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Abstract

A new method is presented for the suppression of intermittent clutter echoes
in radar wind profilers. This clutter type is a significant problem during the sea-
sonal bird migration and often results in large discrepancies between profiler wind
measurements and independent reference data. The technique presented makes use
of a discrete Gabor frame expansion of the coherently averaged time series data in
combination with a statistical filtering approach to exploit the different signal char-
acteristics between signal and clutter. The rationale of this algorithm is outlined
and the mathematical methods used are presented in due detail. A first test using
data obtained with an operational 482 MHz wind profiler indicates that the method
outperforms the previously used clutter suppression algorithm.
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1. Introduction
Radar wind profilers (RWP) were developed from MST-Radars (Van Zandt 2000) and have

meanwhile become standard instruments for measuring wind velocities in the atmosphere.
Overviews of the technical and scientific aspects of RWP including its signal processing have
been provided, among others, by Gage (1990); Röttger and Larsen (1990); Doviak and Zrnic
(1993) and Muschinski (2004). Especially the routine application by weather services and the
assimilation of the data in Numerical Weather Prediction Models is an indicator for the degree
of maturation that this technology has achieved, see e.g. Monna and Chadwick (1998); Bouttier
(2001); Benjamin et al. (2004b); St-James and Laroche (2005); Ishihara et al. (2006). However,
it is a matter of fact that sometimes large and unacceptable differences are observed between
the profiler data and independent reference measurements. In many cases these differences are
clearly attributable to either clutter echoes or Radio Frequency interference. These spurious
signals are often easily discernible in the Doppler spectrum by human experts, but not always
adequately handled by the automatic processing. For that reason, research on improvements in
wind profiler signal processing has remained a very active field over the last decade.

In this paper, we deal with so-called intermittent clutter and propose a new filtering algo-
rithm for the detection and suppression of these clutter signals in the profiler raw data. Of
particular importance are intermittent clutter echoes, which are caused by migrating birds in
Spring and Fall. It is well known, that birds are effective targets for a wide range of radars
from X-band to UHF (Vaughn 1985; Bruderer 1997a). In fact, most of the knowledge about
migrating birds come from radar observations. That concerns in particular their flight behavior
under the influence of environmental factors (Bruderer 1997b). Radar ornithology is meanwhile
a mature field and it is therefore no surprise, that birds can also be detected by the the sensitive
radar systems used for wind profiling. The susceptibility ofwind profiler radar systems to bird
echoes depends primarily on wavelength and antenna characteristics. It mostly affects L-Band
and UHF-systems, that is Boundary Layer profilers and Tropospheric profilers, as discussed
in Wilczak et al. (1995). Intermittent clutter is of course also an issue for the new generation
of imaging radar systems, like the Turbulent Eddy Profiler (Cheong et al. 2006). We mention
in passing that other remote sensing instruments used in Meteorology are also affected by mi-
grating birds (Mastrantonio et al. 1999; Gauthreaux and Belser 1998; Gauthreaux et al. 1998;
Zhang et al. 2005; Liu et al. 2005).

Intermittent clutter echoes caused by aircraft were already mentioned by Hogg et al. (1983),
and a few years later it become obvious that especially echoes from migrating birds can be a
serious issue in wind profiling (Ecklund et al. 1990; Barth etal. 1994). If present, such spurious
signals can cause a significant deterioration of the qualityof the derived winds. To give an ex-
ample, the investigation of low-level jets using RWP data ishampered by bird migration clutter
(Stensrud 1996). This makes it necessary to either use extensive quality control procedures to
identify and skip contaminated data (Daniel et al. 1999; Song et al. 2005) or to limit the studies
to periods where bird migration is negligible (Anderson andArritt 2001). Many other investiga-
tions using RWP data have mentioned the bird contamination problem, e.g. Ralph et al. (1998);
Locatelli et al. (1998); Parker and Johnson (2000); Lundquist (2003). While the need for an
extensive manual data quality control and cleaning might beacceptable for research activities,
it is surely not feasible in any operational setting. Nevertheless it is mandatory to avoid the
assimilation of bird contaminated profiler wind data, as this can have significant effects on the
quality of the forecasts (Semple 2005). Due to the nature of the problem, a bird migration check
at the operational center itself is not the best approach (Benjamin et al. 2004a). While current
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state-of-the art profilers nowadays run more or less sophisticated algorithms on site to reduce
bird contamination (Merritt 1995; Jordan et al. 1997; Ishihara et al. 2006), practical experience
supports the statement that the problem has not been fully resolved.

The problem of bird-contamination is well-known (Wilczak et al. 1995; Engelbart et al.
1998) and it has been a topic for research in RWP signal processing since. The first successful
attempt to reduce bird contamination was made by Merritt (1995), who suggested a selective
averaging method of the individual Doppler spectra based ona statistical criterion. The same
method has also been applied off-line to averaged spectra, when data with higher resolution are
not available (Pekour and Coulter 1999). A similar approachwas taken by Weber (2005), who
used neural networks for a classification of contaminated single spectra, followed by a selective
averaging. Other proposals have concentrated on modified peak detection in the Doppler spec-
trum to address spurious flier returns, among other clutter types (Griesser and Richner 1998;
Cornman et al. 1998; Morse et al. 2002; Weber et al. 2004). Thedisadvantage of all these
methods is that the mitigation processing builds upon the Doppler spectra (either before or after
spectral integration). Given the highly non-stationary characteristics of the intermittent clutter
signal, it is necessary to deal with the bird problem at the earliest possible stage of RWP signal
processing, that is before the Doppler spectrum is estimated. Fourier methods are generally in-
adequate for nonstationary signals, so it seems to be prudent to address the bird contamination
problem before any Fourier transform is made. In other words, the necessary nonlinear filtering
has to be performed in the time domain. This approach was firstsuggested by Jordan et al.
(1997) and further by Lehmann and Teschke (2001), who suggested wavelet decomposition and
wavelet coefficient thresholding, to remove the clutter part of the signal. However, the a-priori
unclear choice of the mother wavelet and - at least for the dyadic wavelet transform - a sub-
optimal signal separation in the wavelet domain, especially near zero Doppler shift, makes an
efficient separation of clutter and signal difficult.

Ideally one would like to have a intermittent clutter suppression algorithm that reduces the
clutter part of the signal as best as possible, given the sampled data and that quantifies its
degree of contamination, that is to provide some measure of clutter energy for quality control
purposes. Furthermore the algorithm must not degrade both data quality and availability in the
no-clutter case, but it should perform as well as the proven standard processing methods. This
requirement is more stringent than it may appear at first glance. In this paper, we propose a
new signal-clutter separation method that attempts to meetthese objectives. It is based on a
redundant frame decomposition of the time series followed by the statistical filtering approach
suggested by Merritt (1995).

The paper is organized as follows. Section 2 gives an overview of RWP signal character-
istics and signal processing and identifies shortcomings ofthe currently used methods when
intermittent clutter signals are present. Section 3 reviews basic results of the mathematical the-
ory of frames, which deals with linear discrete signal representations. The goal is here to find a
signal representation, that achieves optimal separation between the atmospheric and the clutter
part of the signal. This is achieved by the discrete Gabor representation, which is discussed
next. Section 4 focuses on a statistical approach to objectively identify the atmospheric signal
component, based on well-justified statistical assumptions. A comparison of the new algorithm
with the previously used signal processing techniques is shown in section 5. The data used were
obtained during routine operation of a 482 MHz wind profiler radar of the Deutscher Wetterdi-
enst at Bayreuth, Germany in the fall of 2005. Finally, a summary and conclusions are given in
Section 6.
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2. RWP signal characteristics
a. General properties of the received signal

The relationship between the signal received by the radar and the scattering medium is
the topic of radar instrument theory, which basically describes how atmospheric properties are
mapped to the measurable function at the radar receiver output (Woodman 1991; Muschinski
2004). It is known that both models for the scattering processes and technical properties of the
radar system need to be considered here. This task is formidable and requires simplifications.
However, for the problem at hand it is not required to consider such theories in detail, because
we are only interested in some rather general properties of the received signal, like statistical
stationarity. For a pulsed RWP, the received signal at the antenna output has the following
well-known properties:

1. Continuous real-valued random voltage signal: Every measurable physical quantity is
real. The randomness is the result of the random nature of thescattering process.

2. Intrinsically nonstationary: This is due to the impulsive character of the transmitted signal
and the inhomogeneous vertical structure of the atmosphere.

3. Multi-component: Beside the ubiquitous noise, there maybe signal contributions from
several independent scattering processes, like Bragg scattering at fluctuations of the re-
fractive index, Rayleigh scattering at precipitation and scattering at various clutter targets.

4. Narrowband: The frequency spectrum is bandlimited, witha width much smaller than the
transmit signals carrier frequency.

5. Large dynamic range: The signal varies easily over many orders of magnitude, which is
typical for all radar systems.

Before the data are available for digital signal processing, the radar receiver performs the fol-
lowing pre-processing steps: Range-gate sampling, quadrature-demodulation and matched fil-
tering. This is generic to all RWP receivers, both analog anddigital implementations. The
digital receiver output signal preserves the properties 3-5, provided processing is linear (e.g. no
saturation effects due to hardware limitations). However,properties 1 and 2 are modified: Due
to pulse repetition, the nonstationary continuous signal becomes quasi-periodic. Uniform sam-
pling for N fixed heights at multiples of the radar inter-pulse period then generates N stationary
sequences, provided the scattering medium at a fixed height does not change its properties sig-
nificantly over the length of the time series (Woodman 1991).This is valid for atmospheric
scattering, ground clutter and noise and one of the basic assumptions of signal processing for
atmospheric radars (Keeler and Passarelli 1990). Furthermore, the quadrature demodulation
step leads to a complex baseband representation of the narrowband signal, where the signal is
described through the time series of its in-phase (I) and quadrature-phase (Q) components.

b. Classical signal model and its limitations

The classical RWP signal model assumption is that the demodulated voltage sequence at the
receiver output can be written as

S[k] = I[k]eiωk∆t + N [k], (1)
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whereI[k] ∼ N(0, σ2
I) andN [k] ∼ N(0, σ2

N) are independent complex zero-mean Gaussian
random vectors describing the atmospheric signal and the receiver noise, respectively (Zrnić
1979),∆t is the sampling interval of the sequence andω the mean Doppler frequency. Further-
moreI[k] is narrowband compared to the receiver bandwidth and|ω| ≤ π/∆t (Nyquist crite-
rion). BecauseS[k] is the result of the demodulation of a real valued zero-mean and stationary
Gaussian random process, the resulting Gaussian complex random process is also wide-sense
stationary and zero-mean. Furthermore, the sequence has a vanishing pseudo-covariance, that
is we haveE(S[k]S[l]) = 0. Such a process is usually called proper, circular or phase-invariant
(Neeser and Massey 1993). We will use this property later in connection with a moments theo-
rem for these processes (Reed 1962).

BecauseS[k] is Gaussian, it is completely characterized through its covariance matrixR
with entries

(R)k,l = Cov(S[k], S[l]) = E(S[k]S̄[l])

= E(I[k]Ī[l])eiω(k−l)∆t + E(N [k]N̄ [l])

= σ2
I̺[k − l]eiω(k−l)∆t + σ2

Nδk−l,0.

Furthermore, stationarity is assumed over typical dwell-times ofO(1 minute). Therefore we
get the following expression for the autocovariance function

ACov(k) = σ2
I̺[k]eiωk∆t + σ2

Nδk,0 = σ2ρ[k] , (2)

where we setσ2 = σ2
I + σ2

N. Finally, the autocorrelation function̺[k] is often assumed to
follow a Gaussian correlation model, which corresponds to aGaussian signal peak in the power
spectrum. If the spectral width of the signal isw, then we have (Zrnić 1979; Frehlich and
Yadlowsky 1994)

̺[k] = e−2π2w2k2∆t2 . (3)

Note that this Gaussian correlation model must not be confused with the characterization of the
random process as Gaussian, which covers a much wider class of signals. The assertions are
normally very well justified and therefore successfully used in simulations of the radar signal
(Zrnić 1975; Frehlich and Yadlowsky 1994; Muschinski et al. 1999).

In reality, however, there is often a third component contributing to the signal, namely clutter
(Muschinski et al. 2005), so that the signal model must be written as:

S[k] = I[k]eiωk∆t + N [k] + C[k] . (4)

Clutter is the totality of undesired echoes and interferingsignals, therefore it is impossible to
generalize the properties ofck. In the case of RWP, clutter includes in particular echoes from
airborne objects such as aircraft and birds and returns fromthe ground. Interfering signals may
be caused by other radio transmitters that operate in the RWPreceiver band. In the remainder
of the paper, we restrict ourselves to intermittent cluttersignals.

While the properties of the intermittent clutter componenthave not been systematically
investigated, it is instructive to take a look at a few examples. Such have been presented by
various authors: Wilczak et al. (1995) described the distinct characteristic of bird contaminated
I and Q data when seen in an A-scope display, but the shown timeseries taken with a 924 MHz
RWP is only 0.5 s long, which is too short to see its essential characteristics. Jordan et al. (1997)
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show an example of a 30 s long time series taken with a 915 MHz RWP during bird migration,
which exhibits a variation in the envelope of the signal due to modulation of signal amplitude
by the antenna beam pattern. Another example of intermittent clutter caused by airplanes and a
simple theoretical model is given by Boisse et al. (1999). The most distinct feature here is the
time-dependent amplitude of the signal. A 19 s time series ofa 482 MHz RWP containing an
airplane echo is discussed in Muschinski et al. (2005).

In the fall of 2005, time series data of the coherently integrated I/Q signal of the RWP at
Bayreuth, Germany were saved in the wind low mode to get a unique dataset for the investi-
gation of bird migration. For October 13, it was subjectively judged that the data showed a
maximum of of bird echoes and we have therefore selected thisday for further investigation.
One particular dwell is shown in Figure 3. The time series hasa length of about 35 s and its
nonstationarity is striking.

When data containing intermittent clutter components are compared with uncontaminated
clear air signals (and possibly ground clutter, as in the example shown in Muschinski et al.
(2005)) it is very obvious, that the main difference is the transient character of the intermittent
clutter signal component. Adopting the definition used by Friedlander and Porat (1989), we
define a transient signal as a signal whose duration is short to the observation interval, in our
case the dwell time. This reflects the clear nonstationarityof the underlying scattering process.
It is not the sinusoidal signature that makes the difference, as a sufficiently strong clear air signal
also exhibits a sinusoidal nature (see Fig. 1 and 2 in Muschinski et al. (2005)) - the most distinct
property of intermittent clutter is the highly nonstationary character of the clutter component.

c. Consequences for signal processing

Signal processing is the art of extracting the maximum amount of information from a given
measurement. This obviously means that the general properties of the signal determine the opti-
mal mathematical processing methods. A stationary Gaussian stochastic process is without loss
of information described by its time-independent second-order properties, that is the autocovari-
ance function or, equivalently, the power spectrum. This assumption holds when equation (1) is
valid, and the classical way to process RWP data is then basedon a non-parametric estimation
of the power spectrum using a discrete Fourier transform of the (usually coherently integrated)
raw signal over the dwell-time. The power spectrum is usually called the Doppler spectrum.
Its first three moments are estimated after the noise contribution to the spectrum has been sub-
tracted, to describe the basic properties of the atmospheric signal (Woodman 1985). However,
we have seen that the clutter contribution can be highly nonstationary. If the signalsk contains
nonstationary components, then the Doppler spectrum is no longer an adequate representation
of the stochastic process because information regarding time dependency is already lost. So
it cannot be expected, that a successful intermittent clutter filtering strategy can be developed
based on the Doppler spectrum. Therefore it is tempting to try methods that were developed in
the framework of nonstationary signal processing. A necessary condition is obviously a sep-
aration ofC[k] from the stationary componentsI[k]eiωk∆t + N [k]. To achieve this, we look
for a representation of the signal in which we are able to discriminate between stationary and
nonstationary signal components. This is the goal put forward in Wilczak et al. (1995):Clearly,
a superior technique would be one in which the bird signal andatmospheric signal could be
differentiated from each other and processed independently.

So far, we have considered either a pure time representationof the signal - namely the
discrete time series or its complex Fourier transform as a pure frequency representation. Both
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are not optimal for transient phenomena, although they are complete representations of the
same information. Therefore we look for an intermediate representation that aims at the joint
time-frequency structure of the signal, so it needs to depend both on time and frequency. This
is the topic of the next section. If we are able to separate stationary and nonstationary signal
components in such a representation, then we might be able tosuppress the nonstationary clutter
part while leaving the stationary signal component essentially intact.

3. Signal representation via Gabor frame expansions
a. The windowed Fourier transform and the time-frequency plane

Let us consider continuous signals first, although in practice we are always given a dis-
cretized signal. A quite natural way to analyze a continuoussignal simultaneously in time and
frequency is provided by the windowed Fourier transform (WFT), see Gabor (1946); Daubechies
(1992); Kaiser (1994); Mallat (1999). It is essentially an extension of the well-known Fourier
transform, where time localization is achieved by a pre-windowing of the signal with a normal-
ized window functionh ∈ L

2(R). For any given functionS ∈ L
2(R), the WFT is defined

as

VhS(τ, ω) =

∫ +∞

−∞

S(t)h(t − τ)e−iωtdt . (5)

The operatorVh maps isometrically betweenL2(R) and L
2(R2), that is a one-dimensional

function/signal is with no loss of energy transformed via the WFT into a two-dimensional func-
tion depending on both timeτ and frequencyω. The(τ, ω)-plane is called the time-frequency
(TF) plane or briefly the phase space. This representation was suggested by Gabor (1946) to
illustrate thatboth time and frequency are legitimate references for describing a signal. The
squared modulus ofVhS is called the spectrogram, denoted by

PhS(τ, ω) = |VhS(τ, ω)|2 , (6)

and provides a measure for the energy of the signal in the time-frequency neighborhood of the
point (τ, ω) and thus insight about the time-frequency structure ofS aroundτ . However, due
to Heisenberg’s uncertainty relation, there is no arbitrary resolution in time and frequency si-
multaneously, i.e. a point-wise frequency description in time domain and a point-wise time
description in frequency domain is impossible. Formally, one considers in the uncertainty con-
text for some centralized signalh with ‖h‖ = 1, time and frequency variances

σ2
t =

∫ +∞

−∞

t2|h(t)|2dt σ2
ω =

1

2π

∫ +∞

−∞

ω2|ĥ(ω)|2dω (7)

for which the Heisenberg uncertainty relation yields

σt · σω ≥
1

2
. (8)

It can be shown, that equality in (8) is achieved whenh is a translated, modulated or scaled
version of the Gaussian function (equality means achievingoptimal resolution in the time-
frequency plane). Their time-frequency spread is visualized through a rectangle with widths
σt andσω in the TF-plane, this is called a Heisenberg box - see Figure 1. This optimality result
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shall be used later on when elaborating a discrete version of(5). Since the WFT is an isometry,
the inversion ofVh can be performed by its adjoint,

〈S, S〉L2(R) = ‖S‖2
L2(R) = ‖VhS‖

2
L2(R2) = 〈VhS, VhS〉L2(R2) = 〈V ∗

h VhS, S〉L2(R)

and therefore

S(t) = V ∗
h VhS(t) =

1

2π

∫∫

R2

VhS(τ, ω)h(t − τ)eiωtdωdτ . (9)

Hence, in the continuous setting we still have signal analysis, transform (5), and signal synthe-
sis, transform (9), in some straightforward way available and therefore time-frequency signal
filtering can be performed in three simple steps (see e.g. Hlawatsch and Boudreaux-Bartels
(1992)):

1. Analysis: Computation of the WFT using equation (5).

2. Modification of the WFT (e.g. time-dependent filtering).

3. Synthesis: Reconstruction of the modified signal using equation (9).

b. From windowed Fourier transform to Gabor frame expansions

For discrete signals, continuous transforms (5) and (9) arenot suitable and would create very
redundant representations of the signal. A first adjustmentcan be achieved when approximating
(5) and (9) by discrete sums. Discretizing (9) means taking only values of the WFT at some
discrete lattice in phase space. As it was pointed out, e.g. in Daubechies (1992), the sampling
density in phase space plays a significant role for the existence and stability of a reconstruction
formula, i.e. of a discrete version of (9).

Assume we are given some given discrete subsetΛ (to be specified below) of the TF-plane,
then a naive discrete version of the inversion formula (9) isgiven by

S(t)
?
≈

∑

(m,k)∈Λ

VhS(mT, kΩ)hm,k(t) with hm,k(t) = h(t − mT )eikΩt , (10)

where the parameterT controls the discrete linear shiftmT along the time axis andΩ the
sampling shiftkΩ in the frequency domain. In order to verify whether (10) indeed exhibits
a reconstruction formula, we first observe that for a family of elementary signals or so-called
atoms{hm,k}(m,k)∈Λ that is complete inL2(R) anyS ∈ L

2(R) can be represented by a linear
expansion of the form

S(t) =
∑

(m,k)∈Λ

am,khm,k(t) . (11)

But only in very specific cases, e.g. when{hm,k}(m,k)∈Λ forms a basis,

am,k = 〈S, hm,k〉 = VhS(mT, kΩ)

and therefore equality in (10) holds true,

S(t) =
∑

(m,k)∈Λ

〈S, hm,k〉hm,k(t) .
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In general, this is not the case, i.e. we only have

S(t) 6=
∑

(m,k)∈Λ

〈S, hm,k〉hm,k(t) = F ∗FS(t) ,

where the operatorF ∗F and its properties are briefly discussed in Appendix A. For a de-
tailed analysis and discussion on this subject we refer the interested reader to, e.g., Daubechies
(1992). To reconstructS (i.e. to invertF ∗F ), special properties onΛ and on the analyzing
atoms (the dual functions toh) are required. In what follows, we shall focus on the prac-
tically relevant biorthogonal case in which the construction of the analyzing atoms becomes
simple and, moreover, numerically stable. To this end, suppose there is some auxiliary family
gm,k(t) = g(t−mT )eikΩt (yet unknown) available that serves as a reservoir of analyzing atoms
used to compute the Gabor coefficientsam,k via (5),

am,k = 〈S, gm,k〉 = VgS(mT, kΩ) =

∫

S(t′)ḡm,k(t
′)dt′ . (12)

This approach was originally proposed by Bastiaans (1980).Inserting now (12) into (11) yields

S(t) =
∑

(m,k)∈Λ

∫

S(t′)ḡm,k(t
′)dt′hm,k(t) =

∫

S(t′)





∑

(m,k)∈Λ

ḡm,k(t
′)hm,k(t)



 dt′ .

Equality in the latter equation is assured as long as

∑

m,k

ḡm,k(t
′)hm,k(t) = δ(t − t′) . (13)

Condition (13) is called thebiorthogonality relationand restricts the choice ofg in dependence
on the preassigned functionh. The particular choice of the window functionh (e.g. its vari-
anceσh), the time shiftT and the frequency shiftΩ directly controls the existence, uniqueness,
convergence properties and the numerical stability of the Gabor expansion (11), which exists
for arbitrary signalsS(t) only if ΩT ≤ 2π; this is a frame theoretical result, see (Daubechies
1990; Mallat 1999). The physical meaning of this inequalityis nothing but the Nyquist sam-
pling criterion and represents the sampling density.ΩT = 2π is called critical sampling. This
was Gabor’s original suggestion, as he was aiming at elementary signalsconveying exactly one
datum or one ’quantum of information’. In other words, there was no interest in any redundancy.

Again this can be visualized in the TF plane: The time-frequency concentration of the dis-
crete elementary signals is represented by discrete rectangles with sidesσt andσω and area
one-half, centered at the point(mT, kΩ). At critical sampling, the rectangles do not overlap,
but fully cover the TF-plane. Gabor (1946) called this aninformation diagram. In his attempt to
derive a theory of communication, each area represents one elementary quantum of information
which Gabor proposed to call alogon. Although conceptually simple and appealing, the Gabor
expansion at minimal sampling density in the TF-plane (TΩ = 2π) has no nice mathematical
structure. In particular, it does not form a basis with the basis functions localized in time and
frequency. A relaxation of the equalityΩT = 2π is therefore required and generates a crucial
degree of freedom in the Gabor expansion, this at the expenseof oversampling and a possible
non-uniqueness. ForΩT > 2π the stability of the expansion is lost.
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c. Gabor frame expansions for discretely sampled signals

So far we have discretized (9) resulting in the Gabor frame expansion (11) forS ∈ L
2(R).

But when it comes to real applications, only finitely many discretely sampled values ofS are
available; namelyS[n] = S(m∆t). Therefore it becomes necessary to develop a fully discrete
concept for evaluating the Gabor coefficients (12). Moreover, the discrete subsetΛ in (11) is in
general infinite and hence also not suitable for a numerical implementation: the sum needs to
be appropriately truncated and, in addition, a discrete version of the dual functiong needs to be
derived.

In what follows, we illustrate how to proceed for discrete data S. For greater detail we
refer to the original paper by Wexler and Raz (1990) and Appendix B. Assume we are given
some discrete and finite time (periodic) signalS̃ with sampling pointsn = 0, . . . , N −1, that is
S̃[n] = S̃[n + N ]. We therefore have to periodize the analysis and synthesis windows as well,

h̃[n] =
∑

l

h[n + lN ] , g̃[n] =
∑

l

g[n + lN ].

Slightly abusing the notation, we omit the tilde denoting periodic (finite) functions in the fol-
lowing. The signalS can be discretely represented by

S[n] =

M−1
∑

m=0

K−1
∑

k=0

am,khm,k[n] , (14)

whereas the Gabor coefficients can be derived from

am,k =
N−1
∑

n=0

S[n]ḡm,k[n] . (15)

Introducing integers∆M and∆K and the toral componentWN = exp [2πi/N ], the discrete
analysis and synthesis windows can be rewritten as

hm,k[n] = h[n − m∆M ]W nk∆K
N , gm,k[n] = g[n − m∆M ]W nk∆K

N .

As can be seen,∆M denotes the time and∆K the frequency step size. They correspond toT
andΩ. In our setting they are constrained by∆M · M = ∆K · K = N . From this it follows
that∆M · ∆K ≤ N or M · K ≥ N . The reconstruction formula takes now the form

S[j] =

M−1
∑

m=0

K−1
∑

k=0

am,khm,k[j] =

N−1
∑

l=0

S[l]

M−1
∑

m=0

K−1
∑

k=0

ḡm,k[l]hm,k[j] ,

where we have assumed that the following discrete version ofbiorthogonality relation (13) for
the sequencesh andg is fulfilled,

M−1
∑

m=0

K−1
∑

k=0

ḡm,k[l]hm,k[j] = δl,j .

It can be shown (for a proof see Appendix B) that the biorthogonality relation is satisfied if

N−1
∑

j=0

h[j + qK]W−jpM
N ḡ[j] =

N

MK
δp,0δq,0 (16)
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for 0 ≤ p ≤ ∆M − 1 and0 ≤ q ≤ ∆K − 1. System (16) can be rewritten in matrix form:
Let v = (N/(MK), 0, . . . , 0)′ be a vector of length∆M∆K andg = (g[0], . . . , g[N − 1]) the
vector representing the discretely sampled dual frame, andletA be the matrix of size∆M∆K×
N with entriesA(p,q),j = h̄(j + qK)W jpM

N , then the dual frameg is the solution of the linear
system

Ag = v . (17)

For critical sampling∆M∆K = N , g is unique if matrixA is nonsingular. For oversampling
∆M∆K < N , system (17) is under-determined, and the solution is no longer unique and
therefore there is a variety of possible dual frame functionsg.

d. On the choice of the analysis and synthesis atom and the TF-plane lattice

As we have seen, there is a high degree of freedom when constructing a frame representation
of some signalS. In particular,

i) the choice of the synthesis windowh

ii) the choice of the time-frequency sampling gridΛ, i.e. the choice of∆M and∆K that
specifies the redundancy/non-redundancy and therewith thenon-uniqueness/uniqueness
of the Gabor frame expansion (14)

iii) the choice ofg in case of∆M∆K < N , i.e. in the oversampling situation one may add
further desirable constraints on the solutiong of system (17), e.g. minimum energy-norm.

These three aspects shall now be discussed:

At i): Any functionh of finite energy (square integrable) is appropriate. However, as mentioned
above, Heisenberg’s uncertainty relation (8) requires foroptimal time-frequency resolution a
Gaussian function. Therefore, we chose

h(t) = π−1/4σ
−1/2
h e−t2/(2σ2

h
), such that‖h‖ = 1 , (18)

where the scaling parameterσh (determined below) shall allow either a better resolution in time
or frequency. As we shall iniii) , the time-frequency localization properties of synthesisfunc-
tion h carry over to analysis functiong.

At ii) : The most important parameters that control the sampling density in the TF-plane are
∆K and∆M . Together with the specificationσh they fully determine (up to non-canonical
choices ofg) the discrete Gabor representation of some given function.In principle, the only
requirement is∆K∆M ≤ N . But because of Heisenberg’s principle, too densely sampling
(high redundancy) the TF-plane is not worth the trouble. More precisely, let∆t denote the
sampling size ofS, i.e. S[n] = S(n∆t), with total period ofS of N∆t = Td (often referred
to as the dwell time). Then, in the classical FFT context, thefrequencies are due to Nyquist’s
law automatically spaced with resolution1/T within [−1/2∆t, 1/2∆t]. Through the flexibility
of the Gabor representation, we may individually setup the time and frequency spacing. Let us
consider to this end the Heisenberg box size, i.e. the time and frequency variances (7) which
take for our particularh the formσ2

t = σ2
h/2 andσ2

ω = (2σ2
h)

−1. If we restrict the spacing of
the TF-plane to this box size (essentially smaller would produce an overlapping of the boxes),

12



i.e setting∆τ = ∆M∆t = σ2
t and∆ω = ∆K/T = σ2

ω, Heisenberg’s uncertainty principle (8)
and the solvability of (17) yields

N ≥ ∆M∆K ≥
1

4
N . (19)

The right inequality in (19), represents an upper sampling bound that prevents an unnecessary
Heisenberg box overlapping. If now an application requiresa time resolution∆τ in the Gabor
representation, we immediately obtain in the context of Heisenberg’s uncertainty principle the
optimal scaling factor for the synthesis (and therewith forthe analysis) atom,

σ2
h = 2∆τ ,

and a suggestion for the sampling density in time and frequency,

∆M = ⌊∆τ/∆t⌋ , ∆K ≥
N

4∆M
.

At iii) : In the oversampling situation (∆M∆K < N), the non-uniqueness can be used to
add desirable constraints to the solution, for example minimum energy. This was discussed in
greater detail in Qian and Chen (1993) and Qian et al. (1992):SinceA is underdetermined we
may rewrite (17) by applying the QR decomposition to its transposed form as

(

RT 0
)

QT g =
(

RT 0
)

(

x

y

)

= v

and thusx = (RT )−1v. SinceQQT = 1, it follows

g = Q

(

x

y

)

=
(

Qx Qy

)

(

x

y

)

= Qxx + Qyy .

Sinceh is in the range(Qx) and because range(Qx)⊥range(Qy), one hasQT
yh = 0 (which

is of interest below). Moreover, we observe that the analysis windowg is the sum of two
orthogonal vectors with‖g‖2 = ‖x‖2 + ‖y‖2. Due to (17),Qxx = Qx(RT )−1v, but Qyy

may depend on other constraints. When searching for the minimum norm solution, we simply
set‖Qyy‖2 = ‖y‖2 = 0 and obtain

g = Qxx = Qx(RT )−1v = gmin

which is nothing thangmin = AT (AAT )−1v. However, for a meaningful interpretation of the
Gabor expansion, we would prefer an analysis windowg which is locally concentrated in the
TF-plane. The design of such a functiong when the synthesis functionh and∆K and∆M are
given is a nontrivial problem and was also addressed in Qian and Chen (1993) and Qian et al.
(1992). The problem can be formulated as follows: given an optimally concentrated function
h (e.g. the preassigned synthesis function), find its biorthogonal functiong whose shape best
approximates time and frequency shifted versions ofh, i.e. minimize

E(g, a, b) =

∥

∥

∥

∥

g

‖g‖
− ha,b

∥

∥

∥

∥

2

= 2

(

1 −
1

‖g‖
ℜ〈g, ha,b〉

)

while Ag = v.
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For fixeda andb, the optimal vectory in the representation forg (x is still fixed through the
biorthogonality relation) is given by

y =
‖x‖2

ℜ〈Qxx, ha,b〉
QT

yha,b .

Choosingha,b = h yieldsQT
yha,b = 0 (see above) and thusy = 0 and consequently,g = gmin,

i.e. the shape ofgmin best approximates the shape ofh. Therefore, the TF-plane localization
properties ofh carry over tog in this case. But note, that in principle any target functionha,b is
allowed and thus there is a large variety of possible analysis atomsg.

e. Gabor representation of two examples

To illustrate the signal separation property of the discrete Gabor expansion for a single
dwell, we consider two examples of simulated and measured RWP data. The method of Zrnić
(1975) was used to simulate a signal in line with the classical signal model, which contains only
noise and a stationary atmospheric component. In the frequency domain, the atmospheric signal
peak is assumed to be a Gaussian centered atfd = ω/2π = −10.9s−1 and with a spectral width
of w = 0.9s−1. The discrete spectrogram of this signal is shown in Figure 2. The atmospheric
signal component is represented as a horizontal line (stationarity) centered at the prescribed
Doppler frequency. Noise is spread over the complete TF plane.

Now lets take a look at real time series data containing an additional intermittent clutter
component. This dataset is further discussed in section 5. The original I/Q data is shown in
Figure 3. Clearly, this time series is not stationary but contains transient components due to
migrating birds. Assuming that a time resolution ofO(1s) is sufficient to resolve these tran-
sients, we select a time resolution of about 0.5 s for the Gabor expansion. This corresponds
to a frequency resolution of about 2 Hz. An appropriate sampling density in the TF-plane is
given with∆M = 64 and∆K = 64. SettingM = 128 andK = 128, we get an oversampling
of factor 3.5; the optimal scaling is given byσ2

h ≈ 1. In contrast to the simulated case, the
spectrogram of the real signal shown in Figure 4 shows additional nonstationary signal compo-
nents, which are a typical signature of contamination by intermittent clutter. Taking a look at
the pure time representation of the signal it is difficult to identify the separate transients which
show up as maxima of the envelope of the I/Q signal. However, Figure 4 shows the same signal,
but this time its Gabor phase-space representation. This signal representation provides a far
better picture of the signal transients, even if the spectrogram shows only the modulus of the
Gabor coefficients, because the Gabor coefficients itself are complex. It becomes clear that the
time series is contaminated by three transitory bird-events. Two of them overlap in time and
can therefore not easily be distinguished in the time representation. All bird signals are much
stronger in amplitude than the atmospheric signal of interest. The latter can be seen as a line of
quasi-constant frequency centered at about a frequency of 3Hz. By comparing Figure 2 with
the real data shown in Figure 4, the goal of the filtering process becomes evident.

4. Filtering through the statistics of Gabor frame coefficients
a. Motivation for the statistical approach

With the tool of the Gabor representation at hand, the next step is to derive an appropriate
filtering strategy for removal of the transient clutter signals. Our intention is to use the available
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a-priori knowledge about the signal components (atmosphere, noise, clutter) to construct an
objective decision process aiming at a proper signal component separation.

It is well-justified that both the atmospheric and the noise signal component are station-
ary Gaussian random processes. The atmospheric signal has abounded spectral width much
smaller than Nyquist interval, whereas noise is white and spread over the full TF plane. Not
much is known in contrast about intermittent clutter, only the non-property that this signal com-
ponent is nonstationary over typical dwell-times. We make use of this a-priori information to
derive a filter that has a pass-characteristics for realizations of wide-sense stationary RP’s and a
stop-characteristics for all nonstationary processes. That is, signals looking like the simulated
example shown in Fig. 2 should not be affected by the filteringprocess. The goal is thus to
derive an objective procedure, that modifies the Gabor phasespace representation of signals in
such a way, that stationary Gaussian signal components are preserved.

One can imagine several strategies for implementing such a filter. For instance, this could
be based on image processing techniques or a fuzzy-logic approach similar to the one used by
Cornman et al. (1998). We follow a statistical approach, that has first been used by Merritt
(1995) for the same problem and that is applied to the temporal sequence of Doppler spectral
coefficients at fixed frequency bins. The goal is to constructa similar test, but this time in Gabor
phase space. We therefore need to analyze the statistical properties of the Gabor coefficients
with respect to the different signal components, in order todistinguish between clear air and
clutter return. This immediately leads to the question of how the properties of Gaussian station-
ary processes are mapped to the Gabor coefficientsam,k or |am,k|

2. This problem is discussed
in the next paragraph.

b. Mean and variance estimator for Gabor spectrogram coefficients

Since we aim to construct a statistical test (see the next section below) which is based on
the expectation and the variance of the individual Gabor spectrogram coefficients|am,k|

2, we
need to define adequate estimators for the expectation and the variance that are based on our
observations (given throughS ).

First, to simplify the notation, we introduceaλ as a shorthand notation ofam,k, i.e. in what
follows we setλ = (m, k). Then the Gabor spectrogram coefficients take the form

|aλ|
2 =

N−1
∑

n=0

S[n]gλ[n]
N−1
∑

l=0

S̄[l]ḡλ[l].

As mentioned in the previous section we may assume, the data sequenceS satisfies for all
n = 0, . . . , N − 1,

ES[n] = 0 and ES[n]S̄[n + l] = σ2ρ[l] .

With these two assumptions, the expectation and the covariance of the Gabor spectrogram co-
efficients are given by

E|aλ|
2 = σ2〈ρ ∗ gλ, gλ〉 ,

Cov(|aλ|
2, |aη|

2) = σ4|〈ρ ∗ gλ, gη〉|
2 ,

which is shown in Appendix C (Lemma 3 and Lemma 4), where the ‘∗’-operation stands here
for the discrete convolution. The latter two formulas show the influence of the dependency ofS

and the redundancy of the Gabor frame expansion. In case,S would be i.i.d. (i.e.ρ[l] = δl,0),
it follows

E|aλ|
2 = σ2 and Cov(|aλ|

2, |aη|
2) = σ4|〈gλ, gη〉|

2.
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If, moreover,{gλ}λ∈Λ forms an orthonormal system, the covariance matrix becomesdiagonal;
i.e. as long as we deal with a redundant frame, the Gabor spectrum is always correlated with
a range of dependency described by the decay of the Gramian matrix of {gλ}λ∈Λ (up to the
convolution withρ). The essential observation for our purpose is

Var|aλ|
2 = Cov(|aλ|

2, |aλ|
2) = σ4|〈ρ ∗ gλ, gλ〉|

2 = (E|aλ|
2)2 .

Consequently,
(E|aλ|

2)2

Var|aλ|2
= 1 , (20)

which holds true for independent as well as dependent samples S[n] that follow a distribution
which is determined by its moments. As property (20) constraints only the first two moments,
it may hold true for a much richer class of distributions (in particular, it holds true for normal
distributed random variables).

In order to construct a statistical test that verifies property (20), we have to find optimal
estimators forE|aλ|

2 andVar|aλ|
2 that are based on a finite number of observations. To this

end, we introduce a index subsetΩλ ⊂ Λ containingλ andL − 1 further different indicesη,
i.e. |Ωλ| = L. As an estimator forE|aλ|

2 = σ2〈ρ ∗ gλ, gλ〉 which is based onL neighboring
observation variables we define

Ê(Ωλ) :=
1

CΩλ

∑

η∈Ωλ

|aη|
2 , (21)

where the constant is given by

CΩλ
=

∑

η∈Ωλ

〈ρ ∗ gη, gη〉

〈ρ ∗ gλ, gλ〉
> 1 .

For i.i.d. samplesS[n], the correcting multiplier in estimator (21) reduces toCΩλ
= |Ωλ| = L,

and therefore (21) is then nothing than the well-known mean estimator,

Ê(Ωλ) =
1

L

∑

η∈Ωλ

|aη|
2 .

Assuming
∑

η′,η∈Ωλ

|〈ρ ∗ gη′ , gη〉|
2 ≤ C2−ε

Ωλ
,

Lemmas 5 and 6 (see Appendix C ) verify that (21) is a consistent estimator forE|aλ|
2, i.e.

lim
L→∞

E|Ê(Ωλ) − E|aλ|
2|2 = lim

L→∞
(Var(Ê(Ωλ)) + (E|aλ|

2 − E(Ê(Ωλ))
2) = 0.

By the same reasoning, we define an estimator for variance,

V̂ (Ωλ) := C
∑

η∈Ωλ

(|aη|
2 − Ê(Ωλ))

2 , (22)

where the constant is defined by

C−1 := 2
∑

η∈Ωλ

c2
η

c2
λ

+ (L − 2CΩλ
)

(

1 +
1

(
∑

η cη)2

∑

ξ,α∈Ωλ

c2
ξ,α

)

. (23)
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Similar as before, it is shown (see Lemma 7 in Appendix C) thatestimator (22) is unbiased (and
certainly consistent but the proof is omitted). Switching to the i.i.d. case yields

C−1 = 2L + (L − 2L)

(

1 +
1

L2

∑

ξ,α∈Ωλ

c2
ξ,α

)

= L −
1

L

∑

ξ,α∈Ωλ

|〈gξ, gα〉|
2

and therefore (22) simplifies to

V̂ (Ωλ) =
L

L2 −
∑

ξ,α∈Ωλ
|〈gξ, gα〉|

2

∑

η∈Ωλ

(|aη|
2 − Ê(Ωλ))

2 ,

which can be easily seen with the help of formula (C2). If, moreover,{gλ} forms a basis, we
end up with the classical variance estimator

V̂ (Ωλ) =
1

L − 1

∑

η∈Ωλ

(|aη|
2 − Ê(Ωλ))

2 .

c. A statistical test performing signal identification

After having established estimatorsÊ(Ωλ) andV̂ (Ωλ), we aim now to apply these quantities
to the construction of a test that identifies Gabor coefficients that can be associated with clear
air returns. Typically, an atmospheric return is stationary and assumed to follow a Gaussian
distribution, i.e. a test on the first two moments of the signal will give us some indication if this
is true.

The basic idea goes back to Merritt (1995), who statistically tested a sequence of single
(non-averaged) Doppler spectra in order decide whether a particular Fourier power coefficient
was caused by a Gaussian or non–Gaussian signal. For this, heused the classical test of Hilde-
brand and Sekhon (1974) in a modified way. Following this approach, we consider the squared
modulus of the Gabor phase space coefficients,|am,k|

2. Because we are interested in stationary
signal components, we consider the sequence|am,k|

2 for fixed frequency bins, i.e. we just pick
individual rows and let only the time index change. For a fixedfrequency indexk, we define
Ωk := {(m, k) : m = 0, . . . , M − 1}. If this sequence is stationary Gaussian, then it should
hold that

ϑ(|am,k|
2) :=

(Ê(Ωk))
2

V̂ (Ωk)
≥ 1 (24)

This, however, is typically not observed if the sequence|am,k|
2 is affected by non-stationary

intermittent clutter. It is a well known fact that intermittent clutter signals are almost always
stronger than the (clear air) atmospheric return. In this case, we will getϑ ≤ 1 . In a next
step, we therefore sort the sequence according to power. That is, we derive the order statistic
of {|am,k|

2}(m,k)∈Ωk
which is {|aϕ(m),k|

2}(m,k)∈Ωk
. ϕ stands for the permutation map. This

ordered sequence has the property, that|aϕ(m),k|
2 ≤ |aϕ(m)+1,k|

2 for all (m, k) ∈ Λk . For
l = 0, . . . , M − 1, we define subsetsΩk(l) = {(ϕ(m), k) : ϕ(m) = l, . . . , M − 1}. The largest
coefficients are discarded, which hopefully sorts out all coefficients affected by clutter. Using
the quantitieŝE(Ωk(l)) andV̂ (Ωk(l)) of the subset, the statisticsϑ is again computed until

ϑ(|aϕ(m)=l,k|
2) :=

(Ê(Ωk(l)))
2

V̂ (Ωk(l))
≥ 1
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holds. The largest coefficient for which the test is satisfiedis taken as a threshold for a frequency-
dependent identification of the clutter component.

d. Signal separation through Gabor coefficient thresholding

The local threshold is computed as the average value of the remaining Gabor coefficients.
All coefficients |am,k|

2 greater than this threshold are then regarded as clutter. One problem
exists, if the subsetΩk(l) becomes too small in this iterative process. Then the statistical esti-
mate will become unstable and the estimation of a local threshold is no longer meaningful. This
should not happen if the dwell time is sufficiently long, but it is not always known how long the
dwell time must indeed be for various types of intermittent clutter. Further investigations are
needed to clarify this question. However, it might nevertheless be attempted to clean data sets
regardless of the dwell time used. In these cases, it can happen that the nonstationary compo-
nents have sometimes a duration on the order of the dwell time. In this case, it can be useful to
replace the local threshold with a global threshold if the criterion (24) is not reached after a cer-
tain number of iterations. Such a global threshold can be derived from stable estimates of local
thresholds at other frequenciesk. Such a global threshold should be constructed in such a way,
that it reflects the noise level in the Gabor representation.For instance, such a global threshold
could be estimated by averaging over a certain number of the smallest local thresholds.

Leaving this problem aside, we can formulate the filtering procedure as follows: A coeffi-
cient|aϕ(m),k|

2 with ϕ(m) = l for which the (24) holds is associated with clear air return.Based
on the test, we introduce a clutter index set as

Ωc
k := {(m, k) : ϑ(|aϕ(m),k|

2) ≥ 1 , ϕ(m) = 1, . . . , M − 1}

The average value of the remaining coefficients in the subsetis taken as a local thresholdtk:

tk =
1

|Ωk \ Ωc
k|

∑

(m,k)∈Ωk\Ω
c
k

|am,k| .

Themain resultof this paper - the nonlinear filtering - is now formulated in the following:

Let S be the given RWP signal. Based on our model assumptions, the filtered component is
given by

Φ(S)[n] =

K−1
∑

k=0

{

∑

(m,k)∈Ωk\Ω
c
k

am,khm,k[n] +
∑

(m,k)∈Ωc
k

tke
i arg am,khm,k[n]

}

.

Finally, we discuss a practical aspect of the filtering method. The evaluation of the clutter
index setΩc

k requires the computation of the modified variance estimator. This can be done in
a numerically thrifty way, assuming we have all the inner products〈gλ, gη〉 and〈ρ ∗ gλ, gη〉,
respectively, at hand. Note that the efficiency can be additionally improved due to the fact that
not all of them are required. This becomes clear becauseV̂ (Ωk(l)) is derived for fixed frequency
indicesk and thus the correction term relies only on inner products ofthe form

〈gm,k, gm′,k〉 = 〈g(· − m∆M)W ·k∆K
N , g(· − m′∆M)W ·k∆K

N 〉

= 〈g(· − m∆M), g(· − m′∆M)〉 .
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Nevertheless, the computational overhead involved in computing the modified variance estima-
tor is still greater than in the case of the classical variance estimator. Our experience has shown
that the variance estimates obtained with the two methods donot differ much. It may therefore
be appropriate to use the classical variance estimator if a saving of processing power is neces-
sary for a real time implementation of the algorithm. However, a detailed consideration of this
simplification is left for a future study.

5. A real example: Comparison with classical processing
a. Data set

Now let us illustrate the performance of the proposed filtering algorithm by applying it to
real RWP data obtained with the 482 MHz wind profiler at Bayreuth, Germany on October 13,
2005. This radar is one of three operational systems that theDeutscher Wetterdienst uses in its
operational aerological network. The technical characteristics are summarized in Table 1. More
details and an overview of the standard signal processing steps of the radar system are given in
Lehmann et al. (2003). For wind measurements, the system is running in a four-beam Doppler
beam swinging configuration using two different pulse widths of 1700 ns (low mode) and 3300
ns (high mode). The averaging time is 26 minutes, the remaining 4 minutes are used for RASS
measurements of the virtual temperature. For the investigation of bird migration we consider
only low mode data. The sampling parameters for the low mode data are given in Table 2. Of
interest below are the resolution of the time series∆t = 0.007708, the number of data samples
N = 4608 and the total length or dwell timeTd = N∆t = 35.518464s.

During the bird migration season in October of 2005, full time series data of the coherently
integrated demodulated receiver voltage signal were savedin the wind low mode. Both wind
and spectral data were manually reviewed to identify a day with significant bird migration. It is
well known, that a human expert can easily detect bird migration events by searching for typical
patterns in the wind measurements (northeasterly directions in fall, discontinuities at sunrise
and sunset), which are additionally accompanied by irregular and wide, sometimes multiple
peaks in the Doppler spectra. In contrast to most clutter-free situations, those peaks exhibit
a poor time and range gate continuity. Time-height plots of the estimated moments (power,
radial velocity and spectral width) are helpful to get a quick overview of potentially interesting
cases, and a closer look into the time series data then typically confirms the conjecture of bird
migration. Particulary significant bird migration was noted on October 13 and we therefore
selected that day as a test case for the new bird mitigation algorithm. A significant fraction
of wind data were contaminated by bird returns, the effect isbest seen in Figure 10. The
winds shown have been computed without any intermittent clutter removal algorithm. The
consensus method is normally not able to suppress the effectof the bird echoes because of their
frequent occurrence. The operationally used intermittentclutter removal algorithm (ICRA), a
particular implementation of the statistical averaging method proposed by Merritt (1995), could
only alleviate the problem, see Figure 11. Also, the operational quality control (Weber-Wuertz
continuity check, not shown) was only able to flag a small percentage of the contaminated data,
because the erroneous wind data exhibited the typical intrinsic consistency.
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b. Processing details and results

A software was developed to allow reading and writing of the profiler time series data using
the proprietary binary format of the profiler vendor. This made it easy to process the data
using the Gabor filter and to save them again in the original file format. The reprocessed data
could therefore be seamlessly integrated in the off-line version of the operational wind profiler
software, to compare the performance of the different algorithms.

As an example, we consider again the measurement taken in thesouth beam of the profiler at
range gate 9 (1.6 km height agl) with a start time of the dwell at 00:09:45 UTC. This was already
discussed in section 3. As described in section 4, local (constant frequency) thresholds were
estimated to separate the clutter part of the signal from thestationary components atmosphere
and noise. During processing of the complete day it was revealed that the dwell time of the data
of about 35 seconds was apparently rather short to guaranteethat every observed intermittent
clutter signal exhibits a clear transient behavior. Sometimes the duration of the clutter signal
component was on the order of the dwell time instead. If this is the case, then the estimation
of the local threshold may become unstable and signal separation can partly fail with the result
that clutter energy leaks through the filter. One way to remedy this problem is to replace local
thresholds with a global threshold as described above. For the example data, this was done
if more than 30 percent of the Gabor coefficients of a particular frequency were classified as
clutter. The global threshold was computed as the median over 15 percent of the smallest local
thresholds. Note that the global threshold is an estimate for the noise level. Another way
to handle this situation would be to either flag this range gate as suspect or to set the whole
spectrum to that of random white noise, so any signal would besuppressed. Further research is
needed to learn more about typical intermittent clutter characteristics and to optimize both the
data sampling and the performance of the filter. The method described in this paper should be a
useful tool for such investigations.

Application of the filtering strategy yields a filtered Gaborphase-space representation, which
is shown in Figure 5. Here, the moduli of the coefficientsam,k representing the transient (bird)
contributions have been replaced by an estimation of the stationary signal component at that
frequency (either noise or atmospheric signal). The reconstructed I/Q series which is obtained
through back-transformation into the time domain is presented in Figure 6. The nonstationary
signal components have been suppressed and also the amplitude has been significantly reduced.
It is easy to measure the reduction of total power of the data by computing the difference in
variance between the unfiltered and the filtered data, to get an information about how much
clutter energy was removed by the filter.

Gabor filtering was performed for the complete dataset and the resulting bird-cleaned time
series data were used for reprocessing of the whole day. Thiswas compared with two additional
processing methods: Method 1 used no intermittent clutter filtering algorithm whereas method
2 used the routinely employed Intermittent Clutter Algorithm (ICRA), an implementation of
the Statistical Averaging Method (SAM) originally proposed by Merritt (1995). The results for
all range gates for the dwell taken at 00:09:45 UTC (stacked Doppler spectra) are shown in
Figures 7 (no filtering), 8 (ICRA filtering) and 9 (Gabor filtering). Without filtering, the lowest
17 range gates show spurious peaks and also large spectral widths due to the transient bird
echoes. Note especially the discontinuity in height of the location of the estimated signal peak
(derived Doppler velocity). With ICRA processing, the effect of the birds has been drastically
reduced, however, there are still range gates which show spurious peaks. This indicates that
ICRA was unable to reduce the clutter energy completely. Figure 9 shows the processing results
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of the newly suggested filtering algorithm. The spurious remnants of the bird clutter are almost
completely gone, although range gates 15 and 16 (2.49 and 1.64 km height agl) show apparently
some bird clutter energy leaking through. This is also reflected in the somewhat larger spectral
width at these heights. However, the spectral peak is now continuous across all heights and the
spectral width estimates are mostly unaffected by the clutter.

Finally, the horizontal wind vector data derived through the three different processing meth-
ods using the same data are shown in Figures 10 (no clutter filtering), 11 (ICRA processing)
and 12 (Gabor filtering), respectively . The color coding is due to the wind speed (magnitude of
the horizontal wind vector). Obviously, the clutter contamination has been drastically reduced
by the new algorithm.

6. Summary and conclusions
We have dealt with wind profiler signals that were obtained during bird migration and

shown, how the signals can be decomposed into a time-frequency representation. Apparently, a
Gabor frame representation achieves optimal time-frequency resolution and thus provides good
signal-clutter separation. Previous attempts for intermittent clutter filtering have made use of
the wavelet transform (WT) and its discrete versions (Jordan et al. 1997; Boisse et al. 1999;
Lehmann and Teschke 2001), so it is interesting to briefly discuss the difference between the
wavelet and the Gabor approach and to point out why we favor the Gabor approach. The WT
is another way of analyzing nonstationary signals. The difference between both approaches
lies in the tiling of the TF-plane by the elementary signals (or time-frequency atoms). In the
Gabor (WFT) approach, the tiling is uniform with fixed resolution. This is in contrast to the
wavelet approach, where the tiling is generally variable. For example, a wavelet orthonormal
basis decomposes the frequency axis in dyadic intervals whose sizes grow exponentially. In
other words, the frequency resolution gets worse the betterthe time resolution becomes. This
is wanted if the signals under investigation have high-frequency components of short duration
embedded within low-frequency components of slow temporalvariation. For the RWP signals
however, we found no evidence for such a behavior. The intermittent clutter components occur
at nearly all frequencies within the typical Nyquist range with no obvious difference in tem-
poral characteristics. In particular, they can occur closeto zero frequency where the temporal
resolution of the WT is the worst. Especially in this case, the WT seems not ideal to resolve the
transient nature of the intermittent clutter. Examples of clutter signals in both representations
shown by Justen and Lehmann (2003) illustrate this quite clearly. So the argument which is
often used against the WFT, namely the constant time-frequency resolution of this representa-
tion turns out to be an advantage in our application. Additionally, the Gabor expansion using
a Gaussian window achieves the best possible time-frequency resolution by reaching the lower
limit of the Heisenberg uncertainty constraint.

To identify the clutter contribution of the signal, we make use of the a-priori information that
the atmospheric signal component of interest can be adequately modelled as a stationary, proper
complex Gaussian random process. Using this assumption, a test statistic is constructed to serve
as a criterion for the discrimination between stationary and non-stationary signal components.
This follows the approach first suggested by Merritt (1995).However, in case of the redundant
Gabor transform it turns out, that the variance estimator has to be modified to guarantee its
unbiasedness and consistency. Proofs for the necessary modifications are given in detail.

Finally, the algorithm has been applied to a real dataset that was obtained with a 482 MHz
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wind profiler during bird migration season. It could be demonstrated that the performance
of the new algorithm was superior to the performance of the operationally used intermittent
clutter reduction algorithm, without obvious negative side effects. Application of the algorithm
has shown, that sampling settings of the wind profiler apparently play an important role in the
clutter mitigation capabilities of the algorithm. This is not unexpected, since both the sampling
period and the dwell time determine the resolution of the Doppler spectrum and obviously
also the resolution of any time-frequency representation.Furthermore, longer dwell times may
ease the identification of transient clutter signals and thestable estimation of the thresholds for
noise and the stationary atmospheric component. This is especially important for cases where
atmospheric and clutter signal overlap in frequency.

Future work is suggested for a better quantitative characterization of intermittent clutter sig-
nals during dense bird migration. This should allow to optimize both sampling and processing
settings for operational wind profiler systems. A long-termevaluation of the new algorithm
would be useful to determine its limits and to estimate the performance improvements of the
new methods in comparison with previously used algorithms.This would be facilitated by an
online-implementation of the method and a means to compare the profiler wind measurement
with an independent data source, e.g. radiosonde measurements.
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APPENDIX A

Frame theory

We briefly review some basic facts on frames using the abstract notation of functional analy-
sis, but the reader is advised to consult the rich literaturefor details (Heil and Walnut 1989;
Daubechies 1990; Carmona et al. 1998; Mallat 1999; Christensen 2001).

A frame is a family of functions, that allow to characterize asignalS from its inner products
{〈S, hλ〉}λ∈Λ. It generalizes the notion of a basis in Hilbert space. We canalways safely assume
that S(t) is element of the Hilbert spaceL

2, because the received signal has finite energy. Let
H be some Hilbert space, the pair of parenthesis〈·, ·〉 denote the associated inner product and
‖ · ‖2

H = 〈·, ·〉 the associated norm. A frame{hλ} in H is a system of functions for which there
exist constants0 < A ≤ B < ∞ such that for alls ∈ H

A‖S‖2
H ≤

∑

λ∈Λ

|〈S, hλ〉|
2 ≤ B‖S‖2

H . (A1)

The map,F : H → ℓ2, defined viaF : f 7→ {〈f, hλ〉} is usually referred to as the frame
operator (analysis operator). So the signal is characterized by inner products with the frame. To
answer the question of howf can again be synthesized from the inner products{〈f, hλ〉}, we
consider the adjoint frame operator given byF ∗c =

∑

λ∈Λ cλhλ. This allows us to write

F ∗Ff =
∑

λ∈Λ

〈f, hλ〉hλ . (A2)

If F ∗F equals the identity1, F ∗ performs a perfect reconstruction. This is the case when
{hλ} forms an orthonormal system. However, in general one has to apply (F ∗F )−1 to (A2).
This is possible since the inverse exists and is bounded because of (A1),

A · 1 ≤ F ∗F ≤ B · 1 and thus B−1 · 1 ≤ (F ∗F )−1 ≤ A−1 · 1 .

Since(F ∗F )−1 is self-adjoint and denoting(F ∗F )−1hλ = gλ, one consequently has

∑

λ∈Λ

〈S, gλ〉hλ = F ∗F (F ∗F )−1S = S = (F ∗F )−1F ∗FS =
∑

λ∈Λ

〈S, hλ〉gλ . (A3)

In frame lore,gλ is referred to as the canonical dual frame with respect tohλ.
In general,(F ∗F )−1 cannot be explicitly computed but must approximated by an iterative

approach. However, the situation can be essentially relaxed when assuming that the frames
{hλ} and{gλ} form not a primal-dual but a bi-orthogonal frame pair, i.e.〈hλ, gη〉 = δλ,η.
If F̃ denotes the frame operator with respect togλ, thenF̃ = F (F ∗F )−1 and one may write
(〈hλ, gη〉)λ,η∈Λ = F̃F ∗ which is diagonal and thereforẽF is an analysis andF ∗ a synthesis
operator yielding perfect reconstruction (and vice versa,i.e. exchanging the roles of̃F andF ∗).
If now the bi-orthogonality relation yields a way to derivegλ, the inverse ofF ∗F needs not to
be computed.
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APPENDIX B

Biorthogonal discrete Gabor frame expansion

The following lemma can be retraced to its original form in Wexler and Raz (1990), it gives
an explicit proof of the biorthogonality relation.

Lemma 1 Assume the relation
N−1
∑

j=0

ḡ(j)h(j + qK)W−jpM = N/(MK) δp,0δq,0 (B1)

is fulfilled for0 ≤ p ≤ ∆M − 1 and0 ≤ q ≤ ∆K − 1. Then the biorthogonality relation
M−1
∑

m=0

K−1
∑

k=0

ḡm,k(l)hm,k(j) = δl,j

holds true.

Proof. This assertion can be directly shown. Let

f(l, j) :=

M−1
∑

m=0

K−1
∑

k=0

ḡm,k(l)hm,k(j),

then

f(l, j) =

M−1
∑

m=0

ḡ(l − m∆M)h(j − m∆M)

K−1
∑

k=0

W k(j−l)∆K .

We still have,
K−1
∑

k=0

W k(j−l)∆K =

K−1
∑

k=0

ei2πk(j−l)/K =

{

K , if (j − l)/K ∈ Z

0 , else
.

Since(j− l)/K ∈ Z means there exists someq ∈ Z such thatq = (j− l)/K or j− l−qK = 0,
we may consequently write (by the Poisson Summation Formulaand the made assumption)

f(l, j) =
M−1
∑

m=0

ḡ(l − m∆M)h(j − m∆M)K
∑

q

δj−l−qK,0

= K
∑

q

δj−l−qK,0

M−1
∑

m=0

ḡ(l − m∆M)h(l + qK − m∆M)

= K
∑

q

δj−l−qK,0∆M−1
∆M−1
∑

p=0

( N−1
∑

j′=0

ḡ(j′)h(j′ + qK)W−j′pM

)

W lpM

= K
∑

q

δj−l−qK,0M/N
∆M−1
∑

p=0

N/(MK)δp,0δq,0W
lpM

= δj,l .

�
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APPENDIX C

Statistical properties of the Gabor coefficients

Lemma 2 Let S be given and assumeES[n] = 0 for all n = 0, . . . , N − 1 and thataλ is as
defined in(15). ThenEaλ = 0.

Proof. By definition,aλ =
∑N−1

n=0 S[n]gλ[n]. Therefore,Eaλ =
∑N−1

n=0 ES[n]gλ[n] = 0. �

Lemma 3 Let S be given and assumeES[n] = 0 for all n = 0, . . . , N − 1 and thataλ is as
defined in(15). Moreover, assume a range of dependency of neighboring samples ofS which is
characterized by the auto-covariance functionρ of S, i.e. E(S[n]S̄[n + l]) = σ2ρ(l). Then

Cov(aλ, aη) = σ2〈ρ ∗ gλ, gη〉,

where ‘∗’ denotes the discrete convolution.

The latter lemma states that the Gabor coefficientsaλ turn into dependent random variables
(even whenρ is a delta sequence, i.e. for independent samples ofS). The range of dependency
is determined by sampling density in the time–frequency space and the range of dependency of
S. In caseS is a sequence of i.i.d. random variables, the dependency ofaλ is fully characterized
by the reproducing kernel〈gλ, gη〉.

Proof. By Lemma 2,Cov(aλ, aη) = E(aλāη). Therefore,

Cov(aλ, aη) = E

( N−1
∑

n=0

S[n]gλ[n],
N−1
∑

l=0

S̄[l]ḡ[l]

)

=
N−1
∑

n=0

N−1
∑

l=0

E(S[n]S̄[l])gλ[n]ḡη[l]

= σ2

N−1
∑

n=0

N−1
∑

l=0

ρ(l − n)gλ[n]ḡη[l] = σ2

N−1
∑

l=0

(ρ ∗ gλ)[l]ḡη[l] = σ2〈ρ ∗ gλ, gη〉.

�

A special case of Lemma 3 isE|aλ|
2 = σ2〈ρ ∗ gλ, gλ〉.

Lemma 4 Make the same assumptions as in Lemma 3. Then

Cov(|aλ|
2, |aη|

2) = σ4|〈ρ ∗ gλ, gη〉|
2 .

Proof. First, note that for proper Gaussian complex random variablesS[k] with ES[k] = 0 and
Cov(S[k]S̄[l]) = E(S[k]S̄[l]) = σ2ρ(l − k) we have (Reed 1962)

E(S[k]S̄[l]S[n]S̄[m]) = E(S[k]S̄[l])E(S[n]S̄[m]) + E(S[k]S̄[m])E(S̄[l]S[n])

= σ4(ρ(l − k)ρ(m − n) + ρ(m − k)ρ̄(n − l)).

With the help of Lemma 3 (special case),

Cov(|aλ|
2, |aη|

2) = E(|aλ|
2|aη|

2) − σ4〈ρ ∗ gλ, gλ〉〈ρ ∗ gη, gη〉
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and thus it remains to deriveE(|aλ|
2|aη|

2). Using the moment theorem of Reed (1962), we have,

E(|aλ|
2|aη|

2) =

( N−1
∑

k=0

S[k]gλ[k]

N−1
∑

l=0

S̄[l]ḡλ[l]

N−1
∑

n=0

S[n]gη[n]

N−1
∑

m=0

S̄[m]ḡη[m]

)

=
N−1
∑

k,l,n,m=0

E(S[k]S̄[l]S[n]S̄[m]) gλ[k]ḡλ[l]gη[n]ḡη[m]

= σ4

N−1
∑

k,l,n,m=0

(ρ(l − k)ρ(m − n) + ρ(m − k)ρ̄(n − l)) gλ[k]ḡλ[l]gη[n]ḡη[m]

= σ4

( N−1
∑

l,m=0

ḡλ[l]ḡη[m]

{ N−1
∑

k=0

ρ(l − k)gλ[k]

}{ N−1
∑

n=0

ρ(m − n)gη[n]

}

+

N−1
∑

m,n=0

gη[n]ḡη[m]

{ N−1
∑

k=0

ρ(m − k)gλ[k]

}{ N−1
∑

l=0

ρ̄(n − l)ḡλ[l]

})

= σ4

( N−1
∑

l,m=0

ḡλ[l]ḡη[m](ρ ∗ gλ)[l](ρ ∗ gη)[m] +

N−1
∑

m,n=0

gη[n]ḡη[m](ρ ∗ gλ)[m](ρ ∗ gλ)[n]

)

= σ4

(

〈ρ ∗ gλ, gλ〉〈ρ ∗ gη, gη〉 + |〈ρ ∗ gλ, gη〉|
2

)

,

and consequently,
Cov(|aλ|

2, |aη|
2) = σ4|〈ρ ∗ gλ, gη〉|

2 .

�

After having verified the basic properties of the Gabor powercoefficients, we prove that esti-
mator (21) is consistent and that estimator (22) is unbiased(the proof of consistency is omitted
because its proof requires the computation of8th-mixed moment).

Lemma 5 The estimator̂E(Ωλ) unbiased, i.e. it holdsEÊ(Ωλ) = σ2〈ρ ∗ gλ, gλ〉.

Proof. This follows by the definition ofCΩλ
and Lemma 3,

EÊ(Ωλ) =
1

CΩλ

∑

η∈Ωλ

E|aη|
2 =

1

CΩλ

∑

η∈Ωλ

σ2〈ρ ∗ gη, gη〉 = σ2〈ρ ∗ gλ, gλ〉 .

�

Lemma 6 Assume, that for the given dual frame{gλ} exists someε > 0 such that the condition
∑

η′,η∈Ωλ
|〈ρ ∗ gη′ , gη〉|

2 ≤ C2−ε
Ωλ

is fulfilled. Then the estimator̂E(Ωλ) satisfies

Var(Ê(Λ)) ≤ σ4C−ε
Ωλ

and is therefore consistent.
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Proof. Similar as in the proof of Lemma 4 we directly obtain

Var(Ê(Ωλ)) = E(Ê(Ωλ))
2 − σ4|〈ρ ∗ gλ, gλ〉|

2

=
1

C2
Ωλ

∑

η′,η∈Ωλ

E(|aη′ |2|aη|
2) − σ4|〈ρ ∗ gλ, gλ〉|

2

=
σ4

C2
Ωλ

(

∑

η′,η∈Ωλ

{

〈ρ ∗ gη′ , gη′〉〈ρ ∗ gη, gη〉 + |〈ρ ∗ gη′ , gη〉|
2

}

−

C2
Ωλ
|〈ρ ∗ gλ, gλ〉|

2

)

=
σ4

C2
Ωλ

∑

η′,η∈Ωλ

|〈ρ ∗ gη′ , gη〉|
2 ≤ σ4C−ε

Ωλ
.

�

Lemma 7 The estimator̂V (Λ) is unbiased, i.e. it holdsEV̂ (Ωλ) = σ4|〈ρ ∗ gλ, gλ〉|
2.

Proof. With similar arguments as in the proof of Lemma 4 and with the following shorthand
notations

cλ := 〈ρ ∗ gλ, gλ〉 and cλ,η := 〈ρ ∗ gλ, gη〉

we have the following expressions

E|aη|
4 = σ4(c2

η + c2
η) = 2σ4c2

η ,

E(|aη|
2Ê(Ωλ)) =

σ4

CΩλ

∑

ξ∈Ωλ

(cηcξ + c2
η,ξ) ,

E(Ê(Ωλ))
2 =

σ4

C2
Ωλ

∑

ξ,α∈Ωλ

(cαcξ + c2
ξ,α) .

Therefore withL = |Ωλ| and the definition ofC in (23),

EV̂ (Ωλ) = C
∑

η∈Ωλ

E(|aη|
2 − Ê(Ωλ))

2

= C
∑

η∈Ωλ

{

E|aη|
4 − 2 E(|aη|

2Ê(Ωλ)) + E(Ê(Ωλ))
2

}

= σ4C
∑

η∈Ωλ

{

2c2
η −

2

CΩλ

∑

ξ∈Ωλ

(cηcξ + c2
η,ξ) +

1

C2
Ωλ

∑

ξ,α∈Ωλ

(cαcξ + c2
ξ,α)

}

= σ4C
∑

η∈Ωλ

{

2cη(cη − cλ) −
2

CΩλ

∑

ξ∈Ωλ

c2
η,ξ + c2

λ +
1

C2
Ωλ

∑

ξ,α∈Ωλ

c2
ξ,α

}

= σ4C

{

2
∑

η∈Ωλ

cη(cη − cλ) + Lc2
λ +

L − 2CΩλ

C2
Ωλ

∑

ξ,α∈Ωλ

c2
ξ,α

}

(C1)

= σ4c2
λC

{

2
∑

η∈Ωλ

c2
η

c2
λ

+ (L − 2CΩλ
)

(

1 +
1

(
∑

η cη)2

∑

ξ,α∈Ωλ

c2
ξ,α

)}

= σ4c2
λ .

�
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FIG. 1. Schematic representation of the Time-Frequency plane and the Heisenberg-box (reso-
lution) of the window functionhτ,ω(t), centered at timeτ = t0 and frequencyω = ω0.
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FIG. 2. Gabor phase space representation of a simulated RWP signal containing only noise and
an atmospheric component. The x-axis shows time (in seconds) and the y-axis frequency (in
Hz). Color contours (logarithmic scaling in dB) denote the power of the Gabor coefficients.
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Bayreuth 13.10.2005,  Beam South, Height 1625 m  @ 00:09:45

FIG. 3. Time series of the in-phase (upper plot) and quadrature (lower plot) component of
the baseband signal measured at 00:09:45 UTC on October 13, 2005 (south beam, range gate
9) with the 482-MHz RWP at Bayreuth, Germany. The complex time series contains 4608
samples. Each sample is the coherent sum of 94 echoes from subsequent pulses.
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FIG. 4. Same representation as in Figure 2, but for the data shownin Figure3. The three
transient signal components are clearly separated from thestationary atmospheric signal com-
ponent.
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FIG. 5. Same as in Figure 4 after filtering. For the transient signal components, the Gabor
coefficients were replaced by estimated thresholds for the stationary signal part at the given
frequency.
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FIG. 6. Same as in Figure 3, but for the cleaned signal obtained from the filtered Gabor repre-
sentation shown in Figure 5.
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FIG. 7. Stacked plot of Doppler spectra for all low mode range gates, obtained through standard
processing without any bird mitigation algorithm. Data were measured at 00:09:45 UTC on
October 13, 2005 (south beam) with the 482-MHz RWP at Bayreuth, Germany. The estimated
first and second moments are symbolized as a cross, where the vertical line shows the first
moment (mean Doppler speed) and the horizontal line denotesspectral width. Massive bird
contamination can bee seen in the range gates below 3.0 km height
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FIG. 8. Same as in Figure 7, but Doppler spectra were estimated using the operational bird-
mitigation algorithm ICRA. Bird contamination below 3.0 kmheight is reduced compared to
Figure 7, but still significant.
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FIG. 9. Same as in Figure 7, but Doppler spectra were estimated after statistical Gabor filtering
of the original time series. Only minor remnants of bird contamination can be seen in range
gates 15 and 16 (at 2.5 and 2.6 km height).
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FIG. 10. Wind barb plot of horizontal winds measured in the low mode at Bayreuth on October
13, 2005. The x-axis shows time and the y-axis denotes height. Data have been color coded by
wind speed. The signal processing was using no Bird mitigation algorithm. Relatively strong
northeasterly winds below about 3.5 km indicate strong birdmigration, this can be seen between
00 and 05 UTC at heights around 1000 m and above 1600 m and especially after 18 UTC from
the lowest gate to about 3500 m.
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FIG. 11. Same as in Figure 10. The signal processing was using thestandard ICRA algo-
rithm. Bird contamination has been reduced compared to Figure 10, but is still significant after
19 UTC. A few other northeasterly wind barbs around 02 UTC areaffected by intermittent
clutter echoes.
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FIG. 12. Same as in Figure 10. The signal processing was using thenew Gabor filter algorithm.
Bird contamination has again been reduced compared to Figure 11. There are no indications of
bird migration between 00 and 05 UTC, and only a few obvious outliers and missing data after
19 UTC.
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Center frequency 482.0078 MHz
Peak (Average) RF envelope power (PEP) 16 (2.4) kW
Pulse modulation Amplitude (B/W)

Phase (pulse compression)
Pulse widths (vert. resolution) 1.7µs ( 250 m)

2.2µs ( 330 m)
3.3µs ( 500 m)
4.4µs ( 660 m)

Antenna type Phased array of 180 CoCo antennas
Antenna aperture (area) 142m2 (12.4× 11.5 m)
On-axis gain above isotropic > 34 dBi
One-way half power (3 dB) beamwidth 6 3
Oblique beam zenith distance 15.2
RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure 6 0.6 dB
A/D conversion 14 bit (@ max 66 MHz)
Pulse compression Bi-phase, complementary, max 32 bit
System sensitivity 6 -154 dBm
Vertical measuring range 16 km (wind), 4 km (virt. temp.)

TABLE 1. Technical parameters of the 482 MHz RWP/RASS at Bayreuth/Germany
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Wind Low-Mode
Inter Pulse Period 82µs
Pulse Width 1.7µs
Tx Duty 2.07 %
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW
Spacing (on RX) 1.0µs
# of Gates 50
First Gate 8.6µs

TABLE 2. TX and RX sampling parameters in routine operation
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