator Sαi/2C2,1 is nothing than the well-known soft-shrinkage
operator with threshold αi/2C

2. Introducing for some h ∈ `2 the sequence-wise acting
operator St,pi

(h) = {St,pi
(hλ)}λ∈Λi

, we may define the following ‘generalized’ shrinkage op-
erator for a vector of sequences (g1, . . . , gn) ∈ (`2)

n and parameter vectors t = (t1, . . . , tn)
and p = (p1, . . . , pn),

St,p(g) =
(
St1,p1(g

1), . . . , Stn,pn(gn)
)
.

With the latter shorthand notation the minimizer g of (3.6) can be written in the more
clearly arranged form

g = Sα/2C2,p

(
C−2

[
(Kn)∗f + C2a− (Kn)∗Kna

])
. (3.11)

The following proposition can be found in (Teschke, 2007) or can be retraced with the
help of (Daubechies et al., 2004).

Proposition 3.1 Suppose the operator K maps a Hilbert space H to another Hilbert space
H′ and is bounded by C̃. Furthermore, suppose we are given n frames where the respective
frame operators Fi map H to `2 with upper frame bounds Bi. Assume, moreover, that
f is an element of H′ and a ∈ (`2)

n. If Φsur(g; a) is defined as in (3.6) on (`2)
n, then

Φsur(g; a) has a unique minimizer in (`2)
n. This minimizer is given by

g = S α
2C2

(
C−2

[
(Kn)∗f + C2a− (Kn)∗Kna

])
. (3.12)

For all h ∈ (`2)
n, one has

Φsur(g + h; a) ≥ Φsur(g; a) + C2‖h‖2
(`2)n .

This result directly carries over to iteration (3.7):

Corollary 3.1 Make the same assumptions as in Proposition 3.1. Pick g0 ∈ (`2)
n arbi-

trarily. Then the iterates of the algorithm (3.7) have the following explicit form

gm+1 = Sα/2C2,p

(
C−2

[
K∗

Af + C2gm −K∗
AKAgm

])
. (3.13)

As the final result of this section, it can be verified that the proposed iteration (3.7)
converges in the norm of (`2)

n.

Theorem 3.1 Suppose the operator K maps a Hilbert space H to another Hilbert space
H′ and is bounded by C̃. Furthermore, suppose we are given n frames where the respective
frame operators Fi map H to `2 with upper frame bounds Bi. Assume, moreover, that f
is an element of H′ and a ∈ (`2)

n. Then the sequence of iterates

gm+1 = Sα/2C2

(
C−2

[
(Kn)∗f + C2gm − (Kn)∗Kngm

])
, m = 0, 1, 2, . . . ,

with g0 arbitrarily chosen in (`2)
n, converges in norm to a minimizer of the functional

Φ(g) = ‖f −Kng‖2
H′ + α · |||g||| .
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The complete proof of this theorem is quite lengthy and technical, for reader convenience
we refer to (Daubechies et al., 2004) or (Teschke, 2007). Essentially the proof consists of
two steps. At first, based on Opial’s Theorem (see (Opial, 1967)), the weak convergence
is shown. In a second step it is shown that the convergence holds also in norm.

3.3 Audio coding example

Within this section we show the usefulness of the proposed ‘multi–frame’ approach. We
present two numerical experiments from different perspectives: convergence rates, sparsity
achievement and approximation quality.

The overall configuration of our algorithm is as follows: for the sake of simplicity, we
pick as our underlying frames a wavelet basis (Haar system) and a (non–local) Fourier
basis only. Hence, B1 = B2 = 1. In the examples, we restrict ourselves to K = I.
Consequently, the constant C in our Gaussian surrogate is not allowed to be equal or
smaller than

√
2. We aim to achieve sparsity in both representations, i.e. we set p1 =

p2 = 1. The variational problem is thus simply given by

Φ(g1, g2) = ‖f − (F ∗
1 g

1 + F ∗
2 g

2)‖2 + α1‖g1‖`1 + α2‖g2‖`1 ,

and the minimization by Gaussian surrogates yields the following iteration (g1)m+1

(g2)m+1

 =

 Sα1/2C2,1 (C−2{F1f + C2(g1)m − F1F
∗
1 (g1)m − F1F

∗
2 (g2)m})

Sα2/2C2,1 (C−2{F2f + C2(g2)m − F2F
∗
1 (g1)m − F2F

∗
2 (g2)m})

 .

Since we deal with bases only, the application of F1F
∗
1 , F1F

∗
2 , F2F

∗
1 , and F2F

∗
2 simplifies

the discrete decomposition and reconstruction schemes. If one really goes beyond bases,
i.e. using frames, one indeed has to compute (approximate) all the (mixed) gram matrices.
This might be of course costly but can be optimized by picking localized and reasonably
incoherent frames. As an experimental observation, in case the frame generating analyzing
atmos are not reasonably distinct, the scheme is not able to separate the signal components
adequately, i.e. all the sequences gi contain very similar informations.

A synthetic Example. In this example we have simulated a signal f that is a composition
of two different components: a harmonic wave and noisy perturbation within the interval
[350, 400]. As a sampled discrete vector it has a total number of 631 coefficients in the
time–domain representation. This discrete vector is used as input for our algorithm. The
results for α1 = α2 = 0.2 are visualized in Figure 8. We find that involving the Haar
wavelet basis and the Fourier basis splits the signal in very sparse and well separated
components. The sparseness evolution of the two individual components can be seen in
the ’sparsity’ plot in Figure 8 approving that the chosen frames meet quite nicely the
signal structure.

Real data: “Glockenspiel”. This data set represents a real audio signal consisting of
tonal components and a sequence of (bell) attacks. We again try to apply Haar wavelet
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and Fourier splitting. For α1 = 0.02 and α2 = 0.01 the results are shown in Figure
9. As expected, the Haar system captures all the bell attacks very well, and, moreover,
the Fourier system the tonal components. The sparsity evolution graph shows the rapid
decay of the number of wavelet coefficients which can be explained by a fast “bell attacks”
localization process through the iteration.

We summarize, whenever the dictionary consists of complementary frames, the pro-
posed algorithm produces a sparse representation in which the individual components
overlap inconsiderably. However, a different choice of penalty weights would of course
imply a different splitting of the signal: if α1 >> α2, then almost everything of the sig-
nal would be captured by the wavelet system and vice versa. The audio results can be
downloaded from http://www.zib.de/AG InverseProblems/wav/.
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Figure 8: From top left to up right: synthetic data, Haar wavelet component (g2) (in
time domain) after 100 iterations, SNR evolution through the iteration process, Fourier
component (g1) (in time domain) after 100 iterations, reconstruction and error after 100
iterations, and sparsity evolution through the iteration process.
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Figure 9: From top left to up right: “Glockenspiel” data, Haar wavelet component (g2)
(in time domain) after 30 iterations, SNR evolution through the iteration process, Fourier
component (g1) (in time domain) after 30 iterations, reconstruction after 30 iterations,
and sparsity evolution through the iteration process.
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4 Image restoration with general convex constraints

In Section 2 and Section 3 we have considered image restoration problems in which the
constraints on the signal/image to be reconstructed could be directly expressed by means
of basis or frame coefficients (or could be adequately replaced). However, for certain
applications it might not be desirable to formulate the constraints in such a way. Often a
more general description of the constraint is much better suited. We have seen in Section 2
(in the context of image decomposition) that in the setting of (Vese and Osher, 2003) and
(Osher et al., 2003), the cartoon component of an image was modelled by a BV function.
The BV penalty term was then replaced by a B1

1(L1) term (amounting to a slightly
stronger constraint) in order to write the problem in the elegant wavelet framework in
which the proposed iteration scheme was easy to apply. It might now be interesting to
see whether a similar iteration scheme can be executed when waiving the comfort of a
wavelet framework and allowing the solution to be a BV function (or fulfilling some other
general homogeneous convex constraint).

4.1 Preliminaries on general convex constraints

As before, we consider a functional of the form

‖f −Kv‖2
H + 2αJ(v), (4.1)

where J(v) < ∞, or even J(v) < 1 is the mathematical translation of the a priori
knowledge (sometimes, we will use ‖ · ‖ for ‖ · ‖H). In what follows, we shall consider two
different choices of J(v), both adapted to the case where the inverse problem consists in
deblurring and denoising a 2-dim. image, as in (Daubechies and Teschke, 2005), which was
in turn, inspired by (Daubechies et al., 2004) and (Vese and Osher, 2003). Both approaches
are natural sequels to (Daubechies and Teschke, 2005). In the first approach, we consider
J(v) of the same type as in (Daubechies and Teschke, 2005), but we put it in a more
general framework, where J(v) can be any positive, convex, one–homogeneous functional.
An extensive discussion of such functionals, in much greater generality than what we
present here, is given in (Combettes and Wajs, 2005). In order to be self contained, and
to avoid introducing the full complexity of (Combettes and Wajs, 2005), we present here a
sketch of a simpler version that suffices for our case (for a detailed discussion on the proof
we refer the interested reader to (Daubechies et al., 2007)). In the second approach, J(v)
is the same as in (Rudin and Osher, 1994) and (Osher et al., 2003), but the numerical
solution in (Osher et al., 2003) of a 4-th order nonlinear PDE is replaced by an iterative
approach similar to (Daubechies et al., 2004) and (Daubechies and Teschke, 2005) (we
also refer the reader to related prior work of (Bect et al., 2004)).

We assume that the functional to minimize takes the form (4.1), where J is a positive,
convex and one–homogeneous functional. In this case, the variational problem can be
recast as follows: Consider J∗, the Fenchel transform or so–called dual functional of J ,
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see (Ekeland and Témam, 1999; Rockafellar and Wets, 1998). Since J is positive and one–
homogeneous, there exists a convex set C such that J∗ is equal to the indicator function
χC over C. In Hilbert space, we have total duality between convex sets and positive and
one–homogeneous functionals, i.e. J = (χC)∗, or

(χC)∗(v) = sup
h∈C

〈v, h〉 = J(v) ;

see, e.g., (Ekeland and Témam, 1999; Aubert and Aujol, 2005; Chambolle, 2004; Com-
bettes and Wajs, 2005). (Note: (Combettes and Wajs, 2005) gives a much more general
and complete discussion; we restrict ourselves here to a simple situation, and only sketch
the arguments. For a complete, detailed discussion, we refer the reader to (Combettes
and Wajs, 2005).) We thus end up with the following reformulation of our problem: given
some closed convex set C ⊂ H (on which we may still impose extra conditions, below),
we wish to minimize

FC(v) = ‖f −Kv‖2
H + 2α sup

h∈C
〈v, h〉 , (4.2)

where we assume K to be a bounded operator from H to itself, with ‖K‖ < 1. We shall
consider two particular cases in more detail.

Example 1. As in (Daubechies et al., 2004), a particular orthonormal basis {φλ}λ∈Λ in
H is preselected, and the prior is defined as

J(v) =
∑
λ∈Λ

|〈v, φλ〉| .

This can, of course, be viewed as a special case of (4.2), since in this case

C = {h ∈ L2,per([0, 1]2); |〈h, φλ〉| ≤ 1, ∀λ}.

Similarly, the case with the prior

|v|w =
∑
λ∈Λ

wλ|〈f, φλ〉| , with inf
λ∈Λ

wλ > 0 ,

fits also into the framework of (4.2), with C now defined by

C = {h ∈ L2,per([0, 1]2); |〈h, φλ〉| ≤ w−1
λ , ∀λ} .

When K 6= I and the problem is ill-posed, the resulting minimization scheme amounts to
Landweber iteration with thresholding applied in each step.

Example 2. In the BV regularization framework, (Rudin et al., 1992), (Rudin and
Osher, 1994), one considers functionals of the form

‖f −Kv‖2
L2(Ω) + 2α

∫
Ω

|∇v| (4.3)
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and minimizes over all possible v ∈ L2(Ω). Expressing this functional by means of a
convex set C one discovers that C is the L2-closure of

C = {h ∈ L2,per([0, 1]2); h = div g, where g is a 2d field in C1
c(Ω)2 that satisfies

‖g‖`∞ = sup
(x,y)∈[0,1]2

(|g1(x, y)|2 + |g2(x, y)|2)1/2 ≤ 1} ,

i.e. we may again write

sup
h∈C

〈v, h〉 =

∫
Ω

|∇v| = |v|BV ;

for details on the structure of C we refer the reader to (Evans and Gariepy, 1991; Ambrosio
et al., 2000). It turns out that results on iterative strategies developed for Example 1 carry
over to the BV case and that much of the analysis elaborated in (Daubechies et al., 2004)
can be generalized to the minimization of (4.3).

4.1.1 Reformulation of the problem

We shall assume that C is a closed convex set in H, C is symmetric, i.e. h ∈ C ⇒
−h ∈ C, and there exists finitely many vectors a1, . . . aN ∈ H, and r > 0 so that Br(0) ∩
{a1, . . . aN}⊥ ⊂ C (i.e. {h : 〈h, ai〉 = 0 ; i = 1, . . . , N and ‖h‖ < r} ⊂ C). Note: we
introduce the finite–dimensional subspace to which C is orthogonal for two reasons. First,
there are cases of interest in which C consists of functions that have zero mean in [0, 1]2,
e.g. if C contains only divergences of smooth periodic fields. Second, it will make it easier
to restrict ourselves to only fine scale functions, below.

Defining the functionals

L(v, h) := ‖f −Kv‖2
H + 2α〈v, h〉,

we can rewrite infv∈HFC(v) as
inf
v∈H

sup
h∈C

L(v, h) . (4.4)

Note that L(v, h) is continuous in both arguments, it is also convex with respect to v, con-
cave with respect to h. This means that (provided some technical conditions are fulfilled,
see (Boyd and Vandenberghe, 2005), (Hiriart-Urruty and Lemaréchal, 1993), (Ekeland
and Témam, 1999) or (Daubechies et al., 2007)) we can apply the minimax theorem,
which allows us to interchange inf and sup in (4.4). In this case the minimax theorem
moreover asserts that inf and sup are achieved, i.e. the inf is a min, the sup is a max.

4.2 Solving the inverse problem for convex penalization

Although the case where K∗K does not have a bounded inverse, i.e. where the inverse
problem is ill–posed is of most interest to us, we start by sketching the approach in the
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easier well–posed case.

Theorem 4.1 Suppose that all assumptions made above hold true, and K∗K has bounded
inverse in its range. If we define A := (K∗K)−1/2 and, for an arbitrary closed convex
set K ⊂ H, SK := Id − PK, where PK is the (nonlinear) projection on K, i.e. PKϕ =
arg minh∈C ‖h− ϕ‖, then the minimizing v is given by

v = ASαAC{AK∗g} .

An obvious example is the case where we just need to denoise an image, without deblur-
ring:

Example 3. Consider the denoising problem with an `1–constraint in the basis {φλ}λ∈Λ.
In this case K = Id, so that A = Id as well, and

C = {v; sup
λ
|〈v, φλ〉| ≤ 1} .

Moreover, in the real case we have

〈PCv, φλ〉 =

{
〈v, φλ〉 if |〈v, φλ〉| ≤ 1
sign〈v, φλ〉 if |〈v, φλ〉| > 1 .

This implies that SαAC ◦ AK∗ is exactly the soft thresholding operator

〈SαAC(AK∗f), φλ〉 = Sα(〈f, φλ〉) .

In the complex case, we have

〈PCv, φλ〉 =

{
〈v, φλ〉 if |〈v, φλ〉| ≤ 1
〈v,φλ〉
|〈v,φλ〉|

if |〈v, φλ〉| > 1 ,

and the SαAC ◦ AK∗ reduces to the ”complex soft thresholding operator”, i.e.

〈SαAC(AT ∗f), φλ〉 = Sc
α(〈f, φλ〉) =

{
〈f, φλ〉 − α 〈f,φλ〉

|〈f,φλ〉|
if |〈f, φλ〉| > α

0 if |〈f, φλ〉| ≤ α .

In the most interesting problems, the operator K∗K does not have a bounded inverse.
We can then use the surrogate functionals introduced in (Daubechies et al., 2004). We
replace (4.1) by a family of surrogate functionals

Gn,C(v) = FC(v) + ‖vn − v‖2 − ‖K(vn − v)‖2
H

= −2〈v,K∗f〉+ 2α sup
h∈C

〈v, h〉 − 2〈v, vn〉+ 2〈v,K∗Kvn〉

+‖v‖2 + ‖f‖2 + ‖vn‖2 − ‖Kvn‖2
H ,

and we have
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Proposition 4.1 Let C be as assumed in Section 4.1.1. Then the minimizer of Gn,C is
given by

vn+1 := (Id− PαC)(vn +K∗f −K∗Kvn) . (4.5)

We mentioned above that (Combettes and Wajs, 2005) contains an extensive discussion,
including (not easily verifiable) conditions that ensure strong convergence for an iteration
of type (4.5). However, the full generality of (Combettes and Wajs, 2005) makes it less
easy to read if one is mainly interested in the special case discussed here. Since the
iteration is very similar to the one in (Daubechies et al., 2004), a very similar strategy for
the proof of convergence holds as well. It can be retraced in (Daubechies et al., 2007) that
up to strong convergence the techniques apply in almost the same way (weak convergence
is achieved by applying Opial’s Theorem, see (Opial, 1967)). In order to achieve norm
convergence, we have to pay more attention to the structure of C, however.

One can argue that weak convergence suffices for practical purposes, because every
numerical computation is always finite–dimensional so that weak and strong (i.e. norm)
convergence of the vn are equivalent. However, it is often useful to establish norm conver-
gence for the infinite dimensional Hilbert space as well, since this then implies that the rate
of convergence, and the other constants involved, do not “blow up” as the dimensionality
of the discretization increases.

To obtain norm convergence, we need to do some more work. It can be verified in
(Daubechies et al., 2007), that the have following facts :

• vn
weak−→ v̄, for n→∞,

• v̄ = v̄ +K∗f −K∗Kv̄ − PαC(v̄ +K∗f −K∗Kv̄),

• vn+1 = vn +K∗f −K∗Kvn − PαC(vn +K∗f −K∗Kvn),

• ‖vn+1 − vn‖ → 0, for n→∞.

Defining
un := vn − v̄ and w := v̄ +K∗f −K∗Kv̄, (4.6)

we can recast the facts as follows:

un
weak−→ 0, for n→∞

‖PαC(v)− PαC(w + un −K∗Kun)−K∗Kun‖ → 0, for n→∞ .

We can then apply, without any change, Lemmas 3.15, 3.17 of (Daubechies et al., 2004),
leading to

‖K∗Kun‖ → 0, for n→∞,
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so that we obtain the equivalent formulation

un
weak−→ 0, for n→∞

‖PαC(w)− PαC(w + un)‖ → 0, for n→∞.
(4.7)

To obtain norm convergence of the vn, we must establish ‖un‖ → 0. For general convex
sets C the conditions (4.7), where α > 0 and w ∈ H are arbitrary (but fixed) actually do
not imply norm convergence of the un to 0. Abstract sufficient and necessary conditions
for norm convergence are given in (Combettes and Wajs, 2005); the following theorem
(for a proof see (Daubechies et al., 2007)) gives a more concrete restriction on C under
which we can establish norm convergence.

Theorem 4.2 Suppose un
weak−→ 0 and ‖PαC(w) − PαC(w + un)‖ → 0. Moreover, assume

that un is orthogonal to w, PC(w). If for some sequence γn (with γn →∞) the convex set
C satisfies γnun ∈ C then ‖un‖ → 0.

Unfortunately, this theorem is not sufficiently strong to be applied to the BV –functional
of Example 2, above. Without going in full detail, we sketch here how it (just) falls short.

The set C in Example 2 is (loosely speaking) the set of all divergences of 2-dim. fields
that are uniformly bounded by 1. It contains, in particular, the functions

hn(x, y) :=
√

2π(|n1|+ |n2|)e2πi(n1x+n2y)

= −idiv

(
1√
2
sign(n1)e

2πi(n1x+n2y),
1√
2
sign(n2)e

2πi(n1x+n2y)

)
,

where |n1|+ |n2| 6= 0. Because C is closed and convex, it also contains all the∑
n∈Z2

αnhn ,

with
∑

n∈Z2 αn = 1. Suppose now (just for the sake of simplifying the argument, which
can also be made, a bit more lengthily, without this assumption) that

‖PC(un)‖ → 0 as n→∞ ,

i.e. that the condition

‖PαC(w)− PαC(w + un)‖ → 0 as n→∞

holds true for w = 0. That would mean that, for all g ∈ C

lim
n→∞

〈un − PC(un), g − PC(un)〉

= lim
n→∞

〈un, g〉+ ‖PC(un)‖2 − 〈un, PC(un)〉 − 〈PC(un), g〉

= lim
n→∞

〈un, g〉 ,
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which implies that limn→∞〈un, g〉 is nonpositive. Since the same is true for −g ∈ C, if
follows that limn→∞〈un, g〉 = 0 for all g ∈ C. Consequently, 〈un, hk〉 → 0 as n → ∞, or
even, for all sequences (αk)k∈Z2 with

∑
k∈Z2 αk = 1, αk ∈ [0, 1] ∀k,∑

k

αk(|k1|+ |k2|)〈un, ek〉 → 0 as n→∞ ,

where ek(x, y) = e2πi(k1x+k2y). This just misses ensuring that∑
k

|〈un, ek〉|2 → 0 as n→∞ .

This concludes our theoretical analysis of our first case described in the introduction, i.e.
the case where J(f) in (4.1) is convex.

4.3 Numerical Illustrations

4.3.1 Iterative algorithm for PDE–based deblurring and denoising

In the framework of (Rudin and Osher, 1994), the edge-preserving energy functional is of
the form

F(v) = ‖f −Kv‖2
L2(Ω) + 2α

∫
Ω

φ(∇f)dx ; (4.8)

where the potential φ : R2 → R is typically a positive continuous function, with at most
linear growth at infinity. Convex examples include (note that, only for illustration reasons,
we also give examples beyond the one–homogeneous case)

• φ(ξ) = |ξ| (the total variation minimization (Rudin et al., 1992), (Rudin and Osher,
1994)),

• φ(ξ) = |ξ1|+ |ξ2|,

• φ(ξ) =
√

1 + |ξ|2 (the function of minimal surfaces (Aubert and Vese, 1997), (Vese,
2001)),

• φ(ξ) = log cosh(1 + |ξ|2), or

• φ(ξ) =

{
1
2
|ξ|2 if |ξ| ≤ 1
|ξ| − 1

2
if |ξ| ≥ 1

(used in (Demengel and Temam, 1984), (Chambolle

and Lions, 1997)).

In the non-convex case, examples of the potential φ are

• φ(ξ) = |ξ|p
1+|ξ|p or
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1

60

0 0 0 0 0 0.25 0 0 0 0 0
0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0 0
0 0.25 0.5 1 1 1 1 1 0.5 0.25 0
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.5 1 1 1 1 1 1 1 0.5 0

0.25 0.5 1 1 1 1 1 1 1 0.5 0.25
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.25 0.5 1 1 1 1 1 0.5 0.25 0
0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0 0
0 0 0 0 0 0.25 0 0 0 0 0

Table 3: Spatial discretization of the blur operator K.

• φ(ξ) = log(1 + |ξ|p), with p = 1 or p = 2 for instance, see (Geman and Geman,
1984), (Geman and Reynolds, 1992), Perona-Malik (Perona and Malik, 1990), and
more recently (Aubert and Vese, 1997).

Let us now restrict again to the one–homogeneous case and assume in addition that φ
is differentiable. Then the Euler-Lagrange equation associated with the minimization
problem (4.8), that must be satisfied by a minimizer v, if such a minimizer exists, is given
by

K∗Kv −K∗f = αdiv
(
∇ξφ(∇v)

)
, in Ω, (4.9)

where ∇φξ = (φξ1 , φξ2), and with the boundary conditions ∇ξφ(∇v) ·~n = 0 on ∂Ω, where
~n is the unit exterior normal to the boundary. In the case α > 0, the partial differential
equation (4.9) is non-linear for the examples of potential φ given above. Moreover, the
presence of the term K∗Kf makes it computationally expensive and numerically nontriv-
ial.

In order to overcome these problems, we propose here to not directly solve (4.9) nu-
merically, but to apply the surrogate functional algorithm (see (Daubechies et al., 2004),
or the previous sections), i.e. we construct a sequence of iterates vn that approximate v,
without having to invert K∗K at every iteration. On the other hand, the direct imple-
mentation of the projection PαC associated to our minimization is rather complicated; in
this case we prefer to avoid it by switching to an expression based on the Euler-Lagrange
equation. The total iteration goes thus as follows: start with an initial v0; find vn, n > 0
as a minimizer of the surrogate functionals

Gn−1(vn) = ‖f−Kvn‖2
L2(Ω)−‖Kvn−Kvn−1‖2

L2(Ω)+‖vn−vn−1‖2
L2(Ω)+2α

∫
Ω

φ(∇vn), (4.10)

where we have assumed that ‖K∗K‖ < 1. The associated Euler-Lagrange equation in vn,
now easily solved in practice, is:

vn = vn−1 +K∗v −K∗Kvn−1 + αdiv
(
∇ξφ(∇vn)

)
, (4.11)
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Figure 10: Top left: original image. Top right: blurred version.

together with the same boundary conditions. One then simply carries out this iterative
algorithm to find (an approximation to) desired minimizer.

4.3.2 Comparison of the iteration schemes with Besov and BV constraints

In order to illustrate the capabilities and differences with respect to reconstruction quality
and computational cost, we present some numerical results of the Besov (wavelet frame-
work) and the BV approach. We assume that the linear degradation model f = Kv + e,
where f is the given data, as a square integrable function in L2(Ω), v is the unknown true
image, e is additive noise of zero mean. The operator K : L2(Ω) → L2(Ω) models a linear
and continuous degradation operator, by a convolution with a Gaussian kernel.

In the first approach, we have chosen a wavelet frame that is simply given by a trans-
lation invariant wavelet system and have applied the iterative deconvolution scheme of
Section 2 (see also (Daubechies et al., 2004; Daubechies and Teschke, 2004, 2005)). As
the example image we consider a fingerprint and its blurred version, see Figure 10. The
results obtained with iteration from the previous section are visualized in Figure 11 and
the convergence rates are given in Table 4. The blur operator T used in the experiments
has the discrete spatial representation given in Table 3.

The blur convolution is easily implemented as a multiplication in Fourier domain, which
means that we switch between the wavelet and Fourier representation at every step of the
iteration process.

Next, we present numerical results for the second (PDE) approach. In Figure 12 we
show the results of the iterative algorithm (4.11) on the same blurred and noisy image.
For comparison with the purely PDE–based method (without the iterative approach cor-
responding to surrogate functionals) we show in Figure 13 the end results of methods
(4.11) and (4.9); they look very similar. Table 5 lists the CPU time and the relative
RMSE for the first 5000 iterations of both methods, illustrating that the surrogate func-
tional method produces a better error decay for the same amount of CPU time. (These
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Figure 11: Top left to bottom right: blurred image, several iterates using the wavelets
scheme: 1st, 100th, 500th, 1000th, 2000th, 3000th, 4000th.

two computations were carried out on the same machine; note that the numerical results
in Table 11 were obtained on a different computer and should thus not be compared with
this Table.)
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Figure 12: Top left to bottom right: blurred image, several iterates using the surro-
gate functional iteration (4.11) with φ(ξ) =

√
ε+ |ξ|2 (total variation minimization with

regularization): 1st, 100th, 500th, 1000th, 2000th, 3000th, 4000th.

Figure 13: Deblurring results obtained using the models (4.11) left and (4.9) right, with
φ(ξ) =

√
ε+ |ξ|2 (total variation minimization with regularization).
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ITER CPU RMSE ‖vn − vorig‖/‖vorig‖
1 0.28600841 0.17322202591876

100 11.0832407 0.16619377802673
200 21.3800888 0.16053661204032
350 36.9959693 0.15341521024097
500 52.2572860 0.14754897184399
1000 104.031806 0.13476786059559
2000 207.406313 0.12458884053496
3000 312.880765 0.11962522471006
4000 419.051499 0.11633033283685
5000 524.362921 0.11388107705039

Table 4: Convergence rates for the wavelet frame–based shrinkage algorithm. We give the
number of iterations, the CPU time and the corresponding relative RMSE, applied to the
blurry fingerprint image.
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With surrogate functionals
ITER CPU RMSE‖vn − vorig‖/‖vorig‖

1 0 0.256365806
100 53.7299995 0.22643654
200 107.440002 0.213100523
350 188.470001 0.19897379
500 268.699982 0.188747868
1000 542.880005 0.168787047
2000 1085.82996 0.153525516
3000 1625.08997 0.148305818
4000 2151.29004 0.146324202
5000 2684.62988 0.145639017

Without surrogate functionals
ITER CPU RMSE‖vn − vorig‖/‖vorig‖

1 0.400000036 0.257728785
100 55.1000023 0.236117765
200 109.139999 0.226667866
350 191.959991 0.216331303
500 276.119995 0.208168939
1000 551.720032 0.189164072
2000 1105.32996 0.169159457
3000 1666.43994 0.159271181
4000 2234.70996 0.15375042
5000 2790.92993 0.150457606

Table 5: Comparison of the convergence rates for PDE–based approach: for both al-
gorithms (the classical PDE iteration and the Gaussian surrogate functional iteration),
we give the number of iterations, the CPU time and the corresponding relative RMSE,
applied to the blurry fingerprint image, using the total variation minimization. We no-
tice that the new method using the surrogate functionals converges faster to the restored
image: the relative RMSE ‖vn − vorig‖/‖vorig‖ hits the value 0.15 at 2.500 iterations in-
stead of 5.000, and uses a CPU time of ∼ 1300 instead of 2790; there seems thus to be a
speed–up factor 2.
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5 Hybrid wavelet–PDE image restoration schemes

In Section 2, we have constructed a wavelet–based scheme that solves the variational
problem (2.3),

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) ,

in a numerically very efficient way. As discussed in Section 2.4, non–redundant wavelet
filtering often creates artifacts that manifest themselves as ringing and edge blurring. The
suggested way to reduce these artifacts while keeping the computational cost at some very
low level was given by introducing redundant wavelet systems. Another way of keeping
sharp edges, as already mentioned in Section 2.1, is to model the ‘cartoon’ part of the
image as a function of bounded variation. Up to the linear operator K, this coincides
with (2.2),

inf
(v,u)

Ef (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|BV (Ω) (5.1)

and was under consideration in (Vese and Osher, 2003; Osher et al., 2003). But instead of
solving (5.1) in a pure PDE fashion (as done in (Vese and Osher, 2003; Osher et al., 2003)),
we propose a combined wavelet–PDE scheme, that keeps the advantage of wavelets to well
represent oscillatory patterns and simple minimization, with the advantage of non–linear
PDE formulation, that keeps sharp edges and representation of functions of bounded
variation.

In the proposed alternating scheme, the minimization in u will be solved in a PDE
function, by finite differences, while the minimization in v will be solved in a wavelets
function. The data function f is known in the spatial domain f(x1, x2) ≈ fi,j, but also in
the frequency domain, by its wavelets coefficients (fλ)λ∈J . Let us assume K = I for the
moment. Keeping v = vn fixed, n ≥ 0, we compute u = un minimizing∫

Ω

|(f − v)− u|2dx+ 2α

∫
Ω

|∇u|dx,

solving the Euler-Lagrange equation by finite differences

u = (f − v) + αdiv
( ∇u
|∇u|

)
.

Now keep u = un fixed, compute its wavelet coefficients (uλ)λ∈J , and compute v = vn+1

minimizing with respect to v∑
λ∈J

(
|(fλ − uλ)− vλ|2 + γ2−2|λ||vλ|2

)
.

This leads to decoupled one-dimensional minimizations, and gives the desired vn+1 = ṽγ,α

as before, from its wavelet coefficients vλ. Then the steps are repeated.
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5.1 Combined wavelet-PDE scheme in the presence of blur

Consider now the problem

inf
(v,u)

Gf (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|BV (Ω), (5.2)

in the combined wavelet-PDE scheme, and we would like to apply again the surrogate
functionals for the minimization.

One way to minimize this, and avoiding to invert operators involving K∗K at ev-
ery iteration, is to consider the unknown pair (v, u) and to directly apply the surrogate
functionals approximation: knowing (vn−1, un−1), find (vn, un) minimizer of

Gf,n(vn, un) = ‖f −K(un + vn)‖2
L2(Ω) + γ‖vn‖2

H−1(Ω) + 2α|un|BV (Ω)

−‖K(un + vn)−K(un−1 + vn−1)‖2
L2(Ω) + µ‖(un + vn)− (un−1 + vn−1)‖2

L2(Ω)

where µ is such that ‖K∗K‖ ≤ µ.

5.1.1 Characterization of minimizers

Theoretically, we consider slightly modified Ff (v, u) and Ef (v, u), as

Gf (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖H−1(Ω) + 2α|u|B(Ω), (5.3)

where |u|B(Ω) is one of the semi-norms |u|BV (Ω) or |u|B1
1(L1(Ω)). In this slightly modified

case, we have the following characterization of minimizers (inspired from (Meyer, 2002; Le
and Vese, 2005)): let f ∈ L2(Ω), u ∈ B(Ω) ⊂ L2(Ω), v ∈ L2(Ω) ∩H−1(Ω). We introduce
the texture norm

Definition 5.1 Given w ∈ L2(Ω), γ, α > 0, define

‖w‖∗ = sup
g∈B(Ω),h∈H−1(Ω)∩L2(Ω)

{ (w, g + h)

2α|g|B(Ω) + γ‖h‖H−1(Ω)

, 2α|g|B(Ω) + γ‖h‖H−1(Ω) 6= 0
}
,

where (·, ·) is the L2(Ω) inner product.

Then, we can show the following characterization of minimizers for the two models:

Theorem 5.1 Let w = f −K(u+ v). Then

1. ‖K∗f‖∗ ≤ 1
2

if and only if (v, u) = (0, 0) is a minimizer of (5.3).
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2. Suppose ‖K∗f‖∗ > 1
2
. Then (v, u) is a minimizer of (5.3) if and only if

‖K∗w‖∗ =
1

2
and (K∗w, u+ v) =

1

2
(2α|u|B(Ω) + γ‖v‖H−1(Ω)). (5.4)

Proof. If the model (5.3) yields minimizers u = 0 and v = 0, then for any g ∈ B(Ω), h ∈
H−1(Ω) ∩ L2(Ω),

‖f‖2
L2(Ω) ≤ 2α|g|B(Ω) + ‖f −K(g + h)‖2

L2(Ω) + γ‖h‖H−1(Ω). (5.5)

Substituting in (5.5) g by εg and h by εh, and taking ε→ 0+, we obtain

|(K∗f, g + h)| ≤ 1

2
(2α|g|B(Ω) + γ‖h‖H−1(Ω)). (5.6)

By the definition of ‖.‖∗, therefore ‖K∗f‖∗ ≤ 1
2
.

For the converse property in 1., assume that ‖K∗f‖∗ ≤ 1
2
. Then, for any g ∈ B(Ω) and

h ∈ H−1(Ω) ∩ L2(Ω), with 2α|g|B(Ω) + γ‖h‖H−1(Ω) 6= 0, we have

(K∗f, g + h) ≤ (2α|g|B(Ω) + γ‖h‖H−1(Ω))‖f‖∗ ≤
1

2
(2α|g|B(Ω) + γ‖h‖H−1(Ω)).

We also have

2α|g|B(Ω) + ‖f −K(g + h)‖2
L2(Ω) + γ‖h‖H−1(Ω)

= 2α|g|B(Ω) + ‖f‖2
L2(Ω) − 2(K∗f, g + h) + ‖K(g + h)‖2

L2(Ω) + γ‖h‖H−1(Ω)

≥ 2α|g|B(Ω) + ‖f‖2
L2(Ω) − (2α|g|B(Ω) + γ‖h‖H−1(Ω)) + ‖K(g + h)‖2

L2(Ω) + γ‖h‖H−1(Ω)

= ‖f‖2
L2(Ω) + ‖K(g + h)‖2

L2(Ω) ≥ ‖f‖2
L2(Ω) = Gf (0, 0).

Therefore, u = 0 and v = 0 gives the optimal decomposition in this case.

Now suppose ‖K∗f‖∗ > 1
2
. Let (v, u) be an optimal decomposition given by (5.3). We

have u 6≡ 0 or v 6≡ 0. For g ∈ B(Ω), h ∈ H−1(Ω) ∩ L2(Ω), and ε ∈ R,

Gf (v + εh, u+ εg) = 2α|u+ εg|B(Ω) + ‖w − εK(g + h)‖2
L2(Ω) + γ‖v + εh‖H−1(Ω)

≥ 2α|u|B(Ω) + ‖w‖2
L2(Ω) + γ‖v‖H−1(Ω), (5.7)

and thus, by triangle inequality,

2α|u|B(Ω) + ‖w‖2
L2(Ω) + γ‖v‖H−1(Ω)

≤ 2α|u|B(Ω) + 2α|ε||g|B(Ω) + ‖w − εK(g + h)‖2
L2(Ω) + γ

(
‖v‖H−1(Ω) + |ε|‖h‖H−1(Ω)

)
.

Therefore,

‖w‖2
L2(Ω) ≤ 2α|ε||g|B(Ω) + ‖w − εK(g + h)‖2

L2(Ω) + γ|ε|‖h‖H−1(Ω),
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and thus,

‖w‖2
L2(Ω) ≤ 2α|ε||g|B(Ω)+

(
‖w‖2

L2(Ω) − 2ε(K∗w, g + h) + ε2‖K(g + h)‖2
L2(Ω)

)
+γ|ε‖|h‖H−1(Ω) ,

yielding

2α|ε||g|B(Ω) − 2ε(K∗w, g + h) + ε2‖K(g + h)‖2
L2(Ω) + γ|ε‖|h‖H−1(Ω) ≥ 0.

Dividing both sides of the latter equation by ε > 0, we obtain

−2(K∗w, g + h) + ε‖K(g + h)‖2
L2(Ω) + 2α|g|B(Ω) + γ‖h‖H−1(Ω) ≥ 0.

Taking ε→ 0, yields

2(K∗w, g + h) ≤ 2α|g|B(Ω) + γ‖h‖H−1(Ω), for all g ∈ B(Ω), h ∈ H−1(Ω) ∩ L2(Ω)

and thus,

‖K∗w‖∗ ≤
1

2
. (5.8)

If we take −1 < ε < 0, and replace (h, g) with (v, u) in equation (5.7), then (5.7) implies

2ε(K∗w, u+ v) ≤ ε
(
2α|u|B(Ω) + γ‖v‖H−1(Ω)

)
+ ε2‖K(u+ v)‖2

L2(Ω). (5.9)

Dividing again by ε < 0, we obtain 2(K∗w, u+ v) ≥
(
2α|u|B(Ω) + γ‖v‖H−1(Ω)

)
. Therefore

equality holds,

(K∗w, u+ v) =
1

2

(
2α|u|B(Ω) + γ‖v‖H−1(Ω)

)
, (5.10)

and (5.10) together with (5.8) implies ‖K∗w‖∗ = 1
2
.

Conversely, if (5.4) holds for some (v, u) and ‖K∗w‖∗ = 1
2
, then for any g ∈ B(Ω),

h ∈ H−1(Ω) ∩ L2(Ω),

2α|u+ εg|B(Ω) + ‖w − εK(g + h)‖2
L2

+ γ‖v + εh‖H−1(Ω)

≥ 2(K∗w, u+ εg + v + εh) + ‖w‖2
L2(Ω) − 2ε(K∗w, g + h) + ε2‖K(g + h)‖2

L2(Ω)

= 2(K∗w, u+ v) + ‖w‖2
L2(Ω) + ε2‖K(g + h)‖2

L2(Ω)

= 2α|u|B(Ω) + γ‖v‖H−1(Ω) + ‖w‖2
L2(Ω) + ε2‖K(g + h)‖2

L2(Ω)

≥ 2α|u|B(Ω) + γ‖v‖H−1(Ω) + ‖w‖2
L2(Ω) = Gf (v, u) .

Therefore, (v, u) is an optimal decomposition and minimizer of (5.3). �
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5.2 Numerical Illustration

We present in Figure 14 a numerical result obtained with the proposed hybrid approach
for the case K = I. The proposed scheme is numerically stable and faster than the
method proposed in (Osher et al., 2003), where the minimization was solved by a 4th-
order non-linear PDE with restrictive CFL condition. The method is also simpler than
the method from (Vese and Osher, 2003) with p = 2. As expected, we can see that the
proposed method gives better cartoon and texture separation than by the ROF method
(Rudin et al., 1992) (corresponding to γ = 0, v = 0).
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