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Wavelet Frame Accelerated
Reduced Support Vector Machines

Matthias R̈atsch, Gerd Teschke, Sami Romdhani, and Thomas VetterMember, IEEE

Abstract— In this paper a novel method for reducing the
runtime complexity of a Support Vector Machine classifier is
presented. The new training algorithm is fast and simple. This
is achieved by an Over-Complete Wavelet Transform that finds
the optimal approximation of the Support Vectors. The presented
derivation shows that the wavelet theory provides an upper bound
on the distance between the decision function of the Support
Vector Machine and our classifier. The obtained classifier is fast,
since a Haar wavelet approximation of the Support Vectors is
used, enabling efficient Integral Image based kernel evaluations.
This provides a set of cascaded classifiers of increasing complexity
for an early rejection of vectors easy to discriminate. This
excellent runtime performance is achieved by using a hierarchical
evaluation over the number of incorporated and additional over
the approximation accuracy of the Reduced Set Vectors. Here this
algorithm is applied to the problem of face detection, but it can
also be used for other image based classifications. The algorithm
presented, provides a 530 fold speed-up over the Support Vector
Machine, enabling face detection at more than 25 fps on a
standard PC.

Index Terms— Over Complete Wavelet Transform, Reduced
Support Vector Machine, Coarse to Fine Classifier, Cascaded
Evaluation, Face Detection, Machine Learning.

EDICS Category: SRE-MLRN, MRP-WAVL,
OTH-RCGN

I. I NTRODUCTION

I MAGE based classification tasks are time consuming. For
instance, detecting a specific object in an image, such as

a face, is computationally expensive, as all the pixels of the
image are potential object centers. Hence all the pixels must
be classified.

Recently, more efficient methods have emerged based on
a cascaded evaluation of hierarchical filters: image patches
easy to discriminate are classified by a simple and fast filter,
while patches that resemble the object of interest are classified
by more involved and slower filters. In the area of face
detection [13], cascaded based classification algorithms were
introduced by Kerenet al. [7], by Romdhaniet al. [12] and
by Viola and Jones [19]. With Kerenset al. [7] detector the
negative examples (i.e. the non-faces) need to be modeled by a
Boltzmann distribution and must be smooth. This assumption
could increase the number of false positive in presence of a
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cluttered background. Romdhaniet al. [12] use a Cascaded
Reduced Set Vectors (RSV) expansion of a Support Vector
Machine [18]. The speed bottleneck of [12] is that at least
one convolution of a20 × 20 filter has to be carried out
on the full image, resulting in a computationally expensive
evaluation of the kernel with an image patch. Kienzleet al.
[8] present an improvement of this method, where the first
(and only the first) RSV is approximated by a separable filter.
Viola & Jones [19] use Haar–like oriented edge filters having
a block like structure enabling a very fast evaluation by use
of an Integral Image. These filters are weak, in the sense that
their discrimination power is low. They are selected, among a
finite set, by the AdaBoost algorithm that yields the ones with
the best discrimination. A drawback of their approach is that
it is not clear that the cascade achieves optimal generalization
performances. Practically, the training proceeds by trial and
error, and often, the number of filters per stage must be
manually selected so that the false positive rate decreases
smoothly. Another drawback of the method is that the set of
available filters is limited and has to be selected manually. The
training for the classifier is ”on the order of weeks” ([19],
Section 5.2), as every filter (about105) is evaluated on the
whole set of training examples and this is done every time a
filter is added to a stage of the cascade.

Taking the above mentioned problems into account, we
developed a novel classification algorithm. The following
features make the algorithm accurate and efficient:

1) Support Vector Machine: Use of an SVM classifier that
is known to have optimal generalization capabilities.

2) Reduced Support Vector Machine:The RVM uses a
reduced set of Support Vectors [12].

3) Double Cascade:For non-symmetric data (i.e. only
few positives to many negatives) we achieve an early
rejection of easy to discriminate vectors. It is obtained
by the two following cascaded evaluations over coarse-
to-fine Wavelet Approximated Reduced Set Vectors (W-
RSV’s): (i) Cascade over the number of used W-
RSV’s and (ii) Cascade over the resolution levels
of each W-RSV. The Double Cascade constitutes one
of the major novelties of our approach. The trade-off
between accuracy and speed is very continuous.

4) Integral Images: As the RSV’s are approximated by a
Haar wavelet transform, the Integral Image method is
used for their evaluation, similarly to [19].

5) Wavelet Frame: We use an over-complete wavelet
system to find the best representation of the RSV’s.

The learning stage of our proposed Wavelet Approximated
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Reduced SVM (W-RVM ) is fast, straightforward, automatic
and does not require the manual selection of ad-hoc parame-
ters. For example, the training time (Section III) is two hours
which is a vast improvement over former detectors.

In our approach, we apply an Over-Complete Wavelet
Transform (OCWT) to the Reduced Support Vector Machine
itself, and not of the input space as a pre-processing like [6],
[5].

This paper presents the coherent and complete frame work
of our approach where we summarize and extend the con-
ference papers [10], [11], [12]. The improvement of [10]
compared to [11] are the features 3. (ii) and 5. (see above):
The Simulated Annealing optimization using morphological
filters was replaced by a sparse wavelet frame representation
of the RSV’s. Simulated Annealing does not provide the global
optimum of the RVM approximation in all cases and it is
difficult to adjust the resolution level.

In this paper we take advantage of recent progress in
wavelet analysis: the optimality of sparse signal approximation
(rectangular structure) in wavelet space. Moreover, we show
the double cascade structure of the learning and detection
process that is obtained by the proposed recursive refinement
of the wavelet frame representation of the RSV’s.

In addition we show in Section II-B.3 that the wavelet
frame approach provides an upper bound of the hyperplane
approximation error. Exploring this characteristic the training
of the W-RVM works without heuristics and is fast. Also
as an expansion, we show in Section II-B.3 the relation
between the hyperplane approximation error of the decision
functions and a training parameter to control the trade-off
between sparsity and approximation. As demonstrated in
Section II-C.1 the parameter for setting the approximation
accuracy does not play a decisive role, opposite to former
methods, using only one resolution level.

The paper is organized as follows: Section II details our
novel training (Section II-B) and detection algorithm (Sec-
tion II-C). It is shown in Section III that the new expansion
yields a comparable accuracy to the SVM while providing a
significant speed-up. In addition to the mentioned papers [10],
[11] we carried out experiments on well known databases, like
FERET [9] to provide the comparability to other approaches.

II. WAVELET FRAME APPROXIMATED SUPPORTVECTOR

MACHINE

Support Vector Machines (SVM) are well-known for good
generalization capabilities. Their decision function has the
form: y(x) =

∑Nx

i=1 αi · k(x,xi) + b, wherek(·, ·) represents
the kernel determining the feature space. In order to improve
the runtime performance, it is proposed in [16] to approximate
the SVM by a Reduced SVM (RVM) in combination with a
cascaded evaluation as in [12]. The RVM aims to approximate
the SVM by a smaller set of new Reduced Set Vectors
(RSV’s), zi instead of the Support Vectors,xi. The RVM
approach provides a significant speedup over the SVM, but is
still not fast enough, as the image has to be convolved in steps
of full convolutions, e.g. by20 × 20 RSV’s. The algorithm

presented in this paper improves this method since it does
not require to perform this convolution explicitly. Instead, it
approximates the RSV’s by Haar–like vectors and computes
the evaluation of a patch using an Integral Image of the input
image. They can be used to compute very efficiently the dot
(or inner) product of an image patch with an image that has
a block-like structure, i.e. rectangles of constant values.

A. Integral Images Based on Haar–like W-RSV’s

During an RVM evaluation, most of the time is spent
in kernel evaluations. In the case of the Gaussian kernel,
k(x, zi) = exp(−||x− zi||2/(2σ2)), chosen here, the compu-
tational load is spent in evaluating the norm of the difference
between a patch and a RSV. This norm can be expanded as
follows: ‖x− zi‖2 = x′x−2x′zi +z′izi. As zi is independent
of the input image, it can be pre-computed. The sum of squares
of the pixels of a patch of the input image,x′x is efficiently
computed using the Integral Image ([3], [19]) of the squared
pixel values of the input image. As a result, the computational
load of this expression is determined by the term2x′zi.

The novelty of our approach is the approximation of the
RSV’s,zi, by optimally wavelet frame approximated Reduced
Set Vectors (W-RSV’s),ui which have a block-like structure,
as seen in Figure 1. Optimally approximated means here the
usage of an optimally shifted wavelet basis that represents
the image as sparse as possible. Then the term2x′ui can be
evaluated very efficiently using the Integral Image. Ifui is
an image patch with rectangles of constant (and optionally
different) gray levels then the dot product is evaluated in
constant time by the addition of four pixels of the Integral
Image of the input image per rectangle and one multiplication
per gray level value.

B. Learning Process

In contrast to several approaches like [6], [5], we do not
wavelet-transform the input images as a pre-processing at
runtime. The novelty is that we apply the OCWT to the
Reduced Support Vector Machine itself.

1) Soft–Shrinkage to Build Rectangular Structured
W-RSV’s: We are searching for an approximation of a given
imagez by a piecewise block structured imageu which is as
sparse as possible. This optimization problem can be casted
in the following variational form

min
û

{
‖z− û‖2L2

+ 2µ|û|B1
1(L1)

}
, (1)

where B1
1(L1) denotes a particular Besov semi–norm (for

more details we refer the reader to [17], [14] and for a detailed
discussion of the problem to [1]). It is known that the Besov
(semi) norm of a given function can be expressed by means of
its wavelet coefficients. In two spatial dimensions the Besov
penalty is nothing else than à1 constraint on the wavelet
coefficients (promoting sparsity as required).

The minimization of (1) is easily obtained: Let{ψλ}λ∈Λ

be the underlying wavelet basis, whereΛ is the index set over
all possible grid point, scaling and wavelet species. Then we
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Fig. 1. Examples for Haar–like approximations: RSV (left) approximated
using morphological filter (H-RSV [11],middle) and using an OCWT (W-
RSV, right). The OCWT representation meets optimally the local image
structure. The ratio of the decreasing of the hyper-plane distance to the used
operations (see Section II-B.5) is more efficient for the W-RSV (0.73) than
for the H-RSV (0.51).

may expressz and û as follows: z =
∑

λ∈Λ zλψλ , û =∑
λ∈Λ ûλψλ, wherezλ = 〈z, ψλ〉 andûλ = 〈û, ψλ〉. Thus we

may completely rewrite (1) as

u = arg min
û

∑

λ∈Λ

{
(zλ − ûλ)2 + 2µ|ûλ|

}
. (2)

Minimizing summand–wise, we obtain the following explicit
expression for the optimumuλ, see, e.g. [4],

uλ = Sµ(zλ) = sgn(zλ)max{|zλ| − µ, 0} , (3)

where Sµ is the soft–shrinkage operation with thresholdµ.
Consequently, the optimumu is simply obtained by soft–
shrinking the wavelet coefficients ofz, i.e.

u =
∑

λ∈Λ

Sµ(zλ)ψλ = W−1Sµ(Wz), (4)

whereW stands for the wavelet transform operator.

2) Optimal Match by Translated Wavelet Bases:Typically,
orthogonal or so–called non–redundant representations and
filtering very often creates artifacts in terms of undesirable
oscillations or non–optimally represented details, which man-
ifest themselves as ringing and edge blurring. For our purpose
it is essential to pick a representation that optimally meets
the local image structure (see Figure 1). The most promising
method for adequately solving this kind of problem has its
origin in translation invariance (the method of cycle spinning,
see, e.g. [2]), i.e. representing the image by all possible shifted
versions of the underlying (Haar) wavelet basis. But contrary
to the idea of introducing redundancy by averaging over all
possible representations ofz, we aim to pick only that one
that optimally meets the given image structure.

In order to give a rough sketch of this technique, assume
that we are given an RSVz with 2M×2M pixel. Following the
cycle–spinning approach, see again [2], we have to compute
22(M+1−j0) different representations ofz with respect to the
22(M+1−j0) translates,s of the underlying wavelet basis. The
scalej0 denotes the coarsest resolution level ofz. The family
{zs}s generated this way serves now as our reservoir of
possible wavelet representations of one singlez. The best shift
s∗ is that one for which we have a minimal discrepancy to the
SVM hyper-plane per operations for the kernel-evaluation. We
evaluate all possible local shifts (in our cases = 64), hence
the global optimum shift is guaranteed (see Section II-B.5).

3) Hyper–plane Approximation:The first reduction step
was computing the reduced SVM by the means of [11] and
[12]. This yieldsΨRVM =

∑Nz

i=1 βiΦ(zi). As outlined above,
an essential improvement can be achieved by accelerating
the numerical integration. To this end, we have suggested
the use of Haar–like sparse approximationsui of zi that
generates rectangular representations of the images and fits
thus well with the concept of Integral Images. Replacingzi by
ui amounts to

∑Nz

i=1 βiΦ(ui). The change of the supporting
vectors might likely require a slight adjustment of theβi’s
which is done iteratively (see below), i.e. the approximation
we are proposing finally reads as

ΨW−RVM =
Nz∑

i=1

γiΦ(ui). (5)

The natural question that arises is how well approximates the
reduced and Haar–like designedΨW−RVM the original SVM
ΨSVM , i.e. we have to consider the quantity

‖ΨSVM−ΨW−RVM‖ ≤ ‖ΨSVM−ΨRVM‖+‖ΨRVM−ΨW−RVM‖ ,

where the first misfit term on the right hand side is minimized
trough the iterative method in [11] and [12]. It remains to
analyze the second discrepancy betweenΨRVM andΨW−RVM .

By making use of kernel–based evaluations of the inner
products (and usingk(zi, zi) = 1) and Cauchy-Schwarz we
obtain

‖ΨRVM −ΨW−RVM‖2 ≤
(

Nz∑

i=1

‖βiΦ(zi)− γiΦ(ui)‖
)2

= 〈INzx1, (‖β1Φ(z1)− γ1Φ(u1)‖, . . . ,
|βNzΦ(zNz )− γNzΦ(uNz )‖)〉2

≤ Nz

Nz∑

i=1

‖βiΦ(zi)− γiΦ(ui)‖2

= Nz

Nz∑

i=1

{
β2

i + γ2
i − 2γiβik(zi,ui)

}

= Nz

{
Nz∑

i=1

(βi − γi)2 + 2
Nz∑

i=1

γiβi(1− k(zi,ui))

}

= Nz

{
‖β − γ‖2 + 2

Nz∑

i=1

γiβi(1− k(zi,ui))

}
. (6)

Now, when choosing the Gaussian kernel we may approximate
k as follows

1− k(zi,ui) = 1− exp
(−‖zi − ui‖2

2σ2

)

=
‖zi − ui‖2

2σ2
+O(‖ · ‖4). (7)

Thus the data misfit discrepancy is directly controlled by the
`2 distance of the sparse approximationui of zi (which is
minimized under sparsity constraints) and the distance‖β−γ‖.
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Thus, up to higher order terms, we achieve

‖ΨRVM −ΨW−RVM‖2 / Nz

{
‖β − γ‖2

+ σ−2
Nz∑

i=1

γiβi‖zi − ui‖2
}

, (8)

where the relation between the set vector approximation error
and the threshold parameterµ needs to be made. This is impor-
tant to control the tradeoff between sparsity (i.e. computational
cost) and the approximation (classification preciseness).

At first, we consider the difference of the set vectors
and express them by means of the corresponding wavelet
coefficients, i.e.

‖zi − ui‖2 =
∑

λ∈Λ

(zi,λ − Sµ(zi,λ))2 .

Assuming further thatz consists of2M × 2M pixel, we have

1− k(zi,ui) ≤ 1− exp
(−22Mµ2

2σ2

)
.

Consequently, an upper boundE for the worst case error is
then given by

‖ΨRVM −ΨW−RVM‖2 ≤ Nz

{
‖β − γ‖2 +

2
(

1− exp
(−22Mµ2

2σ2

)) Nz∑

i=1

βiγi

}

=: E(µ).

Neglecting higher order terms of theexp series, we may write

E(µ) u Nz

(
σ−222Mµ2

Nz∑

i=1

βiγi + ‖β − γ‖2
)

. (9)

From the last formula we see that the influence ofµ is of
quadratic nature which assures a rapid error decay of the left
hand summand. The quantity‖β − γ‖2 will be studied below
when we have given the rule for deriving the vectorγ. In
the limit case,µ → 0, we then achievelimµ→0 E(µ) = 0,
which shows that the proposed scheme acts in the limit
case as the RVM. For the case in which we really achieve
complexity reduction by sparsity and thus a significant gain in
computational time and cost, we refer to section III.

4) Hierarchical Evaluation via Resolution Levels:The
early rejection of easy to discriminate vectors is achieved
by a double cascade. The inner cascade is a hierarchy over
the numberi = 1, . . . , Nz of incorporated W-RSV’s,ul

i.
After incorporating a certain number of W-RSV’s with a
constant resolution levell it is more efficient to improve
the approximation accuracy of the first (already incorporated)
vectors. Hence we train in Section II-B.5l = 0, . . . , L sets
of W-RSV’s for the outer cascade of coarse-to-fine resolution
levels. The trade-off between the two cascades is determined
in Section II-C. To exploit these cascades is the superior way
to reject most image points by only few operations. Moreover
this novel method is robust since the adjustment of only one
optimal resolution level was sensitive in [11]. The proposed

evaluation selects the most efficient approximation accuracy
automatically at detection time based on the image patch to be
classified. In contrast to former methods the trade-off between
accuracy and speed is smooth.

5) Algorithm to Generate Hierarchically Refined W-RSV’s:
The algorithm is based on residual Haar wavelet approxima-
tions of the RSV’szi which are pre–computed by minimizing
‖ΨSVM −ΨRVM‖2 via the algorithm suggested in [12].

Before presenting the algorithm, we introduce the basic
quantities. Starting with computing22J different initial Haar–
like approximationsr0,s

i by (4), wheres ∈ {1, . . . , 2J}2 is
the shift of the underlying Haar wavelet basis, we recursively
define forl = 0, . . . , L and i = 1, . . . , Nz

ul
i =

∑l
j=0 rj,s∗

i ,

rl+1,s
i = (W s)−1Sµ

(
W s

(
zi − ul

i

))
,

(10)

where the shifts∗ denotes the best shift (selected by an opti-
mally criterion introduced below) of the residual at resolution
level l, see Figure 2. Note thats∗ may differ for eachrl,s

i .
Within this setting each set vectorzi is then approximated
at level l by ul

i. The benefit of the residual structure is that
(i) ul

i converge tozi, if l → ∞, (ii) we can store all the
residuals and thus they do not need to be recomputed in the
cascade step when tuning the resolution (i.e. the accuracy of
the set vector representation) from coarse to fine, and (iii) the
evaluation of the kernel at run-time is more efficient (detailed
later at (16) in Section II-C). Beside the computational cost,
the discrepancy to the original SVM is of importance. Such a
discrepancy depends on the resolution levell and the number
i of used set vectors,

δl
i(s) =

∥∥∥∥ΨSVM −
i−1∑

k=1

γl,i
k Φ

(
ul

k

)− γl,i
i Φ

(
ul−1

i + rl,s
i

)

−
Nz∑

k=i+1

γl,i
k Φ

(
ul−1

k

)∥∥∥∥
2

F

, (11)

where we setu−1
i = 0. The cascade structure is thus achieved

when adding residualsi → i + 1 and then, after reaching
i = Nz, passing to the next levell → l + 1, i.e. subsequently
addingrl,s

i . Note that for each added residualrl,s
i we have to

compute a new vectorγl,i = (γl,i
1 , . . . , γl,i

Nz
)′. Since we are

searching for the best shifts for rl,s
i and the optimalγl,i,

we have to minimizeδl
i(s). The optimal vectorγl,i can be

computed explicitly. Introducing theNx ×Nz matrix

Φl,i,s
x,u =




〈Φ(x1), Φ(ul
1)〉 . . . 〈Φ(xNx),Φ(ul

1)〉
...

. ..
...

〈Φ(x1),Φ(ul
i−1)〉 . . . 〈Φ(xNx),Φ(ul

i−1)〉
vs

〈Φ(x1), Φ(ul−1
i+1)〉 . . . 〈Φ(xNx), Φ(ul−1

i+1)〉
...

. ..
...

〈Φ(x1),Φ(ul−1
Nz

)〉 . . . 〈Φ(xNx),Φ(ul−1
Nz

)〉
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with the ith row

vs = (〈Φ(x1),Φ(ul−1
i + rl,s

i )〉 , . . . ,

〈Φ(xNx), Φ(ul−1
i + rl,s

i )〉)
and the same way theNz × Nz matrix Φl,i,s

u,u with entries
〈Φ(ul

i),Φ(ul′
i′)〉 but where theith row is replaced with

ws = (〈Φ(ul
1), Φ(ul−1

i + rl,s
i )〉 , . . . ,

〈Φ(ul−1
i + rl,s

i ),Φ(ul−1
i + rl,s

i )〉 , . . . ,

〈Φ(ul−1
Nz

), Φ(ul−1
i + rl,s

i )〉)
and ith column with (ws)′, we recast the discrepancyδl

i(s)
as follows,

δl
i(s) = ‖ΨSVM‖2F − 2(γl,i)′Φl,i,s

x,u α + (γl,i)′Φl,i,s
u,u γl,i.

Evaluating the derivative of the discrepancy and setting it to
0, the optimalγl,i is then obtained by

γl,i(s) = (Φl,i,s
u,u )−1Φl,i,s

x,u α (12)

and depends thus ons. With the explicit expression (12), the
discrepancy becomes

δl
i(s) = ‖ΨSVM‖2F − α′

(
Φl,i,s

x,u

)′
(Φl,i,s

u,u )−1Φl,i,s
x,u α . (13)

This of course requires the existence of(Φl,i,s
u,u )−1 what clearly

means then linear independency of all involvedΦ(·)’s. If this
cannot be assured, we have to consider a regularized version
of δl

i(s), namely

δl
i(s) = ‖ΨSVM‖2F − 2(γl,i)′Φl,i,s

x,u α + (γl,i)′(Φl,i,s
u,u + ρ)γl,i .

This yields

γl,i(s) = (Φl,i,s
u,u + ρ)−1Φl,i,s

x,u α (14)

and thus

δl
i(s) = ‖ΨSVM‖2F −α′

(
Φl,i,s

x,u

)′
(Φl,i,s

u,u + ρ)−1Φl,i,s
x,u α . (15)

With the matrix notation, the double cascade structure
becomes now more visible: beside the residual cascade with
respect tol in the approximation of eachzi by ul

i, there is
for each l a matrix cascade structure with respect toi that
allows to store the entries up to theith row in Φl,i,s

x,u and up
to ith row and ith column in Φl,i,s

u,u . The remaining entries
(Φl,i,s

x,u )n,m for m > i and (Φl,i,s
u,u )n,m for n,m > i can be

taken from the previous levell − 1.

We summarize our findings and design the algorithm for
the generation of the W-RVM:

1) SetΨSVM =
∑Nx

i=1 αiΦ(xi), u−1
i = 0 and setl = 0

2) Start with i = 1

3) Compute fors ∈ {1, . . . , 2J}2 (hereJ = 3)

ul−1
i =

l−1∑

j=0

rj,s∗
i

rl,s
i = (W s)−1Sµ(W s(zi − ul−1

i ))

4) Compute ∀s ∈ {1, . . . , 2J}2 the decrement of the
discrepancy

if i = 1, l = 0 : δ∆l
i(s) = ‖ΨSVM‖2F − δ0

1(s)
if i = 1, l > 0 : δ∆l

i(s) = δl−1
Nz

(s∗)− δl
1(s)

else : δ∆l
i(s) = δl

i−1(s
∗)− δl

i(s)

and the number of operations

ω∆l
i(s) = 4 ∗#[rl,s

i ] + v(rl,s
i ),

where #[rl,s
i ] is the number of piecewise constant

rectangles andv(rl,s
i ) the number of gray values ofrl,s

i .

5) Select the best shifts∗ out of
{
1, 2, . . . , 2J

}2
by

s∗ = arg max
s

δ∆l+1
i (s)

ω∆l+1
i (s)

6) Save the rectangle structure ofrl,s∗
i and the coefficient

vector

γ̂l,i = γl,i(s∗) = (Φl,i,s∗
u,u )−1Φl,i,s∗

x,u α

7) If i < Nz, incrementi and proceed to step 3. Ifi = Nz

andl < L, incrementl and proceed to step 2; else, stop.

Finally, as a byproduct of this section and as a contribution
to section II-B.3, we are now able to quantify‖β−γ‖. Assume,
the SVM is given byNx set vectorsxi and the RVM by
Nz set vectorszi, then with (Φz,z)i,j = 〈Φ(zi),Φ(zj)〉 and
(Φx,z)i,j = 〈Φ(xi), Φ(zj)〉 it is common thatβ = Φ−1

z,zΦz,xα,
see [12]. Consequently,

‖β − γ̂l,i‖ ≤ ‖Φ−1
z,zΦx,z − (Φl,i,s∗

u,u )−1Φl,i,s∗
x,u ‖‖α‖

and since we have‖ul
i−zi‖ ≤ Cµ,l, by perturbation arguments

we also have an entry–wise perturbation estimate for the full
matrices which in turn yield an estimate for‖β − γ̂l,i‖ in
dependence onµ andl (we omit a detailed examination here).
Moreover, as the approximationsul

i at resolution levell tend
to zi asµ tends to0, we have an entry–wise convergence

Φl,i,s∗
u,u → Φz,z , Φl,i,s∗

x,u → Φx,z

and hence

‖Φ−1
z,zΦx,z − (Φl,i,s∗

u,u )−1Φl,i,s∗
x,u ‖ µ→0−→ 0

C. Detection Process

The classification function of the W-RVM, denoted by
yl

i(x) of the input patchx, usingNz W-RSV’s at the levels
0, . . . , l − 1 and i W-RSV’s at the levell is as follows:

yl
i(x) = sgn

( ∑i
k=1 γ̂l,i

k k(x,ul
i)

+
∑Nz

k=i+1 γ̂l,i
k k(x,ul−1

i ) + bl
i

)

k(x,ul
i) = exp

(
−1/2σ2(x′x− 2x′ul

i + u
′l
i ul

i)
)

,

(16)
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Fig. 2. Example of recursively approximating a RSV.Left: a RSVzi, right:
W-RSV ul

i at different resolution levels (top to bottom:l = 0, 1, 9, 18),

middle: related residualsrl,s∗
i (top to bottom:l = 0, 1, 9, 18).

where the kernelk is efficiently evaluated using Integral Im-
ages (Section II-A). For the term2x′ul

i = 2x′ul−1
i + 2x′rl,s∗

i

only 2x′rl,s∗
i has to be computed, since2x′ul−1

i can be
stored at the previous level. The thresholdsbl

i are obtained
automatically from an R.O.C. for a given accuracy. These
thresholds are set to yield a given False Rejection Rate (FRR)
so that the accuracy of the W-RVM is the same as the one
of the full SVM (see [12] for details). The trade-off between
FRR and FAR is the only parameter of our algorithm to be
set by the user.

Realizing our double cascade algorithm (Section II-B.4)
the detection process goes as follows:

1) Start at the first resolution levell = 0

2) Start with the first W-RSV,ul
1 at the levell

3) Evaluateyl
i(x) for the input patchx using (16)

4) If yl
i < 0 then the patch is classified as not being the

object of interest, the evaluation stops

5) If i < Nz, i is incremented and the algorithm proceeds
to step 3; else ifl < L, l is incremented and the

algorithm proceeds to step 2; otherwise the full SVM
is used to classify the patch.

1) Adjustment of Resolution Levels and Number of W-RSV’s
per Level: When computing an approximation of an SVM,
it is not clear how many approximation vectorsNz should
be computed (see [12]). This number of vectors may vary
depending on the levell of the approximation. To this end, it
may be useful to letNz depend onl. The reason is that at
a certain point of the evaluation algorithm it is more efficient
to incrementl (and reseti), rather than to incrementi. The
best value ofNz(l) is computed in an offline process using
a validation dataset:Nz(l) is set to the smallesti for which
empirically

Nops(yl
i+1)

Nrecs(yl
i+1)

>
Nops(yl+1

1 )
Nrecs(yl+1

1 )
,

where Nops stands for the number of operations and Nrecs
stands for the number of rejections of the negative examples.

By a similar evaluation the last used resolution levelL can
be achieved. For thisL it is more efficient to classify the last
few remaining patches by the SVM, instead of incrementingl.
L depends also on the sparsity parameterµ. The smallerµ, the
closer isul

i to zi and the less resolution levels are required.
However, the number of levels does not play a decisive role
as the higherL, the sooner the evaluation process selects
the next level, i.e. the lessNz(l). Therefore our proposed
approach is not very sensitive to the parameter for setting the
approximation accuracy (e.g.µ), opposite to former methods
using only one resolution level.

III. E XPERIMENTAL RESULTS

We applied our novel Wavelet Approximated Reduced SVM
to the task of face detection. For the training and validation of
the classifier we used two databases. The first set was crawled
from the WWW (see Acknowledgment) and as second face
database we used the grayscale version of FERET [9]. We
chose this well-known dataset to provide the comparability to
other approaches.

The training set includes 3500,20 × 20, face patches and
20000 non-face patches from the first dataset. The SVM
computed on the training set yielded about 8000 Support
Vectors that we approximated byNz = 90 W-RSV’s at
L = 5 resolution levels by the method detailed in the previous
section.

As first validation set (set I) we used 1000 face patches, and
100,000 non-face patches randomly chosen also from WWW
images, but disjoint from the training examples. The first graph
on Figure 3 plots the residual distance of the RVM (dashed
line) and of the W-RVM (plain line) to the SVM (in terms
of the distanceΨSVM − ΨRVM and ΨSVM − ΨW−RVM) as a
function of the number of vectors used. It can be seen that for
a given accuracy more Wavelet Approximated Set Vectors are
needed to approximate the SVM than for the RVM. However,
as shown on the second plot, for a given computational load,
the W-RVM rejects much more non-face patches from the
validation set I than the RVM. This explains the improved
run-time performances of the W-RVM. Additionally, it can be
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seen that the curve is more smooth for the W-RVM, hence a
better trade-off between accuracy and speed can be obtained
by the W-RVM.
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Fig. 3. Top:ΨSVM−ΨW−RVM distance as function of the number of vectors
for the RVM (dashed line), and the W-RVM (solid line). Bottom:Percentage of
rejected non-face patches as a function of the number of operations required.

Figure 4 shows the R.O.C.’s, computed on the validation set
I, of the SVM, the RVM and the W-RVM. It can be seen that
the accuracies of the three classifiers are similar without (top
plot) and almost equal with the final SVM classification for the
remaining patches (bottom plot), see step 5. of the evaluation
algorithm.

Table I compares the accuracy and the average time required
to evaluate the patches of the validation set I. The speed-up
over the former approach [11] is about a factor 2.5 (3.85µs).
The novel W-RVM algorithms provides a significant speed-
up (530-fold over the SVM and more than 15-fold over the
RVM), for no substantial loss of accuracy.

TABLE I

COMPARISON OF ACCURACY AND SPEED IMPROVEMENT OF THEW-RVM

TO THE RVM AND SVM.

method FRR FAR time per patch

SVM 1.4% 0.002% 787.34µs

RVM 1.5% 0.001% 22.51µs

W-RVM 1.4% 0.002% 1.48µs

The validation set II contains 500 frontal and half profile
images from the FERET database [9]. We compared our
approach with the Viola & Jones method [19] implemented
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Fig. 4. R.O.C.’s for the SVM, the RVM and the W-RVM (top) without and
(bottom) with the final SVM classification for the remainin patches. The FAR
is related to non-face patches.

in OpenCV (version b5a). The Viola & Jones detector yields
on set II a detection rate of90.9% by 0.32 false acceptances
(FA) and 0.29 sec per image (on a Pentium M Centrino 1600
CPU). Compared to the results given in [19] the processing
time is slower since the image size of the FERET images is
larger. The results on FERET are more accurate because of the
higher quality of the images. With the W-RVM we obtained
on the same PC and set II a detection rate of90.1% by 0.25
FA and 0.15 sec processing time per image.

Our proposed classifier is more efficient at detection, but
mainly at training time than the AdaBoost method [19]
and classifies about 25 times faster than the Rowley-Baluja-
Kanade detector [13] and about 1000 times faster than the
Schneiderman-Kanade detector [15].

We also proved the performance and detection accuracy
under real-life conditions in the ”Institut für Techno- und
Wirtschaftsmathematik” (ITWM) in Kaiserslautern.

To demonstrate the efficient and accurate detection al-
gorithm, we implemented an application using a standard
webcam. Accurate face detection one obtained at real-time
by 25 fps (on a Intel Pentium M Centrino 1600 CPU, at a
resolution of 320x240, step size 1 pixel, 5 scales).

IV. CONCLUSION

In this paper, we presented a novel efficient method for
SVM classifications on image based vectors. The essential in-
gredient was an recursively applied optimally matched Wavelet
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Transform of the Reduced Set Vectors. It was demonstrated
on the task of face detection.

As opposed to the RVM, the sparseness of operations
required for classification is not only controlled by the number
of Reduced Set Vectors but also by the number of wavelets
basis functions used to approximate a Reduced Set Vector.
Hence, negative examples can be rejected with much fewer
number of operations, making the run-time algorithm very
efficient. Moreover, as the Haar wavelets are used, the SVM
kernel may be evaluated extremely efficient using Integral
Images. The main advantage of this algorithm compared to
other algorithms based on boosting, such as the Viola& Jones
detector [19], is the fact that the training is much faster and
does not require manual intervention.
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