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Summary
This work is concerned with nonlinear inverse problems where the solution is assumed to

have a sparse expansion with respect to several preassigned bases or frames. We develop a
scheme which allows to minimize a Tikhonov functional where the usual quadratic regulari-
zation term is replaced by one–homogeneous (typically weighted `p, 1 ≤ p ≤ 2) penalties on
the coefficients (or isometrically transformed coefficients) of such multi–frame expansions. The
computation of the solution amounts in this setting to a system of Landweber–fixed–point it-
erations with thresholding applied in each fixed–point iteration step.

Extended Outline
We consider the computation of an approximation to a solution of a nonlinear operator

equation
T (x) = y , (1)

where T : X → Y is an operator between Hilbert spaces X, Y . In case of having only noisy
data yδ with ‖yδ−y‖ ≤ δ available, there might be the problem of ill-posedness (in the sense of
a discontinuous dependency of the solution on the data). Thus problem (1) has to be stabilized
by regularization methods. In recent years, many of the well known methods for linear inverse
problems have been generalized to nonlinear operator equations. But so far all the proposed
schemes for nonlinear problems incorporate at most quadratic regularization whereas in many
applications the solution is assumed to have sparse expansion which immediately leads to the
involvement of nonquadratic penalties, e.g. `p norms with p < 2. In linear lore, this problem
is still solved, see [2]. In nonlinear inverse problems there is an approach, see [5], which solves
nonlinear operator equations with sparsity constraints. However, recent developments indicate
that (higly) redundant systems, such as frames or systems of frames may yield a gain in this
context (optimal representation/decomposition of the solution to be reconstructed). When
dealing with dictionaries of frame systems, there exist certain methods, e.g. such as basis
pursuit [1], that allow a decomposition of signals/functions into an optimal superposition of
dictionary elements, where optimal means having smallest `1 norm of coefficients among all
such decompositions. In [8], we have presented a method which combines an iterated thresh-
olding scheme for solving linear inverse problems while requiring that the solution is assumed
to have a sparse expansion in a multi–frame dictionary. In this paper, we also assume that
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the solution has a sparse expansion in a multi–frame dictionary but we aim now to extend the
theory to nonlinear inverse problems with mixed multi–sparsity constraints. Thus the main
result of this paper, coming out by combing results and technologies elaborated in [3, 4], [6, 5],
and [8], is the development of a new method which is sort of thresholding Landweber iteration
for solving a system of fixed point equations. This scheme is numerically illustrated by solving
a few image processing task, but we also provide a regularization result which shows that this
method is also well suited for ill-posed problems.

As in [8], let us assume we are given a finite family of preassigned frames {φi
λ}λ∈Λi,i∈I ⊂ X,

n = card(I), for which we have associated frame operators

Fi : X → `2 via Fix = {〈x, φi
λ〉}λ∈Λi

with Ai · I ≤ F ∗
i Fi ≤ Bi · I .

The variational formulation of the nonlinear inverse problem in a multi–frame setting with so–
called multi–sparsity, or more general, multi–one–homogeneous constraints can be now casted
as follows: find sequences of coefficients g = (g1, . . . , gn) ∈ (`2)

n such that

Jα(g) = ‖yδ − T (Kg)‖2
Y + 2α ·ΨL(g) (2)

is minimized, where α = (α1, . . . , αn) and ΨL(g) = (Ψ1(L1g1), . . . , Ψn(Lngn)). In our case,
Kg = K(g1, . . . , gn) =

∑
i∈I F ∗

i gi, but one could also involve, as in [8], additional linear
and bounded operators Ei, i.e. KE(g1, . . . , gn) =

∑
i∈I EiF

∗
i gi. Moreover, the Ψi stand for

positive, one–homogeneuos, lower semi–continuous and convex penalties (which are usually
some weighted `p norms of the frame coefficients), and the infinite matrices Li are restricted to
be isometric mappings. In particular, we also need to require,

‖g‖(`2)n ≤ ‖ΨL(g)‖`1 . (3)

The main strategies developed in [6, 5] seem also to be adequate for minimizing (2), i.e. when
dealing with multi–sparsity, or more general, with multi–one–homogeneous constraints.

The general idea for solving the nonlinear inverse problem in a multi–frame setting goes
thus as follows: we replace (2) by a sequence of functionals from which we hope that they are
easier to treat and that the sequence of minimizers converge in some sense to, at least, a critical
point of (2). To be more concrete, for g ∈ (`2)

n and some auxiliary a ∈ (`2)
n, we introduce

Js
α(g, a) := Jα(g) + C‖g − a‖2

(`2)n − ‖T (Kg)− T (Ka)‖2
Y (4)

and create an iteration process by:

1. Pick g0 ∈ (`2)
n and some proper constant C > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = arg min
gk∈(`2)n

Js
α(g, gk) k = 0, 1, 2, . . .
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It can be shown that, in order to prove norm convergence of the iterates gk towards a critical
point of Jα, we have to restrict ourselves to a class of nonlinear problems for which all of the
following three requirements hold true,

gk
w→ g =⇒ T (Kgk) → T (Kg) ,

FjT
′(Kgk)

∗z → FjT
′(Kg)∗z , for all z and j , (5)

‖T ′(Kg)− T ′(Kg′)‖ ≤ LB‖g − g′‖(`2)n .

In the talk we shall explain how the replacement functionals are constructed and we shall
discuss the well–posedness of the resulting problem. Moreover, we derive conditions on the
minimizing elements. As the main result, we show strong convergence of the iterates towards
a critical point and we state conditions for which we may ensure that the scheme is indeed a
regularization scheme. We end with demonstrating the capabilities of the proposed scheme by
solving nonlinear image processing tasks. An extended consideration of this topic can be found
in [7].
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