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Abstract

A new method is presented for the suppression of interntittkriter echoes
in radar wind profilers. This clutter type is a significant lplem during the sea-
sonal bird migration and often results in large discrepesmbietween profiler wind
measurements and independent reference data. The teemmapented makes use
of a discrete Gabor frame expansion of the coherently aeertige series data in
combination with a statistical filtering approach to exptbe different signal char-
acteristics between signal and clutter. The rationale isf dlgorithm is outlined
and the mathematical methods used are presented in duk defast test using
data obtained with an operational 482 MHz wind profiler iadés that the method
outperforms the previously used clutter suppression fgor
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1. Introduction

Radar wind profilers (RWP) were developed from MST-Radae (Xandt 2000) and have
meanwhile become standard instruments for measuring waehaciies in the atmosphere.
Overviews of the technical and scientific aspects of RWRuilialg its signal processing have
been provided, among others, by Gage (1990); Rottger arebhg1990); Doviak and Zrnic
(1993) and Muschinski (2004). Especially the routine aggtion by weather services and the
assimilation of the data in Numerical Weather Predictiordile is an indicator for the degree
of maturation that this technology has achieved, see e.qinsland Chadwick (1998); Bouttier
(2001); Benjamin et al. (2004b); St-James and Laroche (R0€lthara et al. (2006). However,
it is a matter of fact that sometimes large and unacceptafitgehces are observed between
the profiler data and independent reference measuremantgrly cases these differences are
clearly attributable to either clutter echoes or Radio beggy interference. These spurious
signals are often easily discernible in the Doppler spectoy human experts, but not always
adequately handled by the automatic processing. For thabre research on improvements in
wind profiler signal processing has remained a very active @ieer the last decade.

In this paper, we deal with so-called intermittent clutted goropose a new filtering algo-
rithm for the detection and suppression of these cluttemadgyin the profiler raw data. Of
particular importance are intermittent clutter echoesicivlare caused by migrating birds in
Spring and Fall. It is well known, that birds are effectivegets for a wide range of radars
from X-band to UHF (Vaughn 1985; Bruderer 1997a). In factstmaf the knowledge about
migrating birds come from radar observations. That corggriparticular their flight behavior
under the influence of environmental factors (Bruderer b9Radar ornithology is meanwhile
a mature field and it is therefore no surprise, that birds tsmlze detected by the the sensitive
radar systems used for wind profiling. The susceptibilityotd profiler radar systems to bird
echoes depends primarily on wavelength and antenna chasdics. It mostly affects L-Band
and UHF-systems, that is Boundary Layer profilers and Trppesc profilers, as discussed
in Wilczak et al. (1995). Intermittent clutter is of courdeaan issue for the new generation
of imaging radar systems, like the Turbulent Eddy Profileng@nhg et al. 2006). We mention
in passing that other remote sensing instruments used iadvtdbgy are also affected by mi-
grating birds (Mastrantonio et al. 1999; Gauthreaux and@el998; Gauthreaux et al. 1998;
Zhang et al. 2005; Liu et al. 2005).

Intermittent clutter echoes caused by aircraft were ajreaeintioned by Hogg et al. (1983),
and a few years later it become obvious that especially ecfroen migrating birds can be a
serious issue in wind profiling (Ecklund et al. 1990; Barthlefl994). If present, such spurious
signals can cause a significant deterioration of the quafitiie derived winds. To give an ex-
ample, the investigation of low-level jets using RWP dataampered by bird migration clutter
(Stensrud 1996). This makes it necessary to either usesx¢equality control procedures to
identify and skip contaminated data (Daniel et al. 1999;¢Setral. 2005) or to limit the studies
to periods where bird migration is negligible (Anderson amdtt 2001). Many other investiga-
tions using RWP data have mentioned the bird contaminatiolol@m, e.g. Ralph et al. (1998);
Locatelli et al. (1998); Parker and Johnson (2000); Lunsig{#003). While the need for an
extensive manual data quality control and cleaning mighddzeptable for research activities,
it is surely not feasible in any operational setting. Neveldss it is mandatory to avoid the
assimilation of bird contaminated profiler wind data, as ttan have significant effects on the
guality of the forecasts (Semple 2005). Due to the natureeptoblem, a bird migration check
at the operational center itself is not the best approachjéé@n et al. 2004a). While current
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state-of-the art profilers nowadays run more or less sdpaistl algorithms on site to reduce
bird contamination (Merritt 1995; Jordan et al. 1997; Isinéhet al. 2006), practical experience
supports the statement that the problem has not been feibhved.

The problem of bird-contamination is well-known (Wilczaka&. 1995; Engelbart et al.
1998) and it has been a topic for research in RWP signal psowesince. The first successful
attempt to reduce bird contamination was made by Merrit0%)9who suggested a selective
averaging method of the individual Doppler spectra based statistical criterion. The same
method has also been applied off-line to averaged spedten wata with higher resolution are
not available (Pekour and Coulter 1999). A similar approaak taken by Weber (2005), who
used neural networks for a classification of contaminateglsispectra, followed by a selective
averaging. Other proposals have concentrated on modifeddgetection in the Doppler spec-
trum to address spurious flier returns, among other clufees (Griesser and Richner 1998;
Cornman et al. 1998; Morse et al. 2002; Weber et al. 2004). dis&dvantage of all these
methods is that the mitigation processing builds upon thedber spectra (either before or after
spectral integration). Given the highly non-stationargreitteristics of the intermittent clutter
signal, it is necessary to deal with the bird problem at thiBesh possible stage of RWP signal
processing, that is before the Doppler spectrum is eston&eurier methods are generally in-
adequate for nonstationary signals, so it seems to be prtmladdress the bird contamination
problem before any Fourier transform is made. In other watdsnecessary nonlinear filtering
has to be performed in the time domain. This approach wassfiggested by Jordan et al.
(1997) and further by Lehmann and Teschke (2001), who stegdiesvelet decomposition and
wavelet coefficient thresholding, to remove the cluttet pathe signal. However, the a-priori
unclear choice of the mother wavelet and - at least for thelidyaavelet transform - a sub-
optimal signal separation in the wavelet domain, espgcradar zero Doppler shift, makes an
efficient separation of clutter and signal difficult.

Ideally one would like to have a intermittent clutter sugsien algorithm that reduces the
clutter part of the signal as best as possible, given the kahgata and that quantifies its
degree of contaminatigrihat is to provide some measure of clutter energy for guabntrol
purposes. Furthermore the algorithm must not degrade laéhaiiality and availability in the
no-clutter case, but it should perform as well as the provandard processing methods. This
requirement is more stringent than it may appear at firstaglarin this paper, we propose a
new signal-clutter separation method that attempts to these objectives. It is based on a
redundant frame decomposition of the time series followethk statistical filtering approach
suggested by Merritt (1995).

The paper is organized as follows. Section 2 gives an owsrgfeRWP signal character-
istics and signal processing and identifies shortcomingkefcurrently used methods when
intermittent clutter signals are present. Section 3 regibasic results of the mathematical the-
ory of frames, which deals with linear discrete signal reprgations. The goal is here to find a
signal representation, that achieves optimal separagbomeen the atmospheric and the clutter
part of the signal. This is achieved by the discrete Gabaresgmtation, which is discussed
next. Section 4 focuses on a statistical approach to obggtidentify the atmospheric signal
component, based on well-justified statistical assumptidincomparison of the new algorithm
with the previously used signal processing techniquesawshin section 5. The data used were
obtained during routine operation of a 482 MHz wind profiledar of the Deutscher Wetterdi-
enst at Bayreuth, Germany in the fall of 2005. Finally, a sannmand conclusions are given in
Section 6.



2. RWP signal characteristics

a. General properties of the received signal

The relationship between the signal received by the raddrtla@ scattering medium is
the topic of radar instrument theory, which basically diss how atmospheric properties are
mapped to the measurable function at the radar receiveub(goodman 1991; Muschinski
2004). It is known that both models for the scattering preessand technical properties of the
radar system need to be considered here. This task is fooieidad requires simplifications.
However, for the problem at hand it is not required to conssdeh theories in detail, because
we are only interested in some rather general propertieseofeceived signal, like statistical
stationarity. For a pulsed RWP, the received signal at thensa output has the following
well-known properties:

1. Continuous real-valued random voltage signal: Everysuesble physical quantity is
real. The randomness is the result of the random nature @ictitéering process.

2. Intrinsically nonstationary: This is due to the impuéscharacter of the transmitted signal
and the inhomogeneous vertical structure of the atmosphere

3. Multi-component: Beside the ubiquitous noise, there m@ygignal contributions from
several independent scattering processes, like Bragtesngtat fluctuations of the re-
fractive index, Rayleigh scattering at precipitation acattering at various clutter targets.

4. Narrowband: The frequency spectrum is bandlimited, eitfidth much smaller than the
transmit signals carrier frequency.

5. Large dynamic range: The signal varies easily over madgrsrof magnitude, which is
typical for all radar systems.

Before the data are available for digital signal procesding radar receiver performs the fol-
lowing pre-processing steps: Range-gate sampling, quadrdemodulation and matched fil-
tering. This is generic to all RWP receivers, both analog digital implementations. The
digital receiver output signal preserves the propertiés@ovided processing is linear (e.g. no
saturation effects due to hardware limitations). Howepasperties 1 and 2 are modified: Due
to pulse repetition, the nonstationary continuous sigeabmes quasi-periodic. Uniform sam-
pling for N fixed heights at multiples of the radar inter-pufgeriod then generates N stationary
sequences, provided the scattering medium at a fixed heogist bt change its properties sig-
nificantly over the length of the time series (Woodman 199Mhis is valid for atmospheric
scattering, ground clutter and noise and one of the basiog#sons of signal processing for
atmospheric radars (Keeler and Passarelli 1990). Furttresnthe quadrature demodulation
step leads to a complex baseband representation of themiemd signal, where the signal is
described through the time series of its in-phase (I) andiguare-phase (Q) components.

b. Classical signal model and its limitations

The classical RWP signal model assumption is that the delattlvoltage sequence at the
receiver output can be written as

S[k] = I[k]e™*>" + NK], (1)
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whereI[k] ~ N(0,0%) and N [k] ~ N(0,c% ) are independent complex zero-mean Gaussian
random vectors describing the atmospheric signal and tteiver noise, respectively (Zrnic
1979),At is the sampling interval of the sequence antthe mean Doppler frequency. Further-
moreI[k| is narrowband compared to the receiver bandwidth|and< 7 /At (Nyquist crite-
rion). BecauseS k| is the result of the demodulation of a real valued zero-mearstationary
Gaussian random process, the resulting Gaussian compldgmaprocess is also wide-sense
stationary and zero-mean. Furthermore, the sequence teagshwmg pseudo-covariance, that
is we haveE(S[k|S|l]) = 0. Such a process is usually called proper, circular or pirasgiant
(Neeser and Massey 1993). We will use this property lateommection with a moments theo-
rem for these processes (Reed 1962).

BecauseS|[k| is Gaussian, it is completely characterized through itadamce matrixR
with entries

(R): = Cov(S[k], S[l]) = E(S[k]S[I])
= E(I[K]I]N))e*=DA L E(NK]NTI)
= org[k — 1]e“ kDA L 52 5 10

Furthermore, stationarity is assumed over typical dweikes of O(1 minute. Therefore we
get the following expression for the autocovariance fuorcti

ACov(k) = o7 g[k]e™* 4 02010 = o plk] (2)

where we set? = o7 + o4;. Finally, the autocorrelation functioa|k] is often assumed to
follow a Gaussian correlation model, which corresponds@aassian signal peak in the power
spectrum. If the spectral width of the signalus then we have (Zrni¢ 1979; Frehlich and
Yadlowsky 1994)

Q[k‘] _ 6—27r2w2k:2At2 . (3)

Note that this Gaussian correlation model must not be cexfusth the characterization of the
random process as Gaussian, which covers a much wider dlaggals. The assertions are
normally very well justified and therefore successfullydige simulations of the radar signal
(Zrni€ 1975; Frehlich and Yadlowsky 1994; Muschinski etl#199).

In reality, however, there is often a third component cdmiting to the signal, namely clutter
(Muschinski et al. 2005), so that the signal model must béevrias:

S[k] = Ik]e™*2 + N[k] + C[k] . (4)

Clutter is the totality of undesired echoes and interfesigmals, therefore it is impossible to
generalize the properties of. In the case of RWP, clutter includes in particular echoemfr
airborne objects such as aircraft and birds and returns fin@ground. Interfering signals may
be caused by other radio transmitters that operate in the RAd#ver band. In the remainder
of the paper, we restrict ourselves to intermittent clustgnals.

While the properties of the intermittent clutter componkave not been systematically
investigated, it is instructive to take a look at a few exasplSuch have been presented by
various authors: Wilczak et al. (1995) described the disttharacteristic of bird contaminated
| and Q data when seen in an A-scope display, but the showrstemes taken with a 924 MHz
RWP is only 0.5 s long, which is too short to see its essentialacteristics. Jordan et al. (1997)



show an example of a 30 s long time series taken with a 915 MHP RWing bird migration,
which exhibits a variation in the envelope of the signal duenbdulation of signal amplitude
by the antenna beam pattern. Another example of intermittatter caused by airplanes and a
simple theoretical model is given by Boisse et al. (1999)e iost distinct feature here is the
time-dependent amplitude of the signal. A 19 s time series 482 MHz RWP containing an
airplane echo is discussed in Muschinski et al. (2005).

In the fall of 2005, time series data of the coherently irdéenl 1/Q signal of the RWP at
Bayreuth, Germany were saved in the wind low mode to get auenitataset for the investi-
gation of bird migration. For October 13, it was subjectyvgldged that the data showed a
maximum of of bird echoes and we have therefore selectedd#lyidor further investigation.
One particular dwell is shown in Figure 3. The time seriesdéngth of about 35 s and its
nonstationarity is striking.

When data containing intermittent clutter components aragared with uncontaminated
clear air signals (and possibly ground clutter, as in thargsta shown in Muschinski et al.
(2005)) it is very obvious, that the main difference is tlenient character of the intermittent
clutter signal component. Adopting the definition used bigdlander and Porat (1989), we
define a transient signal as a signal whose duration is shdiniet observation interval, in our
case the dwell time. This reflects the clear nonstationafitite underlying scattering process.
It is not the sinusoidal signature that makes the differeasa sufficiently strong clear air signal
also exhibits a sinusoidal nature (see Fig. 1 and 2 in Mus&het al. (2005)) - the most distinct
property of intermittent clutter is the highly nonstatiopaharacter of the clutter component.

c. Consequences for signal processing

Signal processing is the art of extracting the maximum arhofimformation from a given
measurement. This obviously means that the general prepeftthe signal determine the opti-
mal mathematical processing methods. A stationary Gaussaghastic process is without loss
of information described by its time-independent secordkoproperties, that is the autocovari-
ance function or, equivalently, the power spectrum. Thésiagtion holds when equation (1) is
valid, and the classical way to process RWP data is then l@asacon-parametric estimation
of the power spectrum using a discrete Fourier transforrh@{tsually coherently integrated)
raw signal over the dwell-time. The power spectrum is uguadlled the Doppler spectrum.
Its first three moments are estimated after the noise coniitbto the spectrum has been sub-
tracted, to describe the basic properties of the atmosphrgmal (Woodman 1985). However,
we have seen that the clutter contribution can be highly tadiosary. If the signak, contains
nonstationary components, then the Doppler spectrum ismgelr an adequate representation
of the stochastic process because information regardimg diependency is already lost. So
it cannot be expected, that a successful intermittentesidittering strategy can be developed
based on the Doppler spectrum. Therefore it is temptingytothods that were developed in
the framework of nonstationary signal processing. A neargssondition is obviously a sep-
aration ofC[k] from the stationary componeni$k]e™*2! + N[k]. To achieve this, we look
for a representation of the signal in which we are able torgiignate between stationary and
nonstationary signal components. This is the goal put fatwaWilczak et al. (1995)Clearly,

a superior technique would be one in which the bird signal atrdospheric signal could be
differentiated from each other and processed indepengentl

So far, we have considered either a pure time representafitime signal - namely the
discrete time series or its complex Fourier transform asra frequency representation. Both



are not optimal for transient phenomena, although they ameptete representations of the
same information. Therefore we look for an intermediategsentation that aims at the joint
time-frequency structure of the signal, so it needs to deserth on time and frequency. This
is the topic of the next section. If we are able to separatéosty and nonstationary signal
components in such a representation, then we might be aslgpyess the nonstationary clutter
part while leaving the stationary signal component esaliyintact.

3. Signal representation via Gabor frame expansions
a. The windowed Fourier transform and the time-frequeneyel

Let us consider continuous signals first, although in pcactve are always given a dis-
cretized signal. A quite natural way to analyze a continuggsal simultaneously in time and
frequency is provided by the windowed Fourier transform (WEee Gabor (1946); Daubechies
(1992); Kaiser (1994); Mallat (1999). It is essentially attemsion of the well-known Fourier
transform, where time localization is achieved by a predeining of the signal with a normal-
ized window function, € 1L.*(R). For any given functior§ € L?(R), the WFT is defined

as
+oo

ViS(m,w) = S(t)h(t —T)e “dt . (5)
The operatof/}, maps isometrically betweeh?(R) andL?(R?), that is a one-dimensional
function/signal is with no loss of energy transformed viaWFT into a two-dimensional func-
tion depending on both time and frequencyw. The(7,w)-plane is called the time-frequency
(TF) plane or briefly the phase space. This representatienswggested by Gabor (1946) to
illustrate thatboth time and frequency are legitimate references for desag a signal The
squared modulus df;,S is called the spectrogram, denoted by

PS(1,w) = |Vi,S(1,w)|?, (6)

and provides a measure for the energy of the signal in theftieggiency neighborhood of the
point (7,w) and thus insight about the time-frequency structuré efoundr. However, due
to Heisenberg’s uncertainty relation, there is no arbjtrassolution in time and frequency si-
multaneously, i.e. a point-wise frequency descriptionimmet domain and a point-wise time
description in frequency domain is impossible. Formalthg @onsiders in the uncertainty con-
text for some centralized signalwith ||| = 1, time and frequency variances

400 1 +oo R
o2 = / Pl o = o / 2 () [P W
_ T )

for which the Heisenberg uncertainty relation yields

1
O't'O'wZ§. (8)

It can be shown, that equality in (8) is achieved wliers a translated, modulated or scaled
version of the Gaussian function (equality means achiewjpigmal resolution in the time-
frequency plane). Their time-frequency spread is visedlithrough a rectangle with widths
o, ando,, in the TF-plane, this is called a Heisenberg box - see Figuiiéhis optimality result



shall be used later on when elaborating a discrete versi{®) oSince the WFT is an isometry,
the inversion ofl/, can be performed by its adjoint,

(S, ) 2m) = [IS1Z2m) = VaSIE2mey = (VaS, VaS)ramey = (Vi ViS5, S)r2(w)

and therefore
1 .
S(t) = V;VhS(t) = 2— // VhS(T, W)h(t _ T)ezwtdwdT ) (9)
v R2

Hence, in the continuous setting we still have signal amglysansform (5), and signal synthe-
sis, transform (9), in some straightforward way availabid therefore time-frequency signal
filtering can be performed in three simple steps (see e.gwéatteh and Boudreaux-Bartels
(1992)):

1. Analysis: Computation of the WFT using equation (5).
2. Modification of the WFT (e.g. time-dependent filtering).

3. Synthesis: Reconstruction of the modified signal usingagqgn (9).

b. From windowed Fourier transform to Gabor frame expansion

For discrete signals, continuous transforms (5) and (Matrsuitable and would create very
redundant representations of the signal. A first adjusteembe achieved when approximating
(5) and (9) by discrete sums. Discretizing (9) means takinlg values of the WFT at some
discrete lattice in phase space. As it was pointed out, a.Baubechies (1992), the sampling
density in phase space plays a significant role for the exdstand stability of a reconstruction
formula, i.e. of a discrete version of (9).

Assume we are given some given discrete suhggd be specified below) of the TF-plane,
then a naive discrete version of the inversion formula (gjven by

? .
St~ Y ViS(mT, kQ)hyk(t) With Ry, i(t) = h(t —mT)e™" (10)
(m,k)eA
where the parametél controls the discrete linear shift7’ along the time axis an€l the
sampling shiftkS2 in the frequency domain. In order to verify whether (10) iedesxhibits
a reconstruction formula, we first observe that for a famflglementary signals or so-called

atoms{ ., x } im,k)ea that is complete ifL?(R) any S € L?*(R) can be represented by a linear
expansion of the form

St = > anphm(t) (11)

(m,k)eA

But only in very specific cases, e.9. Whih,, . } (m.1)ea fOrms a basis,
Ak = <S, hm,k) == VhS(mT, kQ)

and therefore equality in (10) holds true,



In general, this is not the case, i.e. we only have

)% > (S hos) () = F*FS(t)

(m,k)eA

where the operatoF™*F and its properties are briefly discussed in Appendix A. Forea d
tailed analysis and discussion on this subject we refemttegasted reader to, e.g., Daubechies
(1992). To reconstruct (i.e. to invertF™*F"), special properties oA and on the analyzing
atoms (the dual functions th) are required. In what follows, we shall focus on the prac-
tically relevant biorthogonal case in which the constmttof the analyzing atoms becomes
simple and, moreover, numerically stable. To this end, sgpphere is some auxiliary family
Gm i (t) = g(t —mT)e™™ (yet unknown) available that serves as a reservoir of amgyatoms
used to compute the Gabor coefficieafs; via (5),

Ak = (S, gmi) = VyS(mT, kQY) = /S(t’)gmk(t')dt’ . (12)

This approach was originally proposed by Bastiaans (1986grting now (12) into (11) yields

Z /S gm k dt hm k /S gm,k(t/)hm,k (t) dt/ .

(m,k)eA mk:EA

Equality in the latter equation is assured as long as

> G () i (t) = 8(t — 1) . (13)
m,k

Condition (13) is called thbiorthogonality relatiorand restricts the choice gfin dependence
on the preassigned functidgn The particular choice of the window functidn(e.g. its vari-
anceo},), the time shiftl” and the frequency shift directly controls the existence, uniqueness,
convergence properties and the numerical stability of thbd® expansion (11), which exists
for arbitrary signalsS(¢) only if QT < 2; this is a frame theoretical result, see (Daubechies
1990; Mallat 1999). The physical meaning of this inequaltyothing but the Nyquist sam-
pling criterion and represents the sampling dens$ity. = 27 is called critical sampling. This
was Gabor’s original suggestion, as he was aiming at eleanesignalsonveying exactly one
datum or one 'quantum of information’n other words, there was no interest in any redundancy.

Again this can be visualized in the TF plane: The time-freapyeconcentration of the dis-
crete elementary signals is represented by discrete gdetawith sidess; and o, and area
one-half, centered at the poiaT, kS2). At critical sampling, the rectangles do not overlap,
but fully cover the TF-plane. Gabor (1946) called thisrfiormation diagramIn his attempt to
derive a theory of communication, each area representslemeetary quantum of information
which Gabor proposed to calllagon Although conceptually simple and appealing, the Gabor
expansion at minimal sampling density in the TF-plaifi€ (= 2x) has no nice mathematical
structure. In particular, it does not form a basis with thei®&unctions localized in time and
frequency. A relaxation of the equalifyl” = 27 is therefore required and generates a crucial
degree of freedom in the Gabor expansion, this at the exp#rseersampling and a possible
non-uniqueness. F6IT > 2x the stability of the expansion is lost.
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c. Gabor frame expansions for discretely sampled signals

So far we have discretized (9) resulting in the Gabor franpaesion (11) forS € L*(R)).
But when it comes to real applications, only finitely manycdetely sampled values ¢f are
available; namelyS|[n] = S(mAt). Therefore it becomes necessary to develop a fully discrete
concept for evaluating the Gabor coefficients (12). Moreabe discrete subsétin (11) isin
general infinite and hence also not suitable for a numenmplémentation: the sum needs to
be appropriately truncated and, in addition, a discretsigrrof the dual function needs to be
derived.

In what follows, we illustrate how to proceed for discretdad§. For greater detail we
refer to the original paper by Wexler and Raz (1990) and AdpeB. Assume we are given
some discrete and finite time (periodic) sig§alvith sampling points. = 0, ..., N — 1, thatis
S[n] = S[n + N]. We therefore have to periodize the analysis and synthésdows as well,

ZthrlN . gln Zgn—l—lN

Slightly abusing the notation, we omit the tilde denotingigéic (finite) functions in the fol-
lowing. The signalS can be discretely represented by

M-1K-1

- Z Z am,khm,k[n] 5 (14)

m=0 k=0

whereas the Gabor coefficients can be derived from
N-1
g =) Snlg,, uln]. (15)
n=0
Introducing integersA M and A K and the toral componenty = exp [27i/N], the discrete
analysis and synthesis windows can be rewritten as
R i[n] = h[n —mAMIWERE g, i [n] = gln — mAM]WEE.

As can be seen\ M denotes the time and K the frequency step size. They correspond’to
and(2. In our setting they are constrained &/ - M = AK - K = N. From this it follows
thatAM - AK < N or M - K > N. The reconstruction formula takes now the form

M-1K-1 -1 M-1K-1
Z Z am,khm,k [j] = S Z Z gm k
m=0 k=0 = m=0 k=0

where we have assumed that the following discrete versidmoothogonality relation (13) for
the sequenceds andg is fulfilled,

M-1K-1

Zzgmk _61J'

m=0 k=0

It can be shown (for a proof see Appendix B) that the biorthadjty relation is satisfied if

ply N
§ : —JpM —
= h, +QK]W [j] MK (Sp 05q0 (16)
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for0 < p < AM —1and0 < ¢ < AK — 1. System (16) can be rewritten in matrix form:
Letv = (N/(MK),0,...,0) be avector of lengtA M AK andg = (g[0],...,g[N — 1]) the
vector representing the dlscretely sampled dual frameleantibe the matrix of siz&A M A K x
N with entriesA, ), = h(j + ¢K)Wi", then the dual framg is the solution of the linear
system

Ag=v. a7)

For critical samplingAMAK = N, g is unique if matrixA is nonsingular. For oversampling
AMAK < N, system (17) is under-determined, and the solution is ngdpminique and
therefore there is a variety of possible dual frame funatipn

d. On the choice of the analysis and synthesis atom and thgdarte lattice

As we have seen, there is a high degree of freedom when cotisgra frame representation
of some signalS. In particular,

i) the choice of the synthesis winddw

i) the choice of the time-frequency sampling gAdi.e. the choice oM and AK that
specifies the redundancy/non-redundancy and therewithdheuniqueness/uniqueness
of the Gabor frame expansion (14)

iii) the choice ofg in case ofAMAK < N, i.e. in the oversampling situation one may add
further desirable constraints on the solutgpaof system (17), e.g. minimum energy-norm.

These three aspects shall now be discussed:

At i): Any functionh of finite energy (square integrable) is appropriate. Howegementioned
above, Heisenberg’s uncertainty relation (8) requiresofstimal time-frequency resolution a
Gaussian function. Therefore, we chose

h(t) = 7Y, /? /%) such that||h| =1, (18)

where the scaling parametey (determined below) shall allow either a better resolutiotine
or frequency. As we shall ini), the time-frequency localization properties of synthdsis-
tion h carry over to analysis function

At ii): The most important parameters that control the samplimgitiein the TF-plane are
AK and AM. Together with the specification, they fully determine (up to non-canonical
choices ofg) the discrete Gabor representation of some given functiomprinciple, the only
requirement iISAKAM < N. But because of Heisenberg’s principle, too densely saigpli
(high redundancy) the TF-plane is not worth the trouble. #precisely, letAt denote the
sampling size of5, i.e. S[n] = S(nAt), with total period ofS of NAt = T, (often referred
to as the dwell time). Then, in the classical FFT context,ftbguencies are due to Nyquist’s
law automatically spaced with resolutiopfi7” within [—1/2At, 1/2At]. Through the flexibility
of the Gabor representation, we may individually setup itine tand frequency spacing. Let us
consider to this end the Heisenberg box size, i.e. the tindefrauency variances (7) which
take for our particulah the forme? = ¢2/2 ando? = (207)~!. If we restrict the spacing of
the TF-plane to this box size (essentially smaller woulddpe an overlapping of the boxes),
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i.e settingAr = AMAt = o2 andAw = AK/T = o2, Heisenberg’s uncertainty principle (8)
and the solvability of (17) yields

N > AMAK > iN : (19)

The right inequality in (19), represents an upper samplimgnol that prevents an unnecessary
Heisenberg box overlapping. If now an application requardéisne resolutiom\r in the Gabor
representation, we immediately obtain in the context ofseleberg’s uncertainty principle the
optimal scaling factor for the synthesis (and therewithtfi@ analysis) atom,

or = 2AT

and a suggestion for the sampling density in time and frecyen

N
AM = |AT/At] AK > AN
At iii): In the oversampling situatiod\M AK < N), the non-uniqueness can be used to
add desirable constraints to the solution, for example mumn energy. This was discussed in
greater detail in Qian and Chen (1993) and Qian et al. (199iRce A is underdetermined we
may rewrite (17) by applying the QR decomposition to its $raosed form as

(R [0)Q7g=(R[0) (%) =
and thuse = (R”)'v. SinceQQ" = 1, it follows

g:Q(%)=(Qm\Qy)<%)=Qmw+ny-

Sinceh is in the rangé,,) and because ran@@,) Lrangeq,, ), one hangh = 0 (which
is of interest below). Moreover, we observe that the anslygndow g is the sum of two
orthogonal vectors withg||* = |z||* + ||y||>. Due to (17),Q,z = Q,(R") ‘v, butQ,y
may depend on other constraints. When searching for themiminorm solution, we simply
set||Q,y||> = [ly[|* = 0 and obtain

g = Qmm = Qm(RT)_lv = Gmin

which is nothing tham,,,, = A”(AA”)~'v. However, for a meaningful interpretation of the
Gabor expansion, we would prefer an analysis wingowhich is locally concentrated in the
TF-plane. The design of such a functignvhen the synthesis functignandA K andA M are
given is a nontrivial problem and was also addressed in QianGhen (1993) and Qian et al.
(1992). The problem can be formulated as follows: given amadly concentrated function
h (e.g. the preassigned synthesis function), find its bigitimal functiong whose shape best
approximates time and frequency shifted versiong,afe. minimize

2
g
E(g,CL, b) :Hm - ha,b

1 .
=2 (1 — m?ﬁ(g, ha7b)) while Ag = v.
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For fixeda andb, the optimal vectow in the representation fay (x is still fixed through the
biorthogonality relation) is given by

S P
§R<waa ha,b> yrens

Choosingh,, = h yieldngha,b = 0 (see above) and thgs= 0 and consequently, = g,,....,

i.e. the shape of,,;,, best approximates the shapetof Therefore, the TF-plane localization

properties ot carry over tog in this case. But note, that in principle any target functgn is

allowed and thus there is a large variety of possible amabtsimsy.

e. Gabor representation of two examples

To illustrate the signal separation property of the disci®abor expansion for a single
dwell, we consider two examples of simulated and measure® H&¥a. The method of Zrnic
(1975) was used to simulate a signal in line with the classigaal model, which contains only
noise and a stationary atmospheric component. In the frespu@omain, the atmospheric signal
peak is assumed to be a Gaussian center¢g-atw /27 = —10.9s~! and with a spectral width
of w = 0.9s7!. The discrete spectrogram of this signal is shown in Figuréh atmospheric
signal component is represented as a horizontal line ¢gsiatity) centered at the prescribed
Doppler frequency. Noise is spread over the complete TFeplan

Now lets take a look at real time series data containing aitiaddl intermittent clutter
component. This dataset is further discussed in sectionh&. ofiginal I/Q data is shown in
Figure 3. Clearly, this time series is not stationary buttamrs transient components due to
migrating birds. Assuming that a time resolution®f1s) is sufficient to resolve these tran-
sients, we select a time resolution of about 0.5 s for the Gakpansion. This corresponds
to a frequency resolution of about 2 Hz. An appropriate sargpdensity in the TF-plane is
given withAM = 64 andAK = 64. SettingM = 128 and K = 128, we get an oversampling
of factor 3.5; the optimal scaling is given by? ~ 1. In contrast to the simulated case, the
spectrogram of the real signal shown in Figure 4 shows amtditinonstationary signal compo-
nents, which are a typical signature of contamination bgrmittent clutter. Taking a look at
the pure time representation of the signal it is difficultdentify the separate transients which
show up as maxima of the envelope of the 1/Q signal. HowevgurE 4 shows the same signal,
but this time its Gabor phase-space representation. Tigksrepresentation provides a far
better picture of the signal transients, even if the spgctnmm shows only the modulus of the
Gabor coefficients, because the Gabor coefficients itselfamplex. It becomes clear that the
time series is contaminated by three transitory bird-eseffitvo of them overlap in time and
can therefore not easily be distinguished in the time regragion. All bird signals are much
stronger in amplitude than the atmospheric signal of isterEhe latter can be seen as a line of
guasi-constant frequency centered at about a frequencyHat By comparing Figure 2 with
the real data shown in Figure 4, the goal of the filtering psedeecomes evident.

4. Filtering through the statistics of Gabor frame coefficiats
a. Motivation for the statistical approach

With the tool of the Gabor representation at hand, the next istto derive an appropriate
filtering strategy for removal of the transient clutter sigm Our intention is to use the available
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a-priori knowledge about the signal components (atmogphesise, clutter) to construct an
objective decision process aiming at a proper signal compioseparation.

It is well-justified that both the atmospheric and the noiggma component are station-
ary Gaussian random processes. The atmospheric signalb@mméded spectral width much
smaller than Nyquist interval, whereas noise is white andag over the full TF plane. Not
much is known in contrast about intermittent clutter, oty hon-property that this signal com-
ponent is nonstationary over typical dwell-times. We mage af this a-priori information to
derive afilter that has a pass-characteristics for re@izabf wide-sense stationary RP’s and a
stop-characteristics for all nonstationary processest i) signals looking like the simulated
example shown in Fig. 2 should not be affected by the filtepnocess. The goal is thus to
derive an objective procedure, that modifies the Gabor péaee representation of signals in
such a way, that stationary Gaussian signal componentseserped.

One can imagine several strategies for implementing sudtea firor instance, this could
be based on image processing techniques or a fuzzy-logroagp similar to the one used by
Cornman et al. (1998). We follow a statistical approacht ttees first been used by Merritt
(1995) for the same problem and that is applied to the tenhgerpence of Doppler spectral
coefficients at fixed frequency bins. The goal is to constagstnilar test, but this time in Gabor
phase space. We therefore need to analyze the statistag@nties of the Gabor coefficients
with respect to the different signal components, in ordedigtinguish between clear air and
clutter return. This immediately leads to the question af llwe properties of Gaussian station-
ary processes are mapped to the Gabor coefficigntsor |a,,, »|?. This problem is discussed
in the next paragraph.

b. Mean and variance estimator for Gabor spectrogram caefits

Since we aim to construct a statistical test (see the netibseoelow) which is based on
the expectation and the variance of the individual Gaboctspgram coefficient$a,, x|*, we
need to define adequate estimators for the expectation angatiance that are based on our
observations (given througs! ).

First, to simplify the notation, we introdueg as a shorthand notation of, x, i.e. in what
follows we set\ = (m, k). Then the Gabor spectrogram coefficients take the form

=

=3 Sinlg,ln] S Sllay )

l

Il
=)

As mentioned in the previous section we may assume, the dataenceS satisfies for all
n=20,...,N—1, B
ES[n] =0 and ES[n]S[n+1] = o?pll] .
With these two assumptions, the expectation and the covaiaf the Gabor spectrogram co-
efficients are given by
E|CL)\|2 = 02<p * gAag)\> )

Cov(lar|* [ay|*) = o*[{p * g5, 9,)
which is shown in Appendix C (Lemma 3 and Lemma 4), where fheperation stands here
for the discrete convolution. The latter two formulas shberinfluence of the dependency.$f

and the redundancy of the Gabor frame expansion. In éaseuld be i.i.d. (i.e.p[l] = ¢, 0),
it follows

*,

2

Elax]* = 0* and Cov(lax|*, |a,|*) = o*[(g,, 9,
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If, moreover,{g, } A forms an orthonormal system, the covariance matrix becatizgmnal;
i.e. as long as we deal with a redundant frame, the Gaborrspedcs always correlated with
a range of dependency described by the decay of the Gramiaixmfi{g, } e (up to the
convolution withp). The essential observation for our purpose is

Varlay|* = Cov(lax|*, ax]*) = o*[(p * g5, 9x) " = (Elax]*)” .

Consequently,

(EJax|*)?
)y 2
Var|a,|? ’ (20)

which holds true for independent as well as dependent samsipte that follow a distribution
which is determined by its moments. As property (20) comstisaonly the first two moments,
it may hold true for a much richer class of distributions (artgcular, it holds true for normal
distributed random variables).

In order to construct a statistical test that verifies progpé0), we have to find optimal
estimators folE|a,|?> and Var|a,|? that are based on a finite number of observations. To this
end, we introduce a index subgef C A containing\ and L — 1 further different indices),

i.e. || = L. As an estimator foE|a,|*> = o2(p * g,, g,) Which is based orl. neighboring
observation variables we define

B = o 3 laof?. (21)

C,
A neQy

where the constant is given by

CQA:ZMM,

i (P*gx 9

For i.i.d. samplesS|n|, the correcting multiplier in estimator (21) reduces’te, = |2\| = L,
and therefore (21) is then nothing than the well-known mestimeator,

- 1
E(Q) = I Z Jay|* -

Assuming
> Hpxgy.g,) <Cq°,

VYIS DN
Lemmas 5 and 6 (see Appendix C ) verify that (21) is a condigstimator forE|a, |2, i.e.

lim E|E() — E|ay > = lim (Var(E(Q)) + (Elax|> — E(E(Qy))?) = 0.

By the same reasoning, we define an estimator for variance,

V() =C ) (la,f* — E())?, (22)

nEQ

where the constant is defined by

c? 1
=23y C—g + (L — 2Cg,) (1 + DAL > cga) : (23)

C
neQy A n g aeQy
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Similar as before, itis shown (see Lemma 7 in Appendix C)diséimator (22) is unbiased (and
certainly consistent but the proof is omitted). Switchiadhe i.i.d. case yields

_ 1 1
C 1:2L+(L—2L)(1+ﬁ cﬁ,a):L—E > 1969,
évaeﬂ)\ évaeﬂ)\
and therefore (22) simplifies to

N L
V() =
g L2 — Z@aem |<g§aga>‘2

> (lag* = B(2))?,

ney

which can be easily seen with the help of formula (C2). If, emwer,{g,} forms a basis, we
end up with the classical variance estimator

V() = 71 3 (al — B@))

ney

c. A statistical test performing signal identification

After having established estimato%m) andf/(QA), we aim now to apply these quantities
to the construction of a test that identifies Gabor coeffisi¢imat can be associated with clear
air returns. Typically, an atmospheric return is statigreand assumed to follow a Gaussian
distribution, i.e. a test on the first two moments of the sigvithgive us some indication if this
is true.

The basic idea goes back to Merritt (1995), who statisticabted a sequence of single
(non-averaged) Doppler spectra in order decide whetherteylar Fourier power coefficient
was caused by a Gaussian or non—Gaussian signal. For thisetléhe classical test of Hilde-
brand and Sekhon (1974) in a modified way. Following this apph, we consider the squared
modulus of the Gabor phase space coefficidnts; |>. Because we are interested in stationary
signal components, we consider the sequeage |* for fixed frequency bins, i.e. we just pick
individual rows and let only the time index change. For a fikedjuency index:, we define

Q= {(m,k): m=0,...,M — 1}. If this sequence is stationary Gaussian, then it should
hold that
” 2
I(|ami]?) = M >1 (24)
V()

This, however, is typically not observed if the sequeficgy|? is affected by non-stationary
intermittent clutter. It is a well known fact that interndttt clutter signals are almost always
stronger than the (clear air) atmospheric return. In thgecave will gety < 1. In a next
step, we therefore sort the sequence according to powet.ig;hae derive the order statistic
Of {Jamk*}ommen, Which is {|apmm).k*}mrea,- ¢ Stands for the permutation map. This
ordered sequence has the property, that, «|*> < |ap@m)+1.]* for all (m, k) € A, . For
[=0,...,M—1, we define subsets,(I) = {(¢(m), k) : p(m)=1,...,M —1}. The largest
coefficients are discarded, which hopefully sorts out adiftaents affected by clutter. Using
the quantities (€, (1)) andV (€,(1)) of the subset, the statistidsis again computed until

(B@0)* |

ﬂ(‘aw(m)=l,k‘2) = V(1))
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holds. The largest coefficient for which the test is satigBedken as a threshold for a frequency-
dependent identification of the clutter component.

d. Signal separation through Gabor coefficient threshaidin

The local threshold is computed as the average value of thaining Gabor coefficients.
All coefficients |a,, x|* greater than this threshold are then regarded as cluttee. pByblem
exists, if the subset, (/) becomes too small in this iterative process. Then the Stati®sti-
mate will become unstable and the estimation of a local bimlelss no longer meaningful. This
should not happen if the dwell time is sufficiently long, lusinot always known how long the
dwell time must indeed be for various types of intermittdatter. Further investigations are
needed to clarify this question. However, it might nevdehe be attempted to clean data sets
regardless of the dwell time used. In these cases, it canghdjat the nonstationary compo-
nents have sometimes a duration on the order of the dwell timiiis case, it can be useful to
replace the local threshold with a global threshold if theedion (24) is not reached after a cer-
tain number of iterations. Such a global threshold can bieetkfrom stable estimates of local
thresholds at other frequenciesSuch a global threshold should be constructed in such a way,
that it reflects the noise level in the Gabor representaftoninstance, such a global threshold
could be estimated by averaging over a certain number oftfadiesst local thresholds.

Leaving this problem aside, we can formulate the filteringcpdure as follows: A coeffi-
cient|a,(.,|* with p(m) = [ for which the (24) holds is associated with clear air ret@ased
on the test, we introduce a clutter index set as

Q5 = {(m, k) : Wagemsl®) > 1, o(m)=1,...,M —1}
The average value of the remaining coefficients in the subsaken as a local thresholgt
1
tk = m Z ‘CLWL7]€‘ .
FARED (ke 00

Themain resultof this paper - the nonlinear filtering - is now formulatedtie following:

Let S be the given RWP signal. Based on our model assumptions/tdredicomponent is
given by

K-1
(I)(S) [n] - { Z am,khm,k [TL] + Z tkeiargam’khm7k[n]} .
(m,k

k=0 VEQR\QS (m, k)€

Finally, we discuss a practical aspect of the filtering mdthdhe evaluation of the clutter
index set)s requires the computation of the modified variance estimdtois can be done in
a numerically thrifty way, assuming we have all the innerduas(g,, g,) and(p * g,,g,),
respectively, at hand. Note that the efficiency can be auditly improved due to the fact that
not all of them are required. This becomes clear bec&ii$k (1)) is derived for fixed frequency
indicesk and thus the correction term relies only on inner producte@form

(Gomir o) = (gl —mAMYWRAE g(- — m/ AM)WF)
(g(- = mAM),g(- — m'AM)) .
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Nevertheless, the computational overhead involved in edimg the modified variance estima-
tor is still greater than in the case of the classical vaeagstimator. Our experience has shown
that the variance estimates obtained with the two methodwtdiffer much. It may therefore
be appropriate to use the classical variance estimatora¥img of processing power is neces-
sary for a real time implementation of the algorithm. Howewaedetailed consideration of this
simplification is left for a future study.

5. Areal example: Comparison with classical processing
a. Data set

Now let us illustrate the performance of the proposed fitgglgorithm by applying it to
real RWP data obtained with the 482 MHz wind profiler at BaylieGermany on October 13,
2005. This radar is one of three operational systems thdd¢uescher Wetterdienst uses in its
operational aerological network. The technical char#sties are summarized in Table 1. More
details and an overview of the standard signal processaps sif the radar system are given in
Lehmann et al. (2003). For wind measurements, the systemmmsing in a four-beam Doppler
beam swinging configuration using two different pulse wadtfi1700 ns (low mode) and 3300
ns (high mode). The averaging time is 26 minutes, the rem@ihiminutes are used for RASS
measurements of the virtual temperature. For the invasgiigaf bird migration we consider
only low mode data. The sampling parameters for the low made dre given in Table 2. Of
interest below are the resolution of the time sefdgs= 0.007708, the number of data samples
N = 4608 and the total length or dwell tim&; = NAt = 35.518464s.

During the bird migration season in October of 2005, fullg¢iseries data of the coherently
integrated demodulated receiver voltage signal were siavtte wind low mode. Both wind
and spectral data were manually reviewed to identify a daly significant bird migration. It is
well known, that a human expert can easily detect bird migmagvents by searching for typical
patterns in the wind measurements (northeasterly dimegtio fall, discontinuities at sunrise
and sunset), which are additionally accompanied by iregahd wide, sometimes multiple
peaks in the Doppler spectra. In contrast to most cluteg-gituations, those peaks exhibit
a poor time and range gate continuity. Time-height plotshef éstimated moments (power,
radial velocity and spectral width) are helpful to get a guweerview of potentially interesting
cases, and a closer look into the time series data then tiypocafirms the conjecture of bird
migration. Particulary significant bird migration was ribten October 13 and we therefore
selected that day as a test case for the new bird mitigatigorithm. A significant fraction
of wind data were contaminated by bird returns, the effedtast seen in Figure 10. The
winds shown have been computed without any intermitterttesiuemoval algorithm. The
consensus method is normally not able to suppress the effdw bird echoes because of their
frequent occurrence. The operationally used intermittariter removal algorithm (ICRA), a
particular implementation of the statistical averaginghmd proposed by Merritt (1995), could
only alleviate the problem, see Figure 11. Also, the openaii quality control (Weber-Wuertz
continuity check, not shown) was only able to flag a small petage of the contaminated data,
because the erroneous wind data exhibited the typicahsitriconsistency.
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b. Processing details and results

A software was developed to allow reading and writing of thafifer time series data using
the proprietary binary format of the profiler vendor. Thisdadt easy to process the data
using the Gabor filter and to save them again in the originalffitmat. The reprocessed data
could therefore be seamlessly integrated in the off-limsiea of the operational wind profiler
software, to compare the performance of the different algurs.

As an example, we consider again the measurement takensoutiebeam of the profiler at
range gate 9 (1.6 km height agl) with a start time of the dwd0a09:45 UTC. This was already
discussed in section 3. As described in section 4, localstem frequency) thresholds were
estimated to separate the clutter part of the signal fronstiaigonary components atmosphere
and noise. During processing of the complete day it was tesi¢hat the dwell time of the data
of about 35 seconds was apparently rather short to guarthrdeevery observed intermittent
clutter signal exhibits a clear transient behavior. Somes the duration of the clutter signal
component was on the order of the dwell time instead. If thithe case, then the estimation
of the local threshold may become unstable and signal sipaan partly fail with the result
that clutter energy leaks through the filter. One way to rgmbs problem is to replace local
thresholds with a global threshold as described above. H@example data, this was done
if more than 30 percent of the Gabor coefficients of a pamictiequency were classified as
clutter. The global threshold was computed as the mediani®percent of the smallest local
thresholds. Note that the global threshold is an estimatéhi® noise level. Another way
to handle this situation would be to either flag this range gat suspect or to set the whole
spectrum to that of random white noise, so any signal woulsuppressed. Further research is
needed to learn more about typical intermittent clutteratizristics and to optimize both the
data sampling and the performance of the filter. The methedrite=d in this paper should be a
useful tool for such investigations.

Application of the filtering strategy yields a filtered Galptiase-space representation, which
is shown in Figure 5. Here, the moduli of the coefficiemts, representing the transient (bird)
contributions have been replaced by an estimation of th@stay signal component at that
frequency (either noise or atmospheric signal). The recocied 1/Q series which is obtained
through back-transformation into the time domain is presgim Figure 6. The nonstationary
signal components have been suppressed and also the alaplgs been significantly reduced.
It is easy to measure the reduction of total power of the dgtadmputing the difference in
variance between the unfiltered and the filtered data, to m@&ifarmation about how much
clutter energy was removed by the filter.

Gabor filtering was performed for the complete dataset aeddbulting bird-cleaned time
series data were used for reprocessing of the whole daywlHsgompared with two additional
processing methods: Method 1 used no intermittent clutterifig algorithm whereas method
2 used the routinely employed Intermittent Clutter Algionit (ICRA), an implementation of
the Statistical Averaging Method (SAM) originally propadday Merritt (1995). The results for
all range gates for the dwell taken at 00:09:45 UTC (stackeddler spectra) are shown in
Figures 7 (no filtering), 8 (ICRA filtering) and 9 (Gabor filieg). Without filtering, the lowest
17 range gates show spurious peaks and also large spedtithlsvadue to the transient bird
echoes. Note especially the discontinuity in height of treation of the estimated signal peak
(derived Doppler velocity). With ICRA processing, the effef the birds has been drastically
reduced, however, there are still range gates which showioggupeaks. This indicates that
ICRA was unable to reduce the clutter energy completelyuféi@ shows the processing results
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of the newly suggested filtering algorithm. The spuriousmants of the bird clutter are almost
completely gone, although range gates 15 and 16 (2.49 addkm®eight agl) show apparently
some bird clutter energy leaking through. This is also ré&dléan the somewhat larger spectral
width at these heights. However, the spectral peak is nowraarus across all heights and the
spectral width estimates are mostly unaffected by theeaslutt

Finally, the horizontal wind vector data derived througé three different processing meth-
ods using the same data are shown in Figures 10 (no clutnirfdfd, 11 (ICRA processing)
and 12 (Gabor filtering), respectively . The color codingus tb the wind speed (magnitude of
the horizontal wind vector). Obviously, the clutter contaation has been drastically reduced
by the new algorithm.

6. Summary and conclusions

We have dealt with wind profiler signals that were obtainedndubird migration and
shown, how the signals can be decomposed into a time-freguepresentation. Apparently, a
Gabor frame representation achieves optimal time-frecpezsolution and thus provides good
signal-clutter separation. Previous attempts for intéant clutter filtering have made use of
the wavelet transform (WT) and its discrete versions (Joretaal. 1997; Boisse et al. 1999;
Lehmann and Teschke 2001), so it is interesting to brieflgwdis the difference between the
wavelet and the Gabor approach and to point out why we favoGdbor approach. The WT
is another way of analyzing nonstationary signals. Theetbifice between both approaches
lies in the tiling of the TF-plane by the elementary signalst{me-frequency atoms). In the
Gabor (WFT) approach, the tiling is uniform with fixed redadn. This is in contrast to the
wavelet approach, where the tiling is generally variabler €&xample, a wavelet orthonormal
basis decomposes the frequency axis in dyadic intervalsevbizes grow exponentially. In
other words, the frequency resolution gets worse the bitéetime resolution becomes. This
is wanted if the signals under investigation have highdesgy components of short duration
embedded within low-frequency components of slow tempaaahtion. For the RWP signals
however, we found no evidence for such a behavior. The intemm clutter components occur
at nearly all frequencies within the typical Nyquist rangghwio obvious difference in tem-
poral characteristics. In particular, they can occur closeero frequency where the temporal
resolution of the WT is the worst. Especially in this case,WiT seems not ideal to resolve the
transient nature of the intermittent clutter. Exampleslofter signals in both representations
shown by Justen and Lehmann (2003) illustrate this quitarigle So the argument which is
often used against the WFT, namely the constant time-fregyueesolution of this representa-
tion turns out to be an advantage in our application. Adddlty, the Gabor expansion using
a Gaussian window achieves the best possible time-freguesolution by reaching the lower
limit of the Heisenberg uncertainty constraint.

To identify the clutter contribution of the signal, we malszwf the a-priori information that
the atmospheric signal component of interest can be adelguabdelled as a stationary, proper
complex Gaussian random process. Using this assumptiest statistic is constructed to serve
as a criterion for the discrimination between stationany aan-stationary signal components.
This follows the approach first suggested by Merritt (19%%)wever, in case of the redundant
Gabor transform it turns out, that the variance estimatartbabe modified to guarantee its
unbiasedness and consistency. Proofs for the necessairffaatohs are given in detail.

Finally, the algorithm has been applied to a real datas¢twha obtained with a 482 MHz
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wind profiler during bird migration season. It could be dewstosted that the performance
of the new algorithm was superior to the performance of theratponally used intermittent
clutter reduction algorithm, without obvious negativessadfects. Application of the algorithm
has shown, that sampling settings of the wind profiler apgbr@lay an important role in the
clutter mitigation capabilities of the algorithm. This istrunexpected, since both the sampling
period and the dwell time determine the resolution of the epspectrum and obviously
also the resolution of any time-frequency representattomthermore, longer dwell times may
ease the identification of transient clutter signals andstabkle estimation of the thresholds for
noise and the stationary atmospheric component. This ecesdly important for cases where
atmospheric and clutter signal overlap in frequency.

Future work is suggested for a better quantitative chamaeten of intermittent clutter sig-
nals during dense bird migration. This should allow to ojmerboth sampling and processing
settings for operational wind profiler systems. A long-tewaluation of the new algorithm
would be useful to determine its limits and to estimate thégpmance improvements of the
new methods in comparison with previously used algorithiitss would be facilitated by an
online-implementation of the method and a means to comparerofiler wind measurement
with an independent data source, e.g. radiosonde measueme
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APPENDIX A

Frame theory

We briefly review some basic facts on frames using the alistcaation of functional analy-
sis, but the reader is advised to consult the rich literatoreletails (Heil and Walnut 1989;
Daubechies 1990; Carmona et al. 1998; Mallat 1999; Chsste2001).

A frame is a family of functions, that allow to characteriz&ignalS from its inner products
{(S, ha) }aea- It generalizes the notion of a basis in Hilbert space. Weabanys safely assume
that S(t) is element of the Hilbert spaké, because the received signal has finite energy. Let
H be some Hilbert space, the pair of parenthésis denote the associated inner product and
|- |13 = (-, -) the associated norm. A framdé, } in H is a system of functions for which there
exist constant8 < A < B < oo such that for alk € H

AlISIE < Y108 hal* < BIISIG - (A1)
AEA
The map,F' : H — (5, defined viaF' : f — {(f, hy)} is usually referred to as the frame
operator (analysis operator). So the signal is charaeby inner products with the frame. To
answer the question of hoyvcan again be synthesized from the inner prod{i¢fsh,) }, we
consider the adjoint frame operator givenByc = >, _, cxh,. This allows us to write

F*Ff=> (f,ha)hx. (A2)
AEA
If F*F equals the identityt, F* performs a perfect reconstruction. This is the case when
{h,} forms an orthonormal system. However, in general one happty 47 F)~! to (A2).
This is possible since the inverse exists and is boundedibea# (Al),

A-1<FF<B-1 andthus B ' -1<(F'F)'<A'.1.

Since(F*F)~! is self-adjoint and denotin@?™* F)~'hy = g,, one consequently has

> (S,ga)ha = F*F(F*F)"'S =8 = (F*F)"'F*'FS =Y (S, h\)gx - (A3)
AEA AEA
In frame lore g, is referred to as the canonical dual frame with respegt to
In general,(F*F)~! cannot be explicitly computed but must approximated by erafive
approach. However, the situation can be essentially rdlsween assuming that the frames
{h,} and {g,} form not a primal-dual but a bi-orthogonal frame pair, i.€\, g,) = 6x,-
If  denotes the frame operator with respecytpthen” = F(F*F)~! and one may write
((hx, gn))amea = EFF* which is diagonal and therefor is an analysis and™* a synthesis
operator yielding perfect reconstruction (and vice veirsagxchanging the roles éf and F+).
If now the bi-orthogonality relation yields a way to deriyg the inverse off™* ' needs not to
be computed.
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APPENDIX B

Biorthogonal discrete Gabor frame expansion

The following lemma can be retraced to its original form inXlée and Raz (1990), it gives
an explicit proof of the biorthogonality relation.

Lemma 1 Assume the relation

N-1
Y 9D+ aE)W P = N/(MK) 6,000 (B1)
j=0
is fulfilled for0 < p < AM — 1 and0 < ¢ < AK — 1. Then the biorthogonality relation
M-1K-1
Z Z gm k - 51 J
m=0 k=0

holds true.

Proof. This assertion can be directly shown. Let
M-1K-1

= Z ng,k(l)h k(7)
m=0 k=0
then
M-1 K-1
F,4) =" gl = mAM)h(j — mAM) Y WHI-DAK
m=0 k=0
We still have,
K-1 K-1
- _— K |if(j-0)/KeZ
k(j—1)AK __ 2rk(j—-1)/K __ )
kzg W - ;; € - { 0 , else

Since(j —1)/K € Z means there exists somes Z suchthay = (j—1)/K orj—Il—qK =0,
we may consequently write (by the Poisson Summation Foramdisthe made assumption)

M-—1
f3) = > gl =mAM)A(j — mAM)K > 6,10
m=0 q
M-—1
= K 0i1g0 Y gl —mAM)A(I + qK — mAM)
q m=0

AM-1
= K6 aoAM Y (zg b+ gk
q p=0 /

AM-—1
= K 0i_qcoM/N Y N/(MK)8,00,,0W"™"
q p=0

- 6j,l .
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APPENDIX C

Statistical properties of the Gabor coefficients

Lemma 2 Let S be given and assunteS[n] = 0 forall n = 0,..., N — 1 and thata, is as
defined in(15). ThenEa, = 0.

Proof. By definition,ay = S ' S[n]g,[n]. ThereforeEay = 3. "ES[n]g,[n] =0. O

Lemma 3 Let S be given and assunteS[n] = 0 forall n = 0,..., N — 1 and thata, is as
defined in(15). Moreover, assume a range of dependency of neighboringlsarof$ which is
characterized by the auto-covariance functjpof S, i.e. E(S[n]S[n + {]) = o2?p(l). Then

COV(a)” an) = 02<p * g>\>gv7>>
where %' denotes the discrete convolution.

The latter lemma states that the Gabor coefficientsurn into dependent random variables
(even wherp is a delta sequence, i.e. for independent samplé3.ofhe range of dependency
is determined by sampling density in the time—frequencgs@ad the range of dependency of
S. In caseS is a sequence of i.i.d. random variables, the dependengyisffully characterized
by the reproducing kerney,, g, ).

Proof. By Lemma 2,Cov(ay, a,) = E(axa,). Therefore,

N-—1 N-—1 N—-1N-1
Cov(ar,a,) — (ZS nla\n], 3 Bl ): E(S g,
=0 n=0 [=0
—1N-1 N—-1
= 2zzpl—nw 19,111 =0 (p*g)llg,ll] = *(p*g,.9,).
n=0 [=0 =0

0J
A special case of Lemma 3 Ha,|? = c%(p x g,,9,).

Lemma 4 Make the same assumptions as in Lemma 3. Then
Cov(lar| ay|*) = o*[(p * gx. g,)I* -

Proof. First, note that for proper Gaussian complex random vaeg&®|k] with ES[k] = 0 and
Cov(S[k]S[l]) = E(S[k]S[l]) = o?p(l — k) we have (Reed 1962)

E(S[k|S[1)S[n]S[m]) = E(S[kIS[)E(S[n]S[m]) + E(S[k]S[m])E(S[l]S[n])
= o' (p(l = k)p(m —n) + p(m — k)p(n —1)).

With the help of Lemma 3 (special case),
Cov(lax?, |ay[*) = E(laxl*|ay|*) — o*(p* g,,9:) (P * 9, 9,)
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and thus it remains to deri\i |a, |*|a,|*). Using the moment theorem of Reed (1962), we have,

E(jaalanl?) = (NZ_IS[ngA NZS a1 st g, o ]:;;S[m]gn[m])
- klZOE HB1S[Slm]) g, Mg Mg, (g,
= U4kl]§:0(p(l—k)p( —n)+ p(m —k)p(n —1)) g,[k]g,[llg,[n]g,[m]
- o ]:L al1g, | NZ pl1 -~ Rigs 11} NZ plon — g, | +

> a,lnlg,ml(p + gl (pra )]

= o ((p x gy, 9\ (P*g,.9,) +|(p* gmgn>l2) :

and consequently,
COV(‘G’)\P? |a77‘2) = 0—4‘<p * g)\7gqy>‘2 .
O

After having verified the basic properties of the Gabor powaefficients, we prove that esti-
mator (21) is consistent and that estimator (22) is unbiébedproof of consistency is omitted
because its proof requires the computatiofidFmixed moment).

Lemma 5 The estimatoi©(2,) unbiased, i.e. it holdEE () = 0%(p % g5, g,).

Proof. This follows by the definition OBQA and Lemma 3,

EE = Ela,|?
CQA Z |77‘

UISIN A neQy

o’ (p*g,,9,) =0 (pPxgy g, -

O

Lemma 6 Assume, that for the given dual frarffe, } exists some > 0 such that the condition
> e, (P *g,,9,)7 < C4 7 isfulfilled. Then the estimatdr(12,) satisfies
Var(E(A)) < 04C§f

and is therefore consistent.
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Proof. Similar as in the proof of Lemma 4 we directly obtain

~

Var(E(Q))) = E(E()) —o'(p* gy, g:)I
1

-z Z E(|an/\2\an\2)—04\<p*g)\,g)\>\2
5 o neqy
0'4 9
= C—z( > {(p*gnugn/><p*gmgn>+\<p*gn/,gn>\ }—
Oy Ny neqy
05A|<p*gx,gA>\2)
= TS leraya) < a'Cy
- 02 p gn’7gq7 ~ 0 Qy -
QX neqy

Lemma 7 The estimato#/(A) is unbiased, i.e. it holdEV (Q2,) = o*|(p * g5, g, )|
Proof. With similar arguments as in the proof of Lemma 4 and with tléofving shorthand
notations
ex = (P * g gx) and ey, = (p* gy, g,)
we have the following expressions

Ela,[* = o%(c]+¢) =20" |

4

- o

Ela,"E(Q) = D (e e,

QA§€QA

2 2 o 2

E(E(Q))” = R Z (CaCe + ¢t ) -

O\ ¢,ae0y

Therefore withZ, = |©2,| and the definition o€ in (23),
EV(Q) = C ) E(layf* — E())

UISN
= C) {E|an\4 — 2E(ja,[PE()) + E(Emn)?}
neQ)
2 1
UISOIN QA{EQA O\ £,ae0)
2 1
4 2 2 2
= o'C Z {2077(077 —cy\) — o Z Cpe T+ a Z Cg,a}
ne £eNy A £ ,aEN)
L —2Cq
= 040{2 Z cp(cn —cn) + Les + TA Z cga} (C1)
UISN £\ &,aefdy
c? 1
4 2 2 42
= O C)\C{2 Z C_;7+(L_2CQA)(1+W Z C{,a)} =0 Cy .
neQy A NN ¢ aeQ,
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lution) of the window functiort, ,(¢), centered at time = ¢, and frequencw = wy.
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FiG. 2. Gabor phase space representation of a simulated RW& smntaining only noise and
an atmospheric component. The x-axis shows time (in se¢@mdsthe y-axis frequency (in
Hz). Color contours (logarithmic scaling in dB) denote tlosvpr of the Gabor coefficients.
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Bayreuth 13.10.2005, Beam South, Height 1625 m @ 00: 09: 45

uni t s]

2. E+004

. E+000 p~

[ arb.
o

-2. E+004

Re(s[t]),

o

uni t s]

2. E+004

[arb.

0. E+000 p~

- 2. E+004

Im(s[t]),

10 20 30
Ti me [ seconds]

o

Fic. 3. Time series of the in-phase (upper plot) and quadratavee( plot) component of
the baseband signal measured at 00:09:45 UTC on Octobef@8,(8outh beam, range gate
9) with the 482-MHz RWP at Bayreuth, Germany. The complexetiseries contains 4608
samples. Each sample is the coherent sum of 94 echoes fraaagudnt pulses.
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FIG. 4. Same representation as in Figure 2, but for the data slmwigure3. The three
transient signal components are clearly separated frorstgt®nary atmospheric signal com-
ponent.
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FiG. 5. Same as in Figure 4 after filtering. For the transientaigomponents, the Gabor
coefficients were replaced by estimated thresholds for tdtgsary signal part at the given
frequency.
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Bayreuth 13.10.2005, Beam South, Height 1625 m @ 00: 09: 45
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FIG. 6. Same as in Figure 3, but for the cleaned signal obtaired the filtered Gabor repre-
sentation shown in Figure 5.
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FIG. 7. Stacked plot of Doppler spectra for all low mode rangesgjatbtained through standard
processing without any bird mitigation algorithm. Data eveneasured at 00:09:45 UTC on
October 13, 2005 (south beam) with the 482-MHz RWP at Bajxgaermany. The estimated
first and second moments are symbolized as a cross, wheresttieal/line shows the first
moment (mean Doppler speed) and the horizontal line derspestral width. Massive bird
contamination can bee seen in the range gates below 3.0 kyhthei
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FIG. 8. Same as in Figure 7, but Doppler spectra were estimaiad tiee operational bird-
mitigation algorithm ICRA. Bird contamination below 3.0 kneight is reduced compared to
Figure 7, but still significant.
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FIG. 9. Same as in Figure 7, but Doppler spectra were estimatedssdtistical Gabor filtering
of the original time series. Only minor remnants of bird @mnination can be seen in range
gates 15 and 16 (at 2.5 and 2.6 km height).
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Height Mean Winds: No bird mitigation processing
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FIG. 10. Wind barb plot of horizontal winds measured in the londmat Bayreuth on October
13, 2005. The x-axis shows time and the y-axis denotes hdigtia have been color coded by
wind speed. The signal processing was using no Bird mitgadigorithm. Relatively strong
northeasterly winds below about 3.5 km indicate strongimigkation, this can be seen between
00 and 05 UTC at heights around 1000 m and above 1600 m andagpafter 18 UTC from
the lowest gate to about 3500 m.
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Height Mean Winds: Standard bird mitigation processing (ICRA)
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FIG. 11. Same as in Figure 10. The signal processing was usingtdinelard ICRA algo-
rithm. Bird contamination has been reduced compared tor€itj, but is still significant after
19 UTC. A few other northeasterly wind barbs around 02 UTCadfected by intermittent
clutter echoes.
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Height Mean winds: Gabor filter bird mitigation processing
I
(magl) Bayreuth, Germany (BAY)

e

L T ’; Northerly Wind
7000 — =
L 4 o Cam
- - — <125m/s
r 7 — 250m/s
r 11 Y s00ms
6000 I~ ] b 7s0mis
L ] L 1000mis
L 11 W 1500ms
F 41 We 1750 mis
5000 — | W 2250 ms
r 11 Y 2500mis
[ 71 W 3500ms
L ] W 3750 mis
4000 — — L 50,00 m/s
= - WS (m/s)
L 4 Over
= 4 24
3000 — - 22
L ] 20
L i 18
= 4 16
2000 — — 14
[ i} 12
L ] 10
= 4 8
1000 — — 6
[ i} 4
L \ ] 2
o e e Y Under
00 02 04 05 07 09 11 13 15 17 19 21 23
12.10.2005 Time (UTC) 14.10.2005
Mode: 250 meter
Elev. (m): 514

FIG. 12. Same as in Figure 10. The signal processing was usimgethh&abor filter algorithm.
Bird contamination has again been reduced compared tod-idurThere are no indications of
bird migration between 00 and 05 UTC, and only a few obvioufieys and missing data after
19 UTC.
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Center frequency

482.0078 MHz

Peak (Average) RF envelope power (PE

P) 16 (2.4) KW

Pulse modulation

Amplitude (B/W)
Phase (pulse compression)

Pulse widths (vert. resolution)

1.7 us (250 m)
2.2us (330m)
3.3us (500 m)
4.4 us (660 m)

Antenna type Phased array of 180 CoCo antenn
Antenna aperture (area) 142m? (12.4x 11.5m)
On-axis gain above isotropic > 34 dBi

One-way half power (3 dB) beamwidth <3

Oblique beam zenith distance 15.2

RX type Heterodyne (IF 60 MHz), Digital IF
LNA noise figure <0.6dB

A/D conversion

14 bit (@ max 66 MHz)

Pulse compression

Bi-phase, complementary, max 32 |

=)

System sensitivity

< -154 dBm

Vertical measuring range

16 km (wind), 4 km (virt. temp.)

TABLE 1. Technical parameters of the 482 MHz RWP/RASS at Bayr@dimany
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Wind Low-Mode
Inter Pulse Period 82 us
Pulse Width 1.7us
Tx Duty 2.07%
# of code bits 1 (phase flip)
Pulse Peak Power (PEP) 16 kW
Spacing (on RX) 1.0us
# of Gates 50
First Gate 8.6 us

TABLE 2. TX and RX sampling parameters in routine operation
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