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Abstract

This paper is concerned with the uncertainty principle in the context of the affine-Weyl-Heisenberg group

in one and two dimensions. As the representation of this group fails to be square integrable, we explore

various admissible sections of this group, and calculate the resulting uncertainty principles as well as its

minimizers with respect to these sections. Previous studies have shown that these sections give rise to mixed

smoothness spaces. We demonstrate that the minimizers obtained for these sections actually interpolate

between Gabor and wavelets functions.
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1 Introduction

Several applications in the fields of signal and image processing involve the convolution of some filter bank
with the signal to be processed. This convolution provides local features of the signal or image. Usually, we
take some mother function and generate the whole filter bank using group operations, such as translations,
rotations, scaling and modulations. Determining the mother function is usually done by some ad-hoc methods
that account for the specific application involved. Special attention was given in the past to those functions
that provide the maximal accuracy, and hence minimal uncertainty, for the values of the features involved, e.g.
translation, scaling, rotation etc.

One classical example consists of the uncertainty relation associated with the Short Time Fourier Transform
(STFT). The STFT or so-called Gabor transform, see [6], is obtained by applying the action of the Weyl-
Heisenberg group to a suitable window function and taking the inner product with the signal. Moreover, it is a
classical result that choosing the Gaussian function as the window function minimizes the uncertainty relation
and therefore gives rise to canonical coherent states of the Weyl-Heisenberg group.

More recent studies considered the uncertainty principles which are related to the affine group in one dimension
and the similitude group as well as the affine group in two dimensions [1, 3, 9]. For the one dimensional affine
group it was possible to find an analytical solution of the form:

ψ(x) = c(x− η)−
1
2
−iηµ2+iµ1 , (1)

where c is some constant, η is purely imaginary and µ1, µ2 ∈ R. However, for the two dimensional case, it was
not possible to find solutions which simultaneously minimize the combined uncertainty with respect to all the
parameters involved, and therefore solutions that accounted for various subgroups were employed.

In this study we focus on the affine Weyl-Heisenberg group. There is a growing interest in this group as well as
in the integral transforms associated with it, and several studies have already dealt with it [4, 9, 12, 13, 14, 15].

∗This work has been supported through the European Union’s Human Potential Programme, under contract HPRN–CT–2002–
00285 (HASSIP), and through DFG, Grants Da 360/4–3, MA 1657/15–1, TE 354/1–2.
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The results of [4], where some mixed forms of smoothness spaces that lie in between Besov and modulation spaces
have been constructed, are of particular interest for the results of the present paper. These mixed smoothness
spaces are the α-modulation spaces, see [4]. In addition, the results of [13], where interpolating wavelet packets
between the Gabor and wavelet transform are generated, did influence our approach. It was already shown,
see [14], that the representation of this group fails to be square integrable. A possible remedy is to factor out
a suitable closed subgroup and work with quotients. We follow this approach in this paper and calculate the
minimizers for some subgroups. The results are extended to the two dimensional affine Weyl-Heisenberg group.

This paper is organized as follows: First, we discuss some basic results and summarize related work. Next, we
calculate the minimizers for the one dimensional affine Weyl-Heisenberg group and address the issue of using
admissible sections. Finally, we continue by analyzing the two-dimensional affine Weyl-Heisenberg group and
explore some possible subgroups for obtaining valid minimizers.

2 Background and Related Work

A general theorem which is well-known in quantum mechanics and harmonic analysis [5] relates an uncertainty
principle to any two self-adjoint operators and provides a mechanism for deriving a minimizing function for the
uncertainty relation. Before repeating this well-known result on uncertainties, let us fix some notation. Let A,
B be two self-adjoint operators. Their commutator is defined by

[A,B] := AB −BA,

the expectation of A with respect to some state ψ ∈ dom(A) by

µ(A) := µA := 〈Aψ,ψ〉

and, finally, the variance of A with respect to some state ψ ∈ dom(A) by

∆Aψ := µ((A − µ(A))2).

Theorem 1 Given two self-adjoint operators A and B, then for all ψ ∈ dom(A) ∩ dom(B) they obey the
uncertainty relation:

∆Aψ∆Bψ ≥ 1

2
|〈[A,B]〉|. (2)

A state ψ is said to have minimal uncertainty if the above inequality turns into an equality. This happens iff
there exists an η ∈ iR such that

(A− µA)ψ = η(B − µB)ψ. (3)

The Weyl-Heisenberg group as well as the affine group are both related to well-known transforms in signal
processing: the STFT and the wavelet transform, respectively. Both can be derived from square integrable
representations of these groups. The windowed Fourier transform is related to the Weyl-Heisenberg group and
the wavelet transform is related to the affine group. The linearized operation of the group at the identity
element can be described by the infinitesimal generators of the related Lie algebra. If the group representation
is unitary, then the infinitesimal generators can transformed to be self-adjoint operators. Thus, the general
uncertainty theorem stated above provides a tool for obtaining uncertainty principles using these infinitesimal
generators. In the case of the Weyl-Heisenberg group, the canonical functions that minimize the corresponding
uncertainty relation are Gaussian functions.

The canonical functions that minimize the uncertainty relations for the affine group in one dimension and
for the similitude group in two dimensions, were the subject of previous studies [1, 3]. In these studies, it was
shown that there is no non-trivial canonical function that minimizes the uncertainty relation associated with the
similitude group of R2, SIM(2). Thus, there is no non-zero solution for the set of differential equations obtained
for these group generators. Rather than using the original generators of the SIM(2) group, a different set of
operators was used in [3] that includes elements of the enveloping algebra, i.e., polynomials in the generators of
the algebra, in order to obtain the 2D isotropic Mexican hat as a minimizer. Further results were achieved in
[1] where a symmetry in the set of commutators was obtained for the SIM(2) group and a possible minimizer
in the frequency domain for some fixed direction was obtained. This solution is a real valued wavelet which is
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confined to some convex cone in the positive half-plane of the frequency space with an exponential decay inside
the cone.

The extension of these studies to the affine group in two dimensions resulted in two possible solutions [9].
The first accounted for the overall scaling and rotation and utilizes the results of [1, 3]. The second solution
was obtained by exploiting a symmetry in the group of commutators which led to

ψ(x, y) = (η + x)−
1
2
−iµ11+iηµbxeiµby y. (4)

It is square integrable with respect to the variable x if we select Re(η)bx ≥ 0, but not square integrable in terms
of the variable y, although it is periodic.

The affine Weyl-Heisenberg (AWH) group has already been addressed in this context in the early 90′s.
The paper [14] considered wavelets associated with representations of the AWH group. It shows that the
canonical representation of the AWH group is not square integrable, but can be regularized with some density
function. This work was later extended to N -dimensional AWH wavelets [15]. In [10] a scaling was introduced
in the Heisenberg group with an intertwining operator. More recently, [12] proposed a mechanism to construct
generalized uncertainty principles and their minimizing wavelets in anisotropic Sobolev spaces. A new set of
uncertainty principles was introduced in this paper by weakening the two operator relations and by introducing
a multi-dimensional operator setting. Recently, a study [4] has considered generalizations of the coorbit space
theory based on group representations modulo quotients. This is based on applying the general theory to the
AWH group and obtaining families of smoothness spaces that can be identified with the α-modulation spaces.

3 The 1D Affine Weyl-Heisenberg Group

The affine Weyl-Heisenberg group is generated by time translations b ∈ R, frequency translations ω ∈ R, spatial
dilations a ∈ R+, and a toral component φ ∈ R, and is equipped with the group law

(b, ω, a, φ) ◦ (b′, ω′, a′, φ′) = (b+ ab′, ω + ω′/a, aa′, φ+ φ′ + ωb′a).

The AWH group can be viewed as the extension of the affine group, incorporating frequency translations or,
alternatively, as the extension of the Weyl-Heisenberg group incorporating dilations. The Stone-von-Neumann
representation of GAWH on L2(R) is given by:

[U(b, ω, a, φ)ψ](x) = a−
1
2 eiω(x−b)eiφψ(

x− b

a
). (5)

This representation, however, fails to be square integrable [13]. The AWH group raises a special interest as it
“contains” both, the affine group as well as the Weyl-Heisenberg group: If we consider cases where a = 1, we
are in the Weyl-Heisenberg framework, and if we consider cases where ω = 0 we are in the affine framework.
Two independent studies have regarded these attributes, and suggested a specific section of the AWH [4, 13],
where the scale is represented as a function of the frequency. It was proven that this section is admissible.
In addition, this paper introduces a mechanism that starts at the Weyl-Heisenberg case and allows a smooth
transition towards the affine case.

In what follows, we regard this section, and calculate the appropriate minimizing functions with respect to
the uncertainty principle related to it. Then, we study the section where the frequency is regarded as a function
of the scale, consider its admissibility and calculate the appropriate minimizers.

3.1 The Sections Where the Scale is a Function of the Frequency

These kinds of sections appear in a quite natural way in the context of α-modulation spaces. In the α-modulation
spaces framework it is desired to construct mixed forms of smoothness spaces that lie in between Besov spaces
(related to the affine group) and modulation spaces (related to the Weyl-Heisenberg group). For that, a group
that contains all the components of Besov and modulation spaces is required, such as the affine Weyl-Heisenberg
group. As the representation of this group is not square integrable, it is suggested to factor out a closed subgroup
and work with the quotients.

We will consider GAWH/H with
H := (0, 0, a, φ) ∈ GAWH
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and Borel sections that do not depend on b, namely:

σ(b, ω) = (b, ω, β(ω), 0).

Further, it was shown in [4] that the specific section

β(ω) = ηα(ω)−1 = (1 + |ω|)−α

is admissible.
Next, we consider the effect of varying the value of α ∈ [0, 1]. If α = 0 then we obtain:

β(ω) = η0(ω)−1 = (1 + |ω|)0 = 1.

Thus, there are practically no dilations and we obtain Gabor analysis. For α → 1 we obtain:

β(ω) = ηα(ω)−1 = (1 + |ω|)−α |α|→1−→ 1

1 + |ω| .

Thus, the frequency translations and modulations are inversely proportional which is close to wavelet analysis.
The intermediate case for which α = 1

2 is known as the Fourier-Bros-Iagolnitzer transform.
The representation for the quotient as a function of α is then given by

[U(b, ω, η−1
α (ω))ψ](x) = (1 + |ω|) α

2 eiω(x−b)ψ ((1 + |ω|)α(x− b)) .

As can be seen, this representation is not C1 for ω = 0. Nevertheless, when calculating the infinitesimal
generators, we may take the one-sided derivatives.

Lemma 2 The infinitesimal operators Tb, Tω associated with the one dimensional GAWH are given by

(Tbψ)(x) = −i ∂
∂x
ψ(x), and (Tωψ)(x) = (i

α

2
− x)ψ(x) + iαx

∂

∂x
ψ(x). (6)

The state ψ which is the minimizer of the associated uncertainty is of the form

ψ(x) = e
−ix

α (αλx + 1)−
1
2
− iµω

α
+

iµb
αλ

+ i

α2λ . (7)

Proof; Taking the (one-sided) derivatives with respect to ω and b and evaluating them at b = 0, ω = 0 leads to

∂

∂b
U(b, ω, ηα(ω), 0)ψ|b=0,ω=0(x) = − ∂

∂x
ψ(x),

∂

∂ω
U(b, ω, ηα(ω), 0)ψ|b=0,ω=0(x) = (

α

2
+ix)ψ(x)+αx

∂

∂x
ψ(x).

These operators are not self-adjoint, but multiplication with the imaginary unit i yields self-adjoint operators
Tb = i ∂

∂b
U and Tω = i ∂

∂ω
U in the Lie algebra under consideration. This proves (6).

The commutator between these two operators is non-zero. This implies that we cannot exactly measure
the mean values of the spatial frequency and the position simultaneously. By means of Theorem 1, we may
calculate those states that minimize the corresponding uncertainty principle. Indeed, eq. (3) provides us with
the differential equation

−i ∂
∂x
ψ(x) − µbψ(x) = λ

(
(
iα

2
− x)ψ(x) + iαx

∂

∂x
ψ(x) − µωψ(x)

)
,

i.e.,

∂

∂x
ψ(x) = iψ(x)

(
−λx+ iλα

2 − λµω + µb

αλx + 1

)
. (8)

Now (8) can be solved by separation of variables which leads us to (7). �

In order for this solution to be square integrable, the following asumptions have to be met: suppose that
λ = iγ where γ ∈ R. If γ < 0, resp. if γ > 0, then the solution is square integrable if µb > − 1

α
, resp. if

µb < − 1
α
. In Figure 1 we have plotted ψ, which is the minimizer for this section of the AWH group in 1D.
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Figure 1: The minimizers of the AWH uncertainty for λ = 0.1i, µb = µω = 0 and different values of α.
The real part is plotted solid, the imaginary part is dashed. Note the transition from a Gaussion for small α
(Weyl-Heisenberg case) to the Cauchy wavelet for large α (affine case).

5



3.2 The Sections that Regard the Frequency as a Function of the Scale

In the previous section we have considered the section

β(ω) = ηα(ω)−1 = (1 + |ω|)−α.

We note that it is not possible to obtain the affine framework, which would be related to ω ≡ 0 using this
approach. Hence, let us explore the inverse relationship

ω = ζα(a) = a−
1
α − 1 ,

which determines the frequency as a function of the scale a.
Let us denote κ = 1

α
, and restrict the discussion to values of κ ranging between 0 and 1 (corresponding to

values of α ranging between 1 and ∞). Thus we obtain ω = ζ(a) = a−κ− 1. If κ is selected to be zero, we then
obtain no frequency modulation as then ω = 0, and thus we are in the affine case. If κ is selected to be one, we
again observe reciprocal relations between scale and frequency of the form: |ω| = a−1 − 1, which is the same as
a = 1

1+|ω| , and corresponds to the case of Gabor-like wavelets.

This concept has again an interpretation in the group theoretical setting. Once more we are working with the
affine Weyl-Heisenberg group GAWH , but this time we consider the subgroup

H := (0, ω, 1, φ) ∈ GAWH

and the associated quotient group X = GAWH/H. In order to make this setting well-defined, first of all it is
necessary to establish square-integrability, see, e.g., [1] for a detailed discussion. In general, let a quasi-invariant
measure µ on X and a section σ be given. Then a unitary representation U of G on a Hilbert space H is called
square-integrable modulo (H ; σ) if there exists a function ψ ∈ H such that the self-adjoint operator Aσ : H → H
(depending on σ and ψ) weakly defined by

Aσf :=

∫

X

〈f, U(σ(h))ψ〉HU(σ(x))ψdµ(h) (9)

is bounded and has a bounded inverse. The function ψ is then called admissible. If Aσ is a multiple of the identity
then we are in the strictly admissible case. We consider the case of the affine group in the following lemma.
Note, that in the lemma and only in this lemma, we replace ω by 2πω in the definition of the representation
U(a, b, ω, φ)ψ.

Lemma 3 Let ψ ∈ L2(R). The operator Aσ in (9) for the affine Weyl-Heisenberg group, i.e.

Aσf(x) =

∫ ∫
〈f, ψa,b〉ψa,b(x) db

da

a
(10)

with the section σ(a, b) = (b, ζ(a), a, 0), i.e.,

ψa,b(x) =
1√
a
e2πiζ(a)(x−b)ψ

(
x− b

a

)
, (11)

can be written as a Fourier multiplier operator:

Âσf = mζ f̂ (12)

with the symbol

mζ(γ) :=

∫

R

|ψ̂(a(γ − ζ(a)))|2da. (13)

Proof. We follow the approach of [8]. For the sake of this calculation we use the approximation

ATσ f(x) =

∫ ∫
〈f, ψa,b〉ψa,b(x) χ[−T

2
,T
2 ](b) db

da

a
. (14)

6



In order to compute ÂTσ f(γ), we first derive the Fourier transform of ψa,b:

ψ̂a,b(γ) =
1√
a

∫ ∞

−∞

e2πiζ(a)(x−b)e−2πiγxψ

(
x− b

a

)
dx. (15)

If we apply the change of variables y = x−b
a

we obtain

ψ̂a,b(γ) =
√
ae−2πibγ ψ̂(a(γ − ζ(a))). (16)

With the help of Plancherel’s theorem we further obtain

〈f, ψa,b〉 = 〈f̂ , ψ̂a,b〉 =

∫ √
af̂(ω)e2πibω

¯̂
ψ(a(ω − ζ(a)))dω (17)

and thus

ÂTσ f(γ) =

∫ ∫
f̂(ω)

¯̂
ψ(a(ω − ζ(a)))ψ̂(a(γ − ζ(a)))

∫
e−2πib(γ−ω)χ[−T

2
,T
2 ](b) dbdadω

=

∫
ψ̂(a(γ − ζ(a)))

∫
f̂(ω)

¯̂
ψ(a(ω − ζ(a)))T

sin(π(γ − ω)T )

π(γ − ω)T
dωda.

The term

T
sin(π(γ − ω)T )

π(γ − ω)T
(18)

can be seen as an approximation of a δ-function when T approaches infinity. Thus, we obtain

Âσ(f)(γ) = f̂(γ)

∫
|ψ̂(a(γ − ζ(a)))|2da = f̂(γ)mζ(γ). (19)

�

We can now determine whether Aσ is bounded with a bounded inverse as this is true if and only if

C1 ≤ mζ(γ) ≤ C2 (20)

almost everywhere for constants 0 < C1, C2 <∞. If we check the admissibility of the section for the case κ = 1,
i. e. ζ(a) = 1

a
− 1, then

mζ(γ) =

∫ ∞

0

|ψ̂(a(γ − 1

a
+ 1))|2da

=

∫ ∞

0

|ψ̂(a(γ + 1) − 1))|2da

=
1

|γ + 1|

∫ ∞

0

|ψ̂(x)|2dx |γ|→∞−→ 0.

Thus, this shows that ζ is not admissible even for this easy case.
Nevertheless, a possible remedy for the non-admissibility of this section can be found in the framework of

quasi-coherent states [2]. In this case, although mζ(γ) calculated above does not satisfy (20), the corresponding
integral with respect to a positive density ι(a, γ) = 1

a
is bounded from above and below

m̃ζ(γ) =

∫ ∞

0

|ψ̂(a(γ − 1

a
+ 1))|2ι(a, γ) da =

∫ ∞

0

|ψ̂(x)|2
x

dx .

This reproduces the classical admissibility conditions for the continuous wavelet transform and can be derived
from Lemma 3 by using the integration measure db da/a2.

This leads to quasi-coherent states that have the standard properties of the covariant coherent states: over-
completeness, resolution of a positive operator Aσ and having a reproducible kernel.
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We now turn to calculating the infinitesimal operators and the wavelets minimizing the corresponding uncer-
tainty relation. The choice of the section ω = ζ(a) leads to the following represenatation:

[U(b, ζ(a), a, 0) ψ](x) =
1√
a
ei(a

−κ−1)(x−b)ψ

(
x− b

a

)
.

Next, we calculate the two infinitesimal generators related to this representation.

Lemma 4 The infinitesimal operators with respect to the representation above are

Taψ(x) = (κx− i

2
)ψ(x) − ixψx(x) and Tbψ(x) = −iψx(x).

A minimizing state is then given by

ψ(x) = (1 − ρx)iµa−
1
2
−i

µb
ρ
−i κ

ρ e−iκx. (21)

Suppose that ρ = ir, r ∈ R. Then, the minimizing state is square integrable if r < 0 and µb < −κ or if r > 0
and µb > −κ.

Proof: The proof can be performed by following the lines of the proof of Lemma 2. This time, the corresponding
differential equation is given by

ψx(x) =

(
µb − iρ

2 + ρκx− ρµa
)

i(ρx− 1)
ψ, (22)

where ρ is purely imaginary. Eq. (22) can again be solved by separation of variables which leads to (21). �

In Figure 2 we have plotted the minimizing ψ, for this choice of a section for the AWH group in 1D.
At κ = 1 the current solution reduces to

ψ(x) = (1 − ρx)iµa−
1
2
−i

µb
ρ
−i 1

ρ e−ix. (23)

It is interesting to compare this solution to the one obtained for the previously used section a = β(ω) for α = 1,
which yields:

ψ(x) = (1 + λx)i
µb
λ

− 1
2
−iµω+ i

λ e−ix . (24)

The constraints for the two solutions to agree for α = 1 are derived as follows

λ = −ρ, µa = −µω .

4 The 2D Affine Weyl-Heisenberg Group

In this section we are interested in finding uncertainty minimizers for the two-dimensional affine Weyl-Heisenberg
group with a generating element (A,ω, b, φ), ω, b ∈ R2, A ∈ Gl(2,R), φ ∈ R and group law

(b, ω,A, φ) ◦ (b′, ω′, A′, φ′) = (b+Ab′, ω +A−1ω′, AA′, φ+ φ′ + ωTAb′).

The Stone - von Neumann representation of the AWH group in two dimensions is given by:

[U(b, ω,A, φ)ψ](x, y) =
1

| det(A)|e
i(ωx(x−bx)+ωy(y−by)+φ)ψ (A(x − bx, y − by)) (25)

with the unimodular Haar measure
1

| det(A)|2 dbdωdm(A)dφ,

where dm(A) denotes a usual measure when parametrizing the matrix A. In our discussion we explore various
subgroups of the full 2D AWH group, starting from the SIM(2) group, and moving to the full group structure.
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Figure 2: The minimizers of the AWH uncertainty for ρ = 0.1i, µa = µb = 0 and different values of κ. The
real part is plotted solid, the imaginary part is dashed. Note the transition from a Cauchy wavelet for small κ
(affine case) to a Gaussian for large κ (Weyl-Heisenberg case).
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4.1 The 2D Similitude Weyl-Heisenberg Subgroup

We start our discussion by considering the similitude group, which only allows rotations and scalingsA = A(a, θ).
The general representation of the 2D similitude Weyl-Heisenberg subgroup is given by

[U(b, ω, (a, θ), 0)ψ](x, y) =
1

a
ei(ωx(x−bx)+ωy(y−by))ψ

(
τθ

(
x− bx
a

,
y − by
a

))
, (26)

where τθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. This representation fails to be square integrable [15], therefore, we are faced

with the interesting question of selecting an appropriate section. To this end, let H = (0, 0, (a, 0), φ), consider
GAWH \H and take the section

σ(b, ω, θ) = (b, ω, (Φ(ω), θ), 0).

We consider a coupling between the frequency ω and the scaling a by a = Φ(ω). More specifically, in the
spirit of the α-modulation spaces framework, we assume that the function Φ depends only on the p-norm of the
frequency vector ω

Φ(ω) =
1

(1 + ‖ω‖p)α
. (27)

As before, we would like to obtain the infinitesimal generators of this group by calculating the appropriate
derivatives of the representation of this group at the identity element. Depending on the choice of the section
Φ(ω), we will obtain different infinitesimal operators from the partial derivatives with respect to ωk:

T̃ωk
= (Tωk

+ Φ′
ωk

(0)Ta), (28)

for k ∈ {x, y}. Therefore, we have to estimate the derivative of Φ at ω = 0. Our particular choice of Φ yields

Φ′
ωk

(ω) = −α(1 + ‖ω‖p)−α−1 1

p
‖ω‖1−p

p pωp−1
k sign(ωk)

=
−α

(1 + ‖ω‖p)α+1

[
ωpk∑
j |ωj |p

] p−1

p

sign(ωk). (29)

Next, we have to evaluate this expression at ωk = 0 for all k. In contrast to the 1D situation, the resulting
infinitesimal operators and the corresponding commutation relations strongly depend on the choice of p. We
start by selecting the L1-norm, as this allows a straight forward calculation of infinitesimal generators.

4.1.1 AWH Minimizers Using the L1-Norm

In this case: a = Φ(ω) = 1
(1+|ωx|+|ωy|)α , thus the representation becomes:

[U(b, ω,Φ(ω), θ, 0)ψ](x, y) = (1+|ωx|+|ωy|)αei((x−bx)ωx+(y−by)ωy)ψ ((1 + |ωx| + |ωy|)ατθ(x− bx, y − by)) . (30)

The self-adjoint infinitesimal operators are given by:

Tωx
ψ(x, y) = (iα− x)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)),

Tωy
ψ(x, y) = (iα− y)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)),

Tbx
ψ(x, y) = −iψx(x, y),

Tby
ψ(x, y) = −iψy(x, y),

Tθψ(x, y) = i(yψx(x, y) − xψy(x, y)). (31)

Out of the ten commutation relations, three vanish, [Tωx
, Tby

] = 0, [Tωy
, Tbx

] = 0, [Tbx
, Tby

] = 0, and we are left
with seven partial differential equations.

1.

(iα−x)ψ(x, y)+iα(xψx(x, y)+yψy(x, y))−µωx
ψ(x, y) = λ1

(
(iα− y)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωy

ψ(x, y)
)

10



2.
(iα− x)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωx

ψ(x, y) = λ2 (−iψx(x, y) − µbx
ψ(x, y))

3.

(iα− x)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωx
ψ(x, y) = λ3 (i(yψx(x, y) − xψy(x, y)) − µθψ(x, y))

4.
(iα− y)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωy

ψ(x, y) = λ4

(
−iψy(x, y) − µby

ψ(x, y)
)

5.

(iα− y)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωy
ψ(x, y) = λ5 (i(yψx(x, y) − xψy(x, y)) − µθψ(x, y))

6.
i(yψx(x, y) − xψy(x, y)) − µθψ(x, y) = λ6 (−iψx(x, y) − µbx

ψ(x, y))

7.
i(yψx(x, y) − xψy(x, y)) − µθψ(x, y) = λ7

(
−iψy(x, y) − µby

ψ(x, y)
)

The only simultaneous solution to these equations is the trivial one, ψ = 0 everywhere. Therefore, we aim at
finding a partial solution to this set of equations, which involves operators from the enveloping algebra. First
of all, we impose rotational invariance.

Suppose that the minimizer is of the form g(r) where r =
√
x2 + y2. Then, we consider the following

infinitesimal operators with respect to g(r):

Tθg(r) = 0,

Tbg(r) = (T 2
bx

+ T 2
by

)g(r) = −d
2g

dr2
(r) − 1

r

dg

dr
(r).

Moreover, the operators Tωx
, Tωy

are commuting with respect to g(r),i.e., [Tωx
, Tωy

]g(r) = 0. These observations
lead to two possible solutions: the first involves defining a new operator: Tω = Tωx

Tωy
−Tωy

Tωx
and considering

its commutator relations with Tθ and Tb. Then, any function g(r) that is rotation invariant is a valid minimizer
of the uncertainties related to these operators.

Another option is to consider Tωx
and Tωy

with respect to g(r). The commutators of these operators with Tb
are not equal to zero and we obtain the differential equation

grr(r) +
1

r
gr(r) + µbg(r) = 0 (32)

whose solution is given by Bessel functions of the first and second kind:

ψ(r) = c1J0(
√
µbr) + c2Y0(

√
µbr). (33)

Nevertheless, this solution is not square integrable.
Another interesting effort is to find a solution for a single differential equation and thus obtain a selective

minimal uncertainty with respect to two operators only. For example, let us consider equation 2 only:

(iα− x)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωx
ψ(x, y) = λ2 (−iψx(x, y) − µbx

ψ(x, y)) .

Choosing λ2 = 0 yields

(iα− x)ψ(x, y) + iα(xψx(x, y) + yψy(x, y)) − µωx
ψ(x, y) = 0.

A possible solution is given by the expression:

ψ(x, y) = y−i
µωx

α
−1e−i

x
α τ

(
x

y

)
, (34)

where τ is an arbitrary function of the variable x
y
. A particular solution is depicted in Figure 3.
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alfa =0.1

alfa =0.5

alfa =1

Figure 3: A possible minimizing function for τ
(
x
y

)
= 1.

4.1.2 AWH Minimizers Using the L2-Norm

As we have seen in the previous section, the choice a = Φ(ω) =
(
1 +

√
ω2
x + ω2

y

)−α
proves to be futile. It is

interesting to explore another solution to the problem mentioned in Section 4.1, where the relationship between
the scale and frequency is given by

a = Φ(ω) =
(
1 + ω2

x + ω2
y

)−α
.

The unitary representation induced by this section of the similitude Weyl-Heisenberg group is then given by

[U(b, ω, (Φ(ω), θ), 0)ψ](x, y) = (1 + ω2
x + ω2

y)
αei((x−bx)ωx+(y−by)ωy)ψ

(
(1 + ω2

x + ω2
y)
ατθ(x− bx, y − by)

)
, (35)

and τθ is the same as already defined. The infinitesimal generators are then given by:

Tωx
ψ(x, y) = −xψ(x, y),

Tωy
ψ(x, y) = −yψ(x, y),

Tbx
ψ(x, y) = −iψx(x, y),

Tby
ψ(x, y) = −iψy(x, y),

Tθψ(x, y) = i(yψx(x, y) − xψy(x, y)). (36)

It is interesting to note that the dependency on the parameter α has disappeared. This means that selecting
this type of section may provide a solution regardless of the smoothness space we are dealing with.

The differential equations resulting from the non-commuting operators are:

−xψ(x, y) − µωx
ψ(x, y) = λ1(−iψx(x, y) − µbx

ψ(x, y)),

−xψ(x, y) − µωx
ψ(x, y) = λ2(i(yψx(x, y) − xψy(x, y)) − µθψ(x, y)),

−yψ(x, y) − µωy
ψ(x, y) = λ3(−iψy(x, y) − µby

ψ(x, y)),

−yψ(x, y) − µωy
ψ(x, y) = λ4(i(yψx(x, y) − xψy(x, y)) − µθψ(x, y)),

−iψx(x, y) − µbx
ψ(x, y) = λ5(i(yψx(x, y) − xψy(x, y)) − µθψ(x, y)),

−iψy(x, y) − µby
ψ(x, y) = λ6(i(yψx(x, y) − xψy(x, y)) − µθψ(x, y)). (37)

If, again, we search for a solution which is rotational invariant, i.e. ψ(x, y) = g(r) , we may satisfy all
equations that involve the operator Tθ. Moreover, applying restrictions to our parameters, e.g. λ1 = λ3 =

12



λ, µbx
= µby

, ωx = ωy, we may obtain a rotationally invariant solution to the first and third equation as well,
which is a Gaussian function

ψ = e
− i

λ

“

x2+y2

2

”

. (38)

4.2 AWH Minimizers with Anisotropic Scaling

In the previous treatment of the two-dimensional case, we regard the frequency as a vector, but treat the scale
as a scalar argument. Moreover, we use the SIM(2) group rather than the full affine group. We are interested
to add more degrees of freedom to our setting, and as a first step we observe a relationship where the scale is
also a two dimensional vector and not a scalar

ax = β1(ωx), ay = β2(ωy).

We explore a generalization to two dimensions of the one-dimensional affine Weyl-Heisenberg group, and ignore
for now rotation and shear. We thus consider the group with a generic element g = (bx, by, ωx, ωy, ax, ay, φ, )
where bx, by, ωx, ωy, φ ∈ R and ax, ay ∈ R+ equipped with a group law

(bx, by, ωx, ωy, ax, ay, φ) ◦ (b′x, b
′
y, ω

′
x, ω

′
y, a

′
x, a

′
y, φ

′) =

(bx + axb
′
x, by + ayb

′
y, ωx + a−1

x ω′
x, ωy + a−1

y ω′
y, axa

′
x, aya

′
y, φ+ φ′ + ωxaxb

′
x + ωyayb

′
y).

This is a subgroup of the 2D AWH group. The inverse element of g ∈ G is given by

g−1 = (−a−1
x bx,−a−1

y by,−axωx,−ayωy, a−1
x , a−1

y ,−φ+ bxωx + byωy). (39)

Let us look at the following representation

[U(bx, by, ωx, ωy, ax, ay, φ)ψ](x, y) =
1

√
axay

ei((x−bx)ωx+(y−by)ωy)+φψ

(
x− bx
ax

,
y − by
ay

)
(40)

which is the 2D extension of the Stone-von-Neumann representation of the 1D AWH group. This representation
fails to be square integrable, and therefore we restrict ourselves to the homogeneous space GAWH\H with

H := (0, 0, 0, 0, ax, ay, φ) ∈ GAWH . (41)

Next, we consider the section σ(bx, by, ωx, ωy) = (bx, by, ωx, ωy, βx(ωx), βy(ωy), 0), and would like to prove that
this section is admissible.

We define a self-adjoint operator Aσf

(Aσf)(x, y) :=

∫

X

〈f, U(σ(h))ψ〉U(σ(h))ψdµ(h)

=

∫ ∫ ∫ ∫
〈f, ψωx,ωy ,βx(ωx),βy(ωy),bx,by

〉ψωx,ωy ,βx(ωx),βy(ωy),bx,by
(x, y)dbxdbydωxdωy. (42)

It can be written as a Fourier multiplier operator

(̂Aσf) = mβx,βy
f̂ (43)

where

mβx,βy
(γx, γy) =

∫ ∫
|ψ̂(βx(ωx)(γx − ωx), βy(ωy)(γy − ωy))|2βx(ωx)βy(ωy)dωxdωy. (44)

Next, we follow the lines of [4] to show that mβx,βy
is bounded from above and below, i.e.

C1 ≤ mβx,βy
≤ C2 (45)

for constants 0 < C1 < C2 < ∞. We start with the following lemma which is a straight forward generalization
of Lemma 5.1 in [4] to the 2D-case. Therefore we omit the details.
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Lemma 5 Consider the specific section σ given by the functions

βx(ωx) = βx,αx
(ωx) = (1 + |ωx|)−αx ,

βy(ωx) = βy,αy
(ωy) = (1 + |ωy|)−αy .

Let us define

rγx
(ωx) := βx(ωx)(γx − ωx) = (1 + |ωx|)−αx(γx − ωx),

rγy
(ωy) := βy(ωy)(γy − ωy) = (1 + |ωy|)−αy (γy − ωy).

Then, for any fixed A > 0, there exist γx,A, γy,A > 0 such that for all γx ≥ γx,A, γy ≥ γy,A the functions rγx
, rγy

are invertible on

Aωx
= {ωx : rγx

(ωx) ∈ [−A,A]} and Aγy
= {ωy : rγy

(ωy) ∈ [−A,A]}

respectively. The inverse functions r−1
γx
, r−1
γy

of rγx
, rγy

on [−A,A] have the form

r−1
γx

= −xg1(γx, x) + γx, r−1
γy

= −yg2(γy, y) + γy,

with some functions g1(γx, x), g2(γy , y) satisfying

xg1(γx, x) + g1(γx, x)
1

αx = 1 + γx and yg2(γy , y) + g2(γy, y)
1

αy = 1 + γy.

Furthermore, g1, g2 fulfill

lim
γx→∞

γ−αx
x g1(γx, x) = 1, lim

γy→∞
γ−αy
y g2(γy, y) = 1

uniformly for x, y ∈ [−A,A].

Theorem 6 Let the Borel section σ be given by σ(bx, by, ωx, ωy) = (bx, by, ωx, ωy, βx(ωx), βy(ωy), 0) with βx(ωx) =
(1 + |ωx|)−αx , βy(ωy) = (1 + |ωy|)−αy . Let ψ be a non zero L2 function whose Fourier transform is compactly
supported. Then, ψ is admissible, i.e., the condition

C1 ≤ mβx,βy
(γx, γy) ≤ C2

is satisfied for 0 < C1 ≤ C2 <∞.

Proof. The proof can be performed by following the lines of the proof of Theorem 5.2 in [4]. For reader’s
convenience, we briefly sketch the arguments. We consider the case where either γx or γy tend to +∞. Let us

assume that supp(ψ̂) ⊂ [−A,A] × [−A,A]. We substitute x = rγx
(ωx), y = rγy

(ωy) for γx ≥ γx,A > 0, γy ≥
γy,A > 0 in the expression for mβx,βy

(γx, γy) to obtain

mβx,βy
(γx, γy) =

∫

R

∫

R

|ψ̂(rγx
(ωx), rγy

(ωy))|2βx(ωx)βy(ωy)dωxdωy

=

∫

R

∫

R

|ψ̂(x, y)|2βx(r−1
γx

(x))βy(r
−1
γy

(y))(r−1
γx

)′(r−1
γy

)′dxdy. (46)

Next, we calculate the values of the derivatives of the inverse functions r−1
γx
, r−1
γy

using

r′γx
(ωx) = β′

x(ωx)(γx − ωx) − βx(ωx) = −βx(ωx)
(
αx
γx − ωx
1 + ωx

+ 1

)
,

r′γy
(ωy) = β′

y(ωy)(γy − ωy) − βy(ωy) = −βy(ωy)
(
αy
γy − ωy
1 + ωy

+ 1

)

to obtain

(r−1
γx

)′(x) =
1

r′γx
(r−1
γx (x))

= − 1

βx(r
−1
γx (x)

(
1 + αx

γx−r
−1
γx (x)

1+r−1
γx (x)

) ,

(r−1
γy

)′(y) =
1

r′γy
(r−1
γy (y))

= − 1

βy(r
−1
γy (y)

(
1 + αy

γy−r
−1
γy (y)

1+r−1
γy (y)

) .
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Thus, for values of γx ≥ γx,A > 0, γy ≥ γy,A > 0 we have

mβx,βy
(γx, γy) =

∫ A

−A

∫ A

−A

|ψ̂(x, y)|2G(γx, γy, x, y)dxdy (47)

where

G(γx, γy, x, y) =
1(

1 + αx
γx−r

−1
γx (x)

1+r−1
γx (x)

) 1(
1 + αy

γy−r
−1
γy (y)

1+r−1
γy (y)

) =
1

1 + αxxg1(γx, x)
1− 1

αx

1

1 + αyyg2(γy, y)
1− 1

αy

,

where we have used the definitions in the previous lemma. According to this lemma, we may substitute γαx
x for

g1(γx, x) when γx goes to infinity, and the same for g2(γy, y) when γy → ∞

lim
γx→∞,γy→∞

G(γx, γy, x, y) = lim
γx→∞,γy→∞

1

1 + αxxg1(γx, x)
1− 1

αx

1

1 + αyyg2(γy , y)
1− 1

αy

= lim
γx→∞,γy→∞

1

1 + αxxγ
αx(1− 1

αx
)

x

1

1 + αyyγ
αy(1− 1

αy
)

y

= 1,

and therefore we finally have

lim
γx→∞,γy→∞

mβx,βy
(γx, γy) =

∫ A

−A

∫ A

−A

|ψ̂(x, y)|2dxdy (48)

for any L2-function with compact support in the Fourier domain, and thus we obtain that mβx,βy
is bounded

from below and above. �

Now, that this section is proven to be admissible, we would like to explore the uncertainty principle minimizers
associated with this representation. We assume that it should be a two-dimensional extension of the one-
dimensional solution obtained earlier. The representation for the quotient as a function of αx, αy is then given
by:

[U(bx, by, ωx, ωy, βx(ωx), βy(ωy), 0)ψ](x, y) =

(1 + |ωx|)
αx
2 (1 + |ωy|)

αy
2 ei(ωx(x−bx)+ωy(y−by))ψ ((1 + |ωx|)αx(x − bx), (1 + |ωy|)αy (y − by)) .

From this representation we may see that the x and y axes are not correlated, and thus we obtain the following
infinitesimal generators

(Tbx
ψ)(x, y) = − ∂

∂x
ψ(x, y),

(Tby
ψ)(x, y) = − ∂

∂y
ψ(x, y),

(Tωx
ψ)(x, y) = (

αx
2

+ i)ψ(x, y) + αxx
∂

∂x
ψ(x, y),

(Tωy
ψ)(x, y) = (

αy
2

+ i)ψ(x, y) + αyy
∂

∂y
ψ(x, y). (49)

In order to make these operators self-adjoint, we multiply them by i. The commutators between the x and y
operators vanish, and we have to solve two independent one-dimensional problems, with the following solutions

ψ(x, y) = (αxλxx+ 1)
− 1

2
−

iµωx
αx

+
iµbx
αxλx

+ i

α2
xλx e

−ix
αx (αyλyy + 1)

− 1
2
−

iµωy

αy
+

iµby
αyλy

+ i

α2
yλy e

−iy
αy . (50)

In order for this solution to be square integrable, the following should be met: we denote λx = i$x, λy = i$y

where $x, $y ∈ R. Then, if $x, $y < 0, then µbx
> − 1

αx
, µby

> − 1
αy

. If $x, $y > 0, then µbx
< − 1

αx
, µby

<

− 1
αy

.
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5 Discussion and Conclusions

The STFT and wavelet transform can both be viewed as the integral transforms related to the Weyl-Heisenberg
and affine group, respectively. From a signal processing viewpoint, it is interesting to ask whether there is a
combined integral transform that smoothly interpolates between these two. In a recent publication [4] an answer
to this question was given from a harmonic analysis viewpoint. This work deals with coorbit spaces that are
associated with some group. These spaces contain all functions for which the associated integral transform is
contained in some weighted Lp-space. The coorbit spaces associated with the Weyl-Heisenberg group are the
modulation spaces [7] and those associated with the affine group are the Besov spaces. In [4] it was proposed to
construct some mixed smoothness spaces that lie in between the Besov and modulation spaces and to use the
affine Weyl-Heisenberg group as it contains both groups. Since this group is known to have no representation
which is square integrable, it was offered to factor out a suitable closed subgroup and work with quotients.

We adapted this setting, and analyzed in this work several possible sections in the framework of the affine
Weyl-Heisenberg setting. We explored the uncertainty relations associated with various selections of sections,
and aimed at providing their minimizers.

The sections we have explored in this manuscript are those that provide inverse relations between the scale
and frequency attributes. This is a natural framework, as we expect high frequency phenomena to manifest
themselves within a small scale and vise-versa. Moreover, using the α-modulation spaces, we can smoothly
move from the Gabor (Weyl-Heisenberg) transform, via the Gabor wavelet transform to the wavelet (affine)
transform. In the one-dimensional case, we have considered the section which regards the scale as a function
of frequency. This section is known to be admissible, and we have explicitly calculated the minimizer with
respect to both time and frequency localization. However, using this section, we can only treat the Gabor and
Gabor wavelet transform. Therefore, the section in which the frequency is regarded as a function of the scale
was considered. It turns out that this section is not admissible. Still, as it can be treated in the framework
of quasi-coherent states, we have also calculated the minimizers for this case. We have also found that for the
Gabor-wavelet case, the two sections may provide the same solution under some constraints.

In the two-dimensional case there are several possible sections that can be selected. We have presented in this
manuscript the similitude Weyl-Heisenberg group and treated it with respect to the L1-norm and the squared
L2-norm. We also regarded the case where the scale is also considered as a vector. As it is not possible to find
a minimizer for all the uncertainty relations, we may consider a single such relation (e.g. the minimizer with
respect to the frequency in the x direction and rotation), or we could find a rotation invariant solution when
we consider elements of the enveloping algebra.

To summarize, we have considered possible uncertainty minimizers for the AWH group, and have especially
regarded the attribute of interpolating between the Gabor and wavelet transforms. The applicative significance
of these minimizers is still not well established. However, based on the importance that the Gabor functions
have in signal and image processing, we believe that this significance awaits discovering.

Acknowledgements: The authors want to thank Y.Y. Zeevi and N.A. Sochen for many fruitful discussions.
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