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1 Introduction

Millimeter-radars have been established as valuable systems
for remote sensing of cloud structure and processes during
the last two decades (Kropfli and Kelly, 1996). They measure
profiles of intensity of particle backscattered signals and their
Doppler shift, which can be used to derive information about
the particle size and concentration as well as about their mo-
tion. Some radars have the capability for polarimetric mea-
surements which provides additional information about the
particle shape and/or their orientation.

The derivation of macro- and microphysical cloud para-
meters is restricted by the fact, that millimeter-radars are
not only sensitive for cloud or rain droplets but for all par-
ticles in the atmosphere as for insects, dust or pollen (named
also as ”atmospheric plankton”). Furthermore, the reflectiv-
ity is proportional to the 6th power of particle diameter. That
means that few relatively large particles in the radar volume
can dominate the radar signal. Therefore, the detection of
cloud base heights on the base of radar reflectivities is im-
possible:

– in situations of precipitation,

– clouds with falling drizzle,

– if insects (or other non-hydrometeors) are present.

These problems can be overcome by combination of radar
measurements with them of optical systems as ceilometer,
which is currently the standard technique for unambiguous
cloud base detection (Uttal et al., 1995; Clothiaux et al.,
1995, 2000; Hogan et al., 2001; Sievers et al., 2002; Uttal
et al., 2005).

Another way for insect filtering, independently on any
other system, is the use of additional radar parameters as
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for example the linear depolarization ratio (LDR), which is
considerable higher for insects than for clouds (Khandwalla
et al., 2003) or Doppler spectra which can have typical sig-
natures for different targets or their compositions.

Also the derivation of microphysical parameters (e.g., liq-
uid water content) only on the base of reflectivity values
is imprecise, when there is no separation between cloud
and rain droplet regimes (Krasnov and Russchenberg, 2003;
Russchenberg and Boers, 2003).

The goal of this paper is to propose a sophisticated clas-
sification algorithm that uses spectral information of a cloud
radar system only and performs

– a decomposition into atmospheric and clutter signals,
and

– a classification of hydrometeors of different droplet
regimes.

The capabilities of the suggested algorithm are verified by
processing measurements taken at the Meteorological Obser-
vatory Lindenberg which is operating a 35.5 GHz coherent
receiving and polarimetric cloud radar (MIRA36) to mea-
sure vertical profiles of reflectivity, Doppler velocity, spectral
width and linear depolarisation ratio (LDR) between 250 m
and 12 km with a temporal resolution of 10 s. The system is
in continuous operation and saves regularly the moments and
the LDR, and in addition the Doppler spectra for two hours
per week.

2 System characteristics

MIRA36 is based on a magnetron transmitter providing a
peak power of 30 kW and an excellent pulse shape. It has two
symmetrical receivers for simultaneously receiving of co-
and cross-polarized signals, a vertically pointed cassegrain
antenna with a polarization filter and a computer including a



DSP board for data acquisition and processing. For diagnos-
tic and control purposes the most important system parame-
ters are measured and saved by the radar PC. All components
are installed in a trailer. For calibration purposes the trans-

MIRA36
Frequency 35.5 GHz
Peak Power 30 kW
Noise figure 6.3 dB
+ loss in receiver path +3 dB image noise
Loss in transmit path 1.3 dB
Antenna type Cassegrain

with polarization filter
Antenna diameter 1 m
Antenna gain 49 dB
Beam width 0.55
Pulse length 100,200and 400 ns
Vertical resolution 15,30and 60 m
Pulse repetition frequency 2.5,5, 7.5, 10 kHz
FFT-Length 128,256, 512 and 1024
Min. measuring height 150 m (240 m)
Max. measuring height 15 km (12 km)
Averaging time 0.05 - 60 sec (10 sec)
Sensitivity at 5 km (0.1 sec) -40.3 dBZ

Table 1. Technical characteristics of the MIRA36 (highlighted are
standard settings)

mitted power is measured continuously. The receiver cali-
bration is derived from the receiver noise measured at 15 km
height (where normally no meteorological signal is detected)
and the noise figure is determined from time to time by an
external calibrated noise source. More details are given in
Table 1.

3 Mathematical Concepts

The basis for identifying clutter components (insects etc.) is
the analysis of the Fourier power spectrum for both the copo-
larized and crosspolarized signal,sHH andsV H , and its mo-
ments

LHH =
∫

sHH(ω)dω, LV H =
∫

sV H(ω)dω,

E =
∫

ωsHH(ω)dω, V =
∫

(ω − E)2sHH(ω)dω ,

and finally the classical linear depolarization ratio

LDR = 10 log
(

LV H

LHH

)
.

As a novelty, we introduce a new quantity - thelocalized
linear depolarization ratio. This new ratio requires the use of
spectral energy quants of width2δ,

Lδ
HH(x) =

∫ x+δ

x−δ

sHH(ω)dω,

Fig. 1. Spatial-temporal consistency of Fourier power spectra. Top
row: Fourier power spectra of hydrometeor returns for three subse-
quent time steps, bottom row: Fourier power spectra of atmospheric
plankton for three subsequent time steps.

Lδ
V H(x) =

∫ x+δ

x−δ

sV H(ω)dω,

and is then defined by

δ − LDR(x) = 10 log
(

Lδ
V H(x)

Lδ
HH(x)

)
.

These ratios allow a localized spectral analysis in order
to separate signal components from different target types.
This is especially useful in cases where one individual
spectrum contains returns caused by both plankton clutter
and hydrometeors.

In order to identify different targets, we propose to
proceed in two steps:

1. Decomposition into atmospheric and clutter signals

We apply a preprocessing step that uses a spatial-temporal
consistency test in which we use the fact that the spectra
of plankton fluctuates with respect to time and space much
stronger than the spectra of hydrometeors, see Figure 1. This
test yields for each spectral point a specific hydrometeor-
confidence value. The second parameter is the localized
δ-LDR. On the basis of these two parameters a simple clas-
sification rule induces a removal of plankton components.
In contrast to the use of a simple LDR thresholding, the
application ofδ-LDR avoids the removal of hydrometeor
information at heights where plankton was detected, see
example in Figure 2.



Fig. 2. Application of the decomposition procedure. Top: time-
height cross section of original reflectivities, bottom: after plankton
removal (axis convention: x-axis∼ seconds, y-axis∼ range gates,
1 range gate = 30m).

2. Classification of hydrometeors

The final step is the classification of the hydrometeor regime.
As long as the signal contains just returns from hydromete-
ors of one individual species, the spectrum looks quite uni-
modal. However, in many situations, returns from several
species produce sort of multi-modal spectrum (a composi-
tion of several Gaussian functions). In this case, the peaks
have to be separated. The separation process is essentially
related to a nonlinear Gauss fit of the (noisy) Fourier power
spectra. Typically, the problems reads as

‖s(ω)−
∑

j

xj exp(−(ω − µj)2/(2σ2
j ))‖2 → min ,

where the minimization has to be done with respect toxj , µj

andσj . This is, however, a very numerically intensive task
which often fails when choosing a wrong initial guess. More-
over, since the spectra are noisy, this optimization functional
forces also the fit of side lobes of essential main Gaussian
peaks, which is not meaningful and ends up in much higher

number of Gaussians than really being within the spectra.
To this end, we suggest a functional that avoids all these
drawbacks (nonlinearity, non-essential Gaussians, side lobe
problems). First, we provide a relatively rich dictionaryA of
preselected Gaussian atoms for which an optimal fit can be
achieved when minimizing

‖s−Ac‖2

with respect toc (wherec stands for a vector of coefficients).
Next, we add a constraint‖ · ‖1 that promotes sparsity ofc
(in order to avoid non-essential Gaussians), and, moreover, a
constraint that penalizes a side lobe fitting. All this results in
the following optimization problem

‖s−Ac‖2 + α‖c‖1 + β‖Bc‖2 → min .

By means of the method of Gaussian surrogate functionals,
a minimization of this cost functional amounts to Landweber
iteration which soft shrinkage applied in each step,

cn+1 = Sα(cn + (A + βB)T (s− (A + βB)cn)),

with

Sα(x) =
{

x− α , x ≥ α
x + α , x ≤ −α

.

Convergence in norm of this scheme is shown in Daubechies
and Teschke (2005) using results shown in Daubechies et al.
(2004). On the basis of the resulting limitc∗ we obtain a
representation of each individual spectrums by Ac∗. The
Gaussian atoms being selected to represents determine now
the different droplet regimes at particular heights and times.

4 Numerical Evaluation

In order to show the applicability of the proposed two-step al-
gorithm, we consider two particular data sets. The first exam-
ple (see Figure 2) was measured at the Meteorological Ob-
servatory Lindenberg on 07/27/2005 and shows the presence
of atmospheric plankton. The application of the decomposi-
tion step successfully removes almost all clutter components,
whereas cloud and rain echoes remain. The second example
(see Figure 3) was measured on 04/05/2005 and shows the
presence of all: clouds, drizzle, and plankton. The appli-
cation of the decomposition and hydrometeor classification
yields convincing results.

5 Conclusions

In this paper, we have presented a new algorithm for Ka-band
radar target classification which does not require any addi-
tional measurement devices. The algorithm shows encourag-
ing results for the identification of atmospheric plankton and
the classification of different droplet regimes.



Fig. 3. Application of the full algorithm. From top to bottom:
time-height cross sections of original reflectivities, after plankton
removal, reflectivities characterizing rain or drizzle, reflectivities
characterizing clouds (axis convention: x-axis∼ seconds, y-axis
∼ range gates, 1 range gate = 30m).

The essential innovations are two mathematical concepts:
at first, theδ-LDR, and secondly, a refined fitting tool for
multi modal spectral analysis.

The proposed algorithm was verified on several data sets
(extensive test computations/evaluations are planned) and we
judge the capabilities of this new procedure as very promis-
ing.
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