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Wavelet Frame Accelerated
Reduced Support Vector Machines

Matthias Ratsch, Gerd Teschke, Sami Romdhani, and Thomas \iglieenber, IEEE

Abstract—In this paper a novel method for reducing the cluttered background. Romdhaet al. [12] use a Cascaded
runtime complexity of a Support Vector Machine classifier is Reduced Set Vectors (RSV) expansion of a Support Vector

presented. The new training algorithm is fast and simple. This \1achine [18]. The speed bottleneck of [12] is that at least
is achieved by an Over-Complete Wavelet Transform that finds Ut f 220 x 20 filter has to b ied t
the optimal approximation of the Support Vectors. The presented one convoluton o x iter has 1o be carried ou

derivation shows that the wavelet theory provides an upper bound On the full image, resulting in a computationally expensive
on the distance between the decision function of the Support evaluation of the kernel with an image patch. Kieneteal.
Vector Machine and our classifier. The obtained classifier is fast, [8] present an improvement of this method, where the first
since a Haar wavelet approximation of the Support Vectors is anq only the first) RSV is approximated by a separable filter.
used, enabling efficient Integral Image based kernel evaluations. | . . . . .
This provides a set of cascaded classifiers of increasing complexityVIOIa & Jpnes [19] use Haar—llke oriented edge f'lt?rs having
for an early rejection of vectors easy to discriminate. This @ block like structure enabling a very fast evaluation by use
excellent runtime performance is achieved by using a hierarchical of an Integral Image. These filters are weak, in the sense that
evaluation over the number of incorporated and additional over  their discrimination power is low. They are selected, among a
the approximation accuracy of the Reduced Set Vectors. Here this finite set, by the AdaBoost algorithm that yields the ones with

algorithm is applied to the problem of face detection, but it can SO . .
also be used for other image based classifications. The algorithm the Dest discrimination. A drawback of their approach is that

presentedl provides a 530 fold Speed_up over the Support \Vector it is not clear that the cascade achieves Optlmal generalization
Machine, enabling face detection at more than 25 fps on a performances. Practically, the training proceeds by trial and

standard PC. error, and often, the number of filters per stage must be
Index Terms—Over Complete Wavelet Transform, Reduced Manually selected so that the false positive rate decreases
Support Vector Machine, Coarse to Fine Classifier, Cascaded smoothly. Another drawback of the method is that the set of
Evaluation, Face Detection, Machine Learning. available filters is limited and has to be selected manually. The
EDICS Category: SRE-MLRN, MRP-WAVL, tSraln!ng for the classmefrI is orl; the5 order 01|‘ we((ajks ([ﬁg],
OTH-RCGN ection 5.2), as every ilter (abowo®) is eva uated on t_ e
whole set of training examples and this is done every time a
filter is added to a stage of the cascade.
Taking the above mentioned problems into account, we
MAGE based classification tasks are time consuming. Faeveloped a novel classification algorithm. The following
instance, detecting a specific object in an image, such faatures make the algorithm accurate and efficient:
a face, is computationally expensive, as all the pixels of the1) Support Vector Machine: Use of an SVM classifier that
image are potential object centers. Hence all the pixels must s known to have optimal generalization capabilities.
be classified. 2) Reduced Support Vector Machine: The RVM uses a
Recently, more efficient methods have emerged based on reduced set of Support Vectors [12].
a cascaded evaluation of hierarchical filters: image patche) Double Cascade:For non-symmetric data (i.e. only
easy to discriminate are classified by a simple and fast filter, few positives to many negatives) we achieve an early
while patches that resemble the object of interest are classified rejection of easy to discriminate vectors. It is obtained
by more involved and slower filters. In the area of face by the two following cascaded evaluations over coarse-
detection [13], cascaded based classification algorithms were to-fine Wavelet Approximated Reduced Set Vectors (W-
introduced by Kereret al. [7], by Romdhaniet al. [12] and RSV's): (i) Cascade over the number of used W-
by Viola and Jones [19]. With Kereret al. [7] detector the RSV’s and (ii) Cascade over the resolution levels
negative examples (i.e. the non-faces) need to be modeled by a of each W-RSV. The Double Cascade constitutes one
Boltzmann distribution and must be smooth. This assumption  of the major novelties of our approach. The trade-off
could increase the number of false positive in presence of a petween accuracy and speed is very continuous.
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Reduced SVM \W-RVM) is fast, straightforward, automaticpresented in this paper improves this method since it does
and does not require the manual selection of ad-hoc paramet require to perform this convolution explicitly. Instead, it
ters. For example, the training time (Section Ill) is two hourapproximates the RSV’s by Haar—like vectors and computes
which is a vast improvement over former detectors. the evaluation of a patch using an Integral Image of the input
In our approach, we apply an Over-Complete Wavelgnage. They can be used to compute very efficiently the dot
Transform (OCWT) to the Reduced Support Vector Machin@r inner) product of an image patch with an image that has
itself, and not of the input space as a pre-processing like [@],block-like structure, i.e. rectangles of constant values.
[5].
This paper presents the coherent and complete frame warkntegral Images Based on Haar—like W-RSV's
of our approach where we summarize and extend the con—Durin an RVM evaluation. most of the time is spent
ference papers [10], [L1], [12]. The improvement of [10; kerngl evaluations. In the ’case of the Gaussian kpernel
compared to [11] are the features 3. (ii) and 5. (see above). "o 9 '
The Simulated Annealing optimization using morphologica% ).(’Zi) - em.)(_Hm W .ZiH /(20 ).)’ chosen here, the compu-
filters was replaced by a sparse wavelet frame representa %%Onal load is spent in evaluatlng the norm of the difference
of the RSV’s. Simulated Annealing does not provide the gIob}FtWPJen a paich and a RSV. This norm can be expanded as

. 2 / / / o i
opimum of he RYM approrimaton nall cases and 1G5 L S el Ao o IORIGE,
difficult to adjust the resolution level. P g€, pre: b L notsq
. of the pixels of a patch of the input image'x is efficiently
In this paper we take advantage of recent progress In .
- o . . . computed using the Integral Image ([3], [19]) of the squared
wavelet analysis: the optimality of sparse signal approximation : : .
: ixel values of the input image. As a result, the computational
(rectangular structure) in wavelet space. Moreover, we show ) L )
. oad of this expression is determined by the te¥xiz,.
the double cascade structure of the learning and detectio . S
he novelty of our approach is the approximation of the

process that is obtained by the proposed recursive refinemﬁg 's,2;, by optimally wavelet frame approximated Reduced

of the wayelet frame repr.esentatllon of the RSV's. ?et Vectors (W-RSV's)n; which have a block-like structure,
In addition we show in Section 1I-B.3 that the wavele LT . .
as seen in Figure 1. Optimally approximated means here the

frame approach provides an upper bound of the hyperplalTSeage of an optimally shifted wavelet basis that represents

approximation error. Exploring this characteristic the traininﬁ;]e image as sparse as possible. Then the B, can be
. )

of the W-RVM works without heuristics and is fast. Alsoevaluated very efficiently using the Integral Image.ulf is
as an expansion, we show in Section [I-B.3 the relation y y 9 9 ge-

L ._.an image patch with rectangles of constant (and optionally
between the hyperplane approximation error of the decisi b : :
. - a} erent) gray levels then the dot product is evaluated in
functions and a training parameter to control the trade-o ; . .
: L constant time by the addition of four pixels of the Integral
between sparsity and approximation. As demonstrated In . . ke
. ; .. lmage of the input image per rectangle and one multiplication
Section 1I-C.1 the parameter for setting the approximation
. : per gray level value.
accuracy does not play a decisive role, opposite to former
methods, using only one resolution level.
B. Learning Process
The paper is organized as follows: Section Il details our In contrast to several approaches like [6], [5], we do not
novel training (Section 11-B) and detection algorithm (Seowavelet-transform the input images as a pre-processing at
tion II-C). It is shown in Section Ill that the new expansionuntime. The novelty is that we apply the OCWT to the
yields a comparable accuracy to the SVM while providing Reduced Support Vector Machine itself.
significant speed-up. In addition to the mentioned papers [10],

[11] we carried out experiments on well known databases, Iikel) Soft-Shrinkage to Build Rectangular Structured
FERET [9] to provide the comparability to other approachegy.Rs\v’s: We are searching for an approximation of a given
imagez by a piecewise block structured imagewhich is as

Il. WAVELET FRAME APPROXIMATED SUPPORTVECTOR Sparse as possible. This optimization problem can be casted
MACHINE in the following variational form

Support Vector Machines (SVM) are well-known for good min { |z — ﬁH%z + QM‘ﬁ‘Bi(Ll) } , (1)
generalization capabilities. Their decision function has the "
form: y(x) = Zf;l a; - k(x,x;) + b, wherek(-,-) represents where B} (L;) denotes a particular Besov semi—norm (for
the kernel determining the feature space. In order to improwere details we refer the reader to [17], [14] and for a detailed
the runtime performance, it is proposed in [16] to approximatiscussion of the problem to [1]). It is known that the Besov
the SVM by a Reduced SVM (RVM) in combination with a(semi) norm of a given function can be expressed by means of
cascaded evaluation as in [12]. The RVM aims to approximate wavelet coefficients. In two spatial dimensions the Besov
the SVM by asmaller set of new Reduced Set Vectorgenalty is nothing else than & constraint on the wavelet
(RSV’s), z; instead of the Support Vectors,;. The RVM coefficients (promoting sparsity as required).
approach provides a significant speedup over the SVM, but isThe minimization of (1) is easily obtained: L&t} ca
still not fast enough, as the image has to be convolved in stdgsthe underlying wavelet basis, whetds the index set over
of full convolutions, e.g. by20 x 20 RSV’s. The algorithm all possible grid point, scaling and wavelet species. Then we
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3) Hyper—plane ApproximationThe first reduction step
was computing the reduced SVM by the means of [11] and
[12]. This yieldsW,,, = V%, 3,®(z;). As outlined above,
an essential improvement can be achieved by accelerating
the numerical integration. To this end, we have suggested
the use of Haar-like sparse approximatioms of z; that
generates rectangular representations of the images and fits
Fig. 1. Examples for Haarlike approximations: RS¥ftj approximated thus well with the concept of Integral Images. Replacindy

using morphological filter (H-RSV [11]middle and using an OCWT (W- ... N g ) :
RSV, right). The OCWT representation meets optimally the local imag(lell amounts 10)_; %, 5;®(u;). The change of the supporting

structure. The ratio of the decreasing of the hyper-plane distance to the u¥@t§?tor§ might “kely.requ"e a slight aquStmem of tﬁes _
operations (see Section 11-B.5) is more efficient for the W-RSV (0.73) thawhich is done iteratively (see below), i.e. the approximation

for the H-RSV (0.51). we are proposing finally reads as
may expresxz and u as follows > 0 U Ak

y ex u WS z = AEA AN, U = U _ D). 5
> sen Gath, Wherezy = (z,1,) anda, = (@, ¢,). Thus we WoRVM ;% () ®)

may completely rewrite (1) as
u = arg min Y {(zx—ix)’+2ulin}. (2
" xea
Minimizing summand-wise, we obtain the following explicit
expression for the Optlmum)ﬂ see, €.0. [4]’ ||\IJSVM _\IIW—RVM H < ||\IISVM _\IIRVM H—’_”\IIRVM _\I}W—RVM ” )

The natural question that arises is how well approximates the
reduced and Haar—like designdd, .., the original SVM
i.e. we have to consider the quantity

sSvM !

ur = (1) = sgu(zn) max{za) — 0} . (3)

where S, is the soft-shrinkage operation with threshald
Consequently, the optimuna is simply obtained by soft—
shrinking the wavelet coefficients af i.e.

where the first misfit term on the right hand side is minimized
trough the iterative method in [11] and [12]. It remains to
analyze the second discrepancy betwgep,, and¥, ...

By making use of kernel-based evaluations of the inner

u= Z S (za)n = WS, (Waz), (4) products (and using(z;,z;) = 1) and Cauchy-Schwarz we
AEA obtain
whereW stands for the wavelet transform operator. N 9
2

2) Optimal Match by Translated Wavelet Basd@gpically, 1 rone = Voo [” = <Z1 18:@(=:) 'yz<I>(uZ)||>
orthogonal or so-called non-redundant representations and =
filte_ring_ very often cre_ates artifacts in terms _of undesirable = (I, (|51®(z1) — 1@ (w)],. ..,
oscillations or non—optimally represented details, which man- 2
ifest themselves as ringing and edge blurring. For our purpose |Bn. @(zN.) — v, P(un.) )

it is essential to pick a representation that optimally meets ok 9

the local image structure (see Figure 1). The most promising — N Z 16:2(z:) — 71 ®(w)|

method for adequately solving this kind of problem has its ZJ;:

origin in translation invariance (the method of cycle spinning,  _ N. Z {ﬁz A2 2, Bik(z ui)}

see, e.g. [2]), i.e. representing the image by all possible shifted p ! ! ’

versions of the underlying (Haar) wavelet basis. But contrary N. N.

to the idea of introducing redundancy by averaging over all  _— {Z(ﬁi )2+ 22%@(1 _ k(znui))}
possible representations af we aim to pick only that one = =

In order to give a rough sketch of this technique, assume =
that we are given an RS¥'with 2 x 2 pixel. Following the
cycle—spinning approach, see again [2], we have to compute i ) )
22(M+1-jo) different representations of with respect to the Now, when choosing the Gaussian kernel we may approximate

92(M+1-jo) translatess of the underlying wavelet basis. Thek as follows

that optimally meets the given image structure.
N. {

N.
1B =~ +2> 7Bl - k(Zivui))} - (6)

i=1

scalej, denotes the coarsest resolution levekoflhe family l2; — |2

{z*}s generated this way serves now as our reservoir of 1—k(zju;) = 1—exp (’22’)
possible wavelet representations of one singl€he best shift ) g

s* is that one for which we have a minimal discrepancy to the = l2i — i +0O(|- M. 7

SVM hyper-plane per operations for the kernel-evaluation. We 20

evaluate all p(_)ssible I(_)Cé,‘l shifts (in our case= 64)’ hence s the data misfit discrepancy is directly controlled by the
the global optimum shift is guaranteed (see Section II-B.5).£2 distance of the sparse approximatian of z, (which is

minimized under sparsity constraints) and the distaitey||.
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Thus, up to higher order terms, we achieve evaluation selects the most efficient approximation accuracy
automatically at detection time based on the image patch to be
[P A [ Nz{Hﬁ —91? classified. In contrast to former methods the trade-off between

accuracy and speed is smooth.

N.
+ 072N yiBillz —w; 2},(8)
; | | 5) Algorithm to Generate Hierarchically Refined W-RSV’s:
er?e algorithm is based on residual Haar wavelet approxima-

where the relation between the set vector approximation ert f the RSV’ hich ted by minimizi
and the threshold paramefeneeds to be made. This is impor- lons ot the i WhICh are pre-computed by minimizing

B 5 . X

tant to control the tradeoff between sparsity (i.e. computatiorﬂi\%v?I Wil via thr? alg{orlt_hrr]n Sque.Sted(;n [12]h basi

cost) and the approximation (classification preciseness). efore preseptlng .t € agon_t m} we mtro_ uce the basic
At first, we consider the difference of the set vectorguant't'es' Starting with computirgf” different initial Haar—

. . 0,s J12
and express them by means of the corresponding wavéLE‘? approxmatlonSrZ. 'by (4), wheres € {1""’2 } IS
coefficients. i.e. the shift of the underlying Haar wavelet basis, we recursively

’ define forl =0,...,Landi=1,...,N,

25 — wsll* =" (zin = Sulzi0))* - l

l j,s*
AEA u;, = Ej:o ;" (10)
Assuming further tha consists 02" x 2 pixel, we have A (W (2 —ul))
2M 2
1—k(ziu) < 1—exp (‘22“) . where the shifts* denotes the best shift (selected by an opti-
20 mally criterion introduced below) of the residual at resolution

Consequently, an upper bour for the worst case error is level I, see Figure 2. Note that* may differ for eachr!.

then given by Within this setting each set vectas; is then approximated
at levell by ul. The benefit of the residual structure is that
19 ns — Yoo ron I < Nz{|ﬂ’y|2 + (i) u!l converge toz;, if I — oo, (i) we can store all the

residuals and thus they do not need to be recomputed in the
—22M 2 Y- cascade step when tuning the resolution (i.e. the accuracy of
2 (1 - exXp ( 202 )) Zﬁi%} the set vector representation) from coarse to fine, and (jii) the
— E(p) =t evaluation of the kernel at run-time is more efficient (detailed
’ ’ later at (16) in Section 1I-C). Beside the computational cost,
Neglecting higher order terms of thep series, we may write the discrepancy to the original SVM is of importance. Such a
N. discrepancy depends on the resolution lévahd the number
B(u) = N, (0_222MM2 Zﬁi% +18 - 7|2> . 9) 1 of used set vectors,
1=1 i—1
Vo = D0 (uh) =700 (w4 xl)
k=1

From the last formula we see that the influenceuofs of ~ 0i(s) = ‘
guadratic nature which assures a rapid error decay of the left
hand summand. The quantify? — ~||? will be studied below N- L -
when we have given the rule for deriving the vectarIn - Z e ()
the limit case,u — 0, we then achievéim, ., E(u) = 0, k=itl
which shows that the proposed scheme acts in the liMitere we seti=! = 0. The cascade structure is thus achieved
case as the RVM. For the case in which we really achieyg ., adding Tresiduals — i + 1 and then, after reaching
complexity reduction by sparsity and thus a significant gain jn_ N, passing to the next levél— [ + 1, i.e. subsequently
computational time and cost, we refer to section Il addingri’s. Note that for each added residuérr‘ we have to
compute a new vectof’ = (447 ... 44" ). Since we are
4) Hierarchical Evaluation via Resolution LevelsThe searching for the best shift for rb*® and the optimah/,
early rejection of easy to discriminate vectors is achievegh have to minimizest(s). The oE)timaI vectorn can be

by a double cascade. The inner cascade is a hierarchy Q¥&hputed explicitly. Introducing thé/, x N, matrix
the numberi = 1,..., N, of incorporated W-RSV's,u’.

After incorporating a certain number of W-RSV's with adl’; =
constant resolution level it is more efficient to improve

2
,(11)
F

the approximation accuracy of the first (already incorporated) (@(x1),®(u})) ... (®(xn,), P(uy))
vectors. Hence we train in Section II-Bi5= 0,...,L sets : . :
of W-RSV’s for the outer cascade of coarse—to—ﬁr_le resolut!on (®(x1), B(ul_)) ... (B(xn,), B(ul_,))
levels. The trade-off between the two cascades is determined Ve
in Section II-C. To exploit these cascades is the superior way P P(ul-! Py P(ul-1
to reject most image points by only few operations. Moreover (@0a) (i) oo (0, ) (i)
this novel method is robust since the adjustment of only one

-1

optimal resolution level was sensitive in [11]. The proposed (@(x1), ®(uy ) .. <<I>(me),<I>(ulN‘zl)>
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with the ith row

l,s _ s\—1 S(g: — lll»_l
. ((@(Xl),‘b(ui_l —|—I‘é"s)>, e r; _(W) SM(W ( @ i ))

(®(xp,), 2(ul +1rb%)) 4) ComputeVs € {1,...,27}? the decrement of the

) o _ discrepancy
and the same way th&/, x N, matrix ®.%5 with entries

, u,u e o . l _ 2 50
(®(ul), ®(ul,)) but where theith row is replaced with ?f L= 1,0=0: 5A;(5) Hl\IﬁVM”F ?1(5)
l ifi=1,1>0: sA;(s) =0dx () —0i(s)
w' = (®(),d(ult +r), ..., else : sAL(s) =48 (s*) — 6{(5)
— l,s - l,s .
(@ %), (u + %), and the number of operations

(@(uy ), ®(u" +177))

SAL(s) = dx #r°] + o(x”),
andith column with (w*)’, we recast the discrepandy(s)

as follows where #[ré?‘“] is the number of piecewise constant
’ o S rectangles and(r}*) the number of gray values of °.
65(5) = ||\I/SVM ”i" - 2(71,1)/(1)5{,?{50[ + ('Yl’l)/q)i;fl’ffyl’l' )
Evaluating the derivative of the discrepancy and setting it to® Select the best shift” out of {1,2,....,27}" by
0, the optimah!* is then obtained by . sALFL(s)
L Lis\—1ali,s § Targmax —ea T
7 (s) = (i) T O « (12) A ©))

and depends thus on With the explicit expression (12), the  g) save the rectangle structure df*” and the coefficient
discrepancy becomes vector

i,s\/ 15,8\ — 1,8 . . .k .k
51(s) = [ Wsun |7 — @ (P1) (PG50 1Y a0 (13) bt = Abi(s7) = (@) TR o
This of course requires the existencgf;’;¥) ~* what clearly
means then linear independency of all involved)’s. If this

cannot be assured, we have to consider a regularized version
of 6!(s), namely

7) If i < N,, incrementi and proceed to step 3. 4f= N,
and! < L, increment and proceed to step 2; else, stop.

. A g g g Finally, as a byproduct of this section and as a contribution
5;(s) = [[Wgyu Iz — 23" @L P+ (Y) (B555 + p)7"" - to section 11-B.3, we are now able to quantjfg—||. Assume,
the SVM is given byN, set vectorsx; and the RVM by

This yields _
’ ; , , N, set vectorsg;, then with (®,,); ; = (®(z;), ®(z,)) and
Y (s) = (R4 +p) 'O a (14)  (Dx0)i; = (®(x;), ®(z;)) it is common thap} = &, 1®, a,
and thus see [12]. Consequently,
i i i — Abi -1 (s L gpli,st
0L(5) = [[Wep 13 — o’ (@452) (@43 + p) 1@k o . (15) 1B =A% < [19,2%xz — (P55 ) 005 Nl

and since we havgu! —z;| < C,,;, by perturbation arguments
we also have an entry—wise perturbation estimate for the full

With the matrix notation, the double cascade structufBatrices which in turn yield an estimate f@ — 4[| in
becomes now more visible: beside the residual cascade wifPendence op andl (we omit a detailed examination here).
respect tol in the approximation of each; by u!, there is Moreover, as the approximations at reso!uuon level tend
for each! a matrix cascade structure with respectitehat [© Zi asu tends to0, we have an entry-wise convergence
allows to store the entries up to tlith row in PLis and up L S @,, , L — Dy,
to ith row andith column in ®.%*. The remaining entries ’ ’

(PL5)m for m > i and (®4%5),,m for n,m > i can be and hence
taken from the previous levél— 1. B, Lo, — (‘I’{ifﬁs*)_l‘biéff* [ =0

We summarize our findings and design the algorithm f .
the generation of the W-RVM: %E Detection Process
The classification function of the W-RVM, denoted by
_ Zle a;®(x;), w;' = 0 and setl = 0 yl(x) of the input patchx, using N, W-RSV'’s at the levels

1) Setv,,,, = _ )
0,...,0—1 andi W-RSV’s at the level is as follows:

2) Start withi =1

/ i ~l,i l
(%) = o
3) Compute fors € {1,...,27}2 (here. = 3) es Sgn(zk_l 51k e )
S +Zﬁim§;%<x,ui—1>+bé> o

-1 3,8
u. = Ir ’
! jgo ! k(x,ul) = exp (—1/202(X'X —2x'ul + ufué)) )
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algorithm proceeds to step 2; otherwise the full SVM
is used to classify the patch.

1) Adjustment of Resolution Levels and Number of W-RSV's
per Level: When computing an approximation of an SVM,
it is not clear how many approximation vectol$, should
be computed (see [12]). This number of vectors may vary
depending on the levélof the approximation. To this end, it
may be useful to letV, depend onl. The reason is that at
a certain point of the evaluation algorithm it is more efficient
to increment! (and reset), rather than to increment The
best value ofN.(I) is computed in an offline process using
a validation datasetV,(!) is set to the smallest for which
empirically

Nops(y! ;) _ Nops(yi™)
Nreos(yl,,) ~ Nrees(y!1) ’

where Nops stands for the number of operations and Nrecs
stands for the number of rejections of the negative examples.
By a similar evaluation the last used resolution leletan
be achieved. For thig it is more efficient to classify the last
few remaining patches by the SVM, instead of incrementing
L depends also on the sparsity paramgteFhe smalley, the
closer isu! to z; and the less resolution levels are required.
However, the number of levels does not play a decisive role
as the higherL, the sooner the evaluation process selects
the next level, i.e. the les&,(l). Therefore our proposed
approach is not very sensitive to the parameter for setting the
approximation accuracy (e.g.), opposite to former methods

Fig. 2. Example of recursively approximating a R®¥ft a RSVz;, right:  USing only one resolution level.
W-RSV ui. at different resolution levels (top to bottom:= 0,1,9,18),

middle related residualsé’s* (top to bottom:l =0, 1,9, 18). I1l. EXPERIMENTAL RESULTS

We applied our novel Wavelet Approximated Reduced SVM
to the task of face detection. For the training and validation of
the classifier we used two databases. The first set was crawled

et ) b1 from the WWW (see Acknowledgment) and as second face
only 2xry” has to be computed, sincéx'u;”" can be database we used the grayscale version of FERET [9]. We

stored at the previous level. The thres_;hokﬁlsare obtained o se this well-known dataset to provide the comparability to
automatically from an R.O.C. for a given accuracy. Thesg ., approaches

thresholds are set to yield a given False Rejection Rate (FRR)l-he training set includes 35000 x 20, face patches and

so that the accuracy of the W'R\,/M is the same as the 988000 non-face patches from the first dataset. The SVM
of the full SVM (see [12] for details). The trade-off betweer&omputed on the training set yielded about 8000 Support

FRR and FAR is the only parameter of our algorithm to b@ectors that we approximated by, — 90 W-RSV's at

set by the user. _ _ L = 5 resolution levels by the method detailed in the previous
Realizing our double cascade algorithm (Section I1-B.4qction.

where the kernek is efficiently evaluated using Integral Im-
ages (Section I1-A). For the terix/ul = 2x'ul ™! + 2x'r!*

the detection process goes as follows: As first validation set (set I) we used 1000 face patches, and
100,000 non-face patches randomly chosen also from WWW
1) Start at the first resolution levél= 0 images, but disjoint from the training examples. The first graph
on Figure 3 plots the residual distance of the RVM (dashed
2) Start with the first W-RSVu! at the levell line) and of the W-RVM (plain line) to the SVM (in terms
of the distanceV,,, — V.., and ¥, — ¥ ) as a

3) Evaluatey!(x) for the input patchx using (16) function of the number of vectors used. It can be seen that for
a given accuracy more Wavelet Approximated Set Vectors are
4) If y! < 0 then the patch is classified as not being theeeded to approximate the SVM than for the RVM. However,
object of interest, the evaluation stops as shown on the second plot, for a given computational load,
the W-RVM rejects much more non-face patches from the
5) If i < N,, i is incremented and the algorithm proceedsgalidation set | than the RVM. This explains the improved
to step 3; else ifl < L, | is incremented and the run-time performances of the W-RVM. Additionally, it can be
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ROC (with final SVM)

seen that the curve is more smooth for the W-RVM, hence a =

better trade-off between accuracy and speed can be obtaine@ o/ EUINEEEIEEE
=4 A
by the W-RVM. % ooe8f -
& o997} /
/
3450 0.996} |
S ¥
400 0995 /
1'3 0.994 !#
5 350 994
1 4
> 300 l‘ 0.993 SVM (single)
0.992 -
250 H i r RVM
\ 0.991 W-RVM
200¢ \ 0.99 s s s s s s s
\ o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
150 \ 1 FAR
N
100 ~ - B ) ROC (with final SVM)
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RVM T 0.999
0 . : : £ L
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number of vectors & 0997
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> - — 0.995
s |\
@ A 0.994
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E rTT T 0.993} ) 1
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E ol | 0.992 — — . RUM
'% : 0.991f —— W-RVM
| 0.99 ‘ ‘ ‘ ‘ ‘ ‘ ‘
40 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
- | FAR
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20} | . .
| Fig. 4. R.O.C's for the SVM, the RVM and the W-RVMof) without and
| (botton) with the final SVM classification for the remainin patches. The FAR
0 — ‘ ‘ ‘ ‘ ‘ is related to non-face patches.
0 1000 2000 3000 4000 5000 6000

number of operations

][:ig-h& Topizsvwa‘ll_’vgmdhﬂhdistance azf:{'gftio? of the number Ofvecth)rSin OpenCV (version b5a). The Viola & Jones detector yields

or the RVM (dashed ling and the W-RVM §olid line). Bottom:Percentage o .

rejected non-face patches as a function of the number of operations requi%r(].set Il & detection ra_te 610.9% by 0'32_false accept_ances
(FA) and 0.29 sec per image (on a Pentium M Centrino 1600

Figure 4 shows the R.O.C.’s, computed on the validation ePU). Compared to the results given in [19] the processing
I, of the SVM, the RVM and the W-RVM. It can be seen thatime is slower since the image size of the FERET images is
the accuracies of the three classifiers are similar without (tf§ger. The results on FERET are more accurate because of the
plot) and almost equal with the final SVM classification for th&igher quality of the images. With the W-RVM we obtained
remaining patches (bottom plot), see step 5. of the evaluati®h the same PC and set Il a detection rat®@1% by 0.25
algorithm. FA and 0.15 sec processing time per image.

Table | compares the accuracy and the average time require€Pur proposed classifier is more efficient at detection, but
to evaluate the patches of the validation set |. The speed{yginly at training time than the AdaBoost method [19]
over the former approach [11] is about a factor 2.5 (3895 and classifies about 25 times faster than the Rowley-Baluja-
The novel W-RVM algorithms provides a significant speedanade detector [13] and about 1000 times faster than the
up (530-fold over the SVM and more than 15-fold over th&chneiderman-Kanade detector [15].

RVM), for no substantial loss of accuracy. We also proved the performance and detection accuracy
under real-life conditions in the "Institutif Techno- und
Wirtschaftsmathematik” (ITWM) in Kaiserslautern.

To demonstrate the efficient and accurate detection al-
gorithm, we implemented an application using a standard
webcam. Accurate face detection one obtained at real-time

TABLE |
COMPARISON OF ACCURACY AND SPEED IMPROVEMENT OF TH&®V-RVM
TO THE RVM AND SVM.

method FRR FAR time per patch by 25 fps (on a Intel Pentium M Centrino 1600 CPU, at a
SVM 1.4% 0.002% 787.34us resolution of 320x240, step size 1 pixel, 5 scales).

RVM 1.5% 0.001% 22.51us
W-RVM 1.4% 0.002% 1.48us

IV. CONCLUSION

The validation set Il contains 500 frontal and half profile In this paper, we presented a novel efficient method for
images from the FERET database [9]. We compared o08WM classifications on image based vectors. The essential in-
approach with the Viola & Jones method [19] implementegredient was an recursively applied optimally matched Wavelet
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Transform of the Reduced Set Vectors. It was demonstrates] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. iMer, G. Ratsch,

on the task of face detection.
As opposed to the RVM, the sparseness of operatiofs
required for classification is not only controlled by the number
of Reduced Set Vectors but also by the number of wavelﬁ
basis functions used to approximate a Reduced Set Vec

and A. Smola. Input space vs. feature space in kernel-based methods.
IEEE Transactions on Neural Networkk0(5):1000 — 1017, 1999.
H. Triebel. Interpolation Theory, Function Spaces, Differential Opera-
tors. Verlag der Wissenschaften, Berlin, 1978.
] V. Vapnik. Statistical Learning TheoryWiley, N.Y., 1998.

P. Viola and M. Jones. Rapid object detection using a boosted cascade
Or. of simple features. IfProceedings IEEE Conf. on Computer Vision and

Hence, negative examples can be rejected with much fewer Pattern Recognition2001.
number of operations, making the run-time algorithm very
efficient. Moreover, as the Haar wavelets are used, the SVM
kernel may be evaluated extremely efficient using Integral

Images. The main advantage of this algorithm compared
other algorithms based on boosting, such as the \&olbnes

detector [19], is the fact that the training is much faster an
does not require manual intervention.
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