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Abstract. We consider linear inverse problems where the solution is assumed
to fulfill some general homogeneous convex constraint. We develop an algo-
rithm that amounts to a projected Landweber iteration and that provides and
iterative approach to the solution of this inverse problem. For relatively mod-
erate assumptions on the constraint we can always prove weak convergence of
the iterative scheme. In certain cases, i.e. for special families of convex con-
straints, weak convergence implies norm convergence. The presented approach
covers a wide range of problems, e.g. Besov– or BV–restoration for which we
present also numerical experiments in the context of image processing.

1. Scope of the Problem

In a wide range of practical applications one has to solve the problem that the
features of interest cannot be observed directly, but have to be interfered from
other quantities. Very often a linear model describing the relationship between the
features and the measured quantities works quite nicely, i.e. in such situations the
task to solve is

Tf = h .

Typically, the observed data are not exactly equal to the image h = Tf , but rather
a distortion of h, i.e.

g = h + e = Tf + e .

To find an estimate for f from an observation g, one might minimize

‖g − Tf‖2
H.
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This kind of problem lies in the class of ill-posed inverse problems if the generalized
inverse T + : g 7→ f+ is unbounded. In such cases, the generalized inverse must
be replaced by bounded approximants, so that numerically stable solutions can be
defined.

A typical procedure to avoid these instabilities or to regularize the inverse prob-
lem is to modify the functional to be minimized, so that it not only incorporates
the discrepancy, but also some a priori knowledge one may have about the solution.
More precisely, we consider then a functional of the form

(1) ‖g − Tf‖2
H + 2αJ(f),

where J(f) < ∞, or even J(f) < 1 is the mathematical translation of the a priori
knowledge.

In this paper, we shall consider two different choices of J(f), both adapted to
the case where the inverse problem consists in deblurring and denoising a 2-dim.
image, as in [9], which was in turn, inspired by [7] and [17]. Both approaches are
natural sequels to [9]. In the first approach, we consider J(f) of the same type as
in [9], but we put it in a more general framework, where J(f) can be any positive,
convex, one–homogeneous functional. An extensive discussion of such functionals,
in much greater generality than what we present here, is given in [6]. In order to be
self contained, and to avoid introducing the full complexity of [6], we present here a
sketch of a simpler version that suffices for our case. In the second approach, J(f)
is the same as in [16], but the numerical solution in [16] of a 4-th order nonlinear
PDE is replaced by an iterative approach similar to [7] and [9].

The paper is organized as follows: in Section 2, we present the framework for
our first approach (generalizing [9]), which is then discussed in section 3, in several
stages: a “warm up” for the case when T ∗T has a bounded inverse (in this case, the
problem is well–posed), then the ill–posed problem (where 0 is in the spectrum of
T ∗T ), with a convergence analysis. In Section 4, we explain our second approach,
an alternative way of minimizing the functional in [16]. Finally, in Section 5, we
give numerical results for both.

2. Penalization by a positive, convex, one–homogeneous functional

2.1. Preliminaries. In this Section and the next, we assume that the functional
to minimize takes the form (1), where J is a positive, convex and one–homogeneous
functional. In this case, the variational problem can be recast as follows: Consider
J∗, the Fenchel transform or so–called dual functional of J , see [19]. Since J is
positive and one–homogeneous, there exists a convex set C such that J∗ is equal to
the indicator function χC over C. In Hilbert space, we have total duality between
convex sets and positive and one–homogeneous functionals, i.e. J = (χC)∗, or

(χC)∗(f) = sup
h∈C

〈f, h〉 = J(f) ;

see, e.g., [1, 4, 6]. (Note: [6] gives a much more general and complete discussion;
we restrict ourselves here to a simple situation, and only sketch the arguments. For
a complete, detailed discussion, we refer the reader to [6].) We thus end up with
the following reformulation of our problem: given some closed convex set C ⊂ H
(on which we may still impose extra conditions, below), we wish to minimize

(2) FC(f) = ‖g − Tf‖2
H + 2α sup

h∈C
〈f, h〉 ,
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where we assume T to be a bounded operator from H to itself, with ‖T ‖ < 1. We
shall consider two particular cases in more detail.

Example 1. As in [7], a particular orthonormal basis {φλ}λ∈Λ in H is preselected,
the prior is defined as

J(f) =
∑

λ∈Λ

|〈f, φλ〉| .

This can, of course, be viewed as a special case of (2), since in this case

C = {h ∈ L2,per([0, 1]2); |〈h, φλ〉| ≤ 1, ∀λ}.
Similarly, the case with the prior

|f |w =
∑

λ∈Λ

wλ|〈f, φλ〉| , with inf
λ∈Λ

wλ > 0 ,

fits also into the framework of (2), C now defined by

C = {h ∈ L2,per([0, 1]2); |〈h, φλ〉| ≤ w−1
λ , ∀λ} .

When T 6= I and the problem is ill-posed, the resulting minimization scheme
amounts to Landweber iteration with thresholding applied in each step.

Example 2. In the BV regularization framework, [21], [20], one considers func-
tionals of the form

(3) ‖g − Tf‖2
L2(Ω) + 2α

∫

Ω

|∇f |

and minimizes over all possible f ∈ L2(Ω). Expressing this functional by means of
a convex set C one discovers that C is the L2-closure of

C = {h ∈ L2,per([0, 1]2); h = div v, where v is a 2d field that satisfies

‖v‖ℓ∞ = sup
(x,y)∈[0,1]2

(|v1(x, y)|2 + |v2(x, y)|2)1/2 ≤ 1} ,

i.e. we may again write

sup
h∈C

〈f, h〉 =

∫

Ω

|∇f | = |f |BV ;

for details on the structure of C we refer the reader to [14]. It turns out that results
on iterative strategies developed for Example 1 carry over to the BV case and that
much of the analysis elaborated in [7] can be generalized to the minimization of (3).

2.2. Reformulation of the problem. We shall assume that C is a closed con-
vex set in H, C is symmetric, i.e. h ∈ C ⇒ −h ∈ C, and there exists finitely
many vectors a1, . . . aN ∈ H, and r > 0 so that Br(0) ∩ {a1, . . . aN}⊥ ⊂ C (i.e.
{h : 〈h, ai〉 = 0 ; i = 1, . . . , N and ‖h‖ < r} ⊂ C). Note: we introduce the finite–
dimensional subspace to which C is orthogonal for two reasons. First, there are
cases of interest in which C consists of functions that have zero mean in [0, 1]2, e.g.
if C contains only divergences of smooth periodic fields. Second, it will make it
easier to restrict ourselves to only fine scale functions, below.

Defining the functionals

L(f, h) := ‖g − Tf‖2
H + 2α〈f, h〉,
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we can rewrite inff∈HFC(f) as

(4) inf
f∈H

sup
h∈C

L(f, h) .

Lemma 1. L(f, h) is continuous in both arguments, it is also convex with respect
to f , concave with respect to h.

Proof. Continuity follows immediately. By

L(λv + (1 − λ)w, h) − λL(v, h) − (1 − λ)L(w, h) = −[λ(1 − λ)]‖T (v − w)‖2

the second assertion follows. �

This means that (provided some technical conditions are fulfilled) we can apply
the minimax theorem, which allows us to interchange inf and sup in (4). In this
case the minimax theorem moreover asserts that inf and sup are achieved, i.e. the
inf is a min, the sup is a max.

Remark In order to invoke the minimax theorem, we need the following Lemma:

Lemma 2. For the minimization of (4), it suffices to consider f in some bounded
set B ⊂ H.

Proof. We need to show that there is some R > 0 so that necessarily

‖ argmin
f

sup
h∈C

L(f, h)‖ ≤ R .

First, we have L(0, h) = ‖g‖2, thus inff suph∈C L(f, g) ≤ ‖g‖2. If we define V :=
span{a1, . . . , aN} (see conditions on C for the definition of the ai), then we have
V ⊥ ∩ Br(0) ⊂ C for all f ∈ H, so that

sup
h∈C

〈f, h〉 ≥ 〈f,
rPV ⊥f

‖PV ⊥f‖〉 = r‖PV ⊥f‖ ,

where PV ⊥ denotes the orthogonal projection onto V ⊥. It follows that if

sup
h∈C

〈f, h〉 ≤ 2 inf
ϕ

FC(ϕ),

then

‖PV ⊥f‖ ≤ 1

r
sup
h∈C

〈f, h〉 ≤ 2

r
‖g‖2 .

Consequently,

‖TPV f‖ ≤ ‖Tf‖+ ‖TPV ⊥f‖
≤ ‖g − Tf‖+ ‖g‖ + ‖TPV ⊥f‖

≤ {sup
h∈C

L(f, h)}1/2 + ‖g‖ + ‖T ‖2

r
‖g‖2

≤ (1 +
√

2)‖g‖ + ‖T ‖2

r
‖g‖2 =: C1 .

Since V is finite dimensional, T |V : V → TV can be represented by an N × N–
matrix. If this matrix has a non–trivial kernel, then we can quotient it out. The
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quotient operator is then bounded below. It follows that there exists an f̃ ∈ V so
that T f̃ = TPV f and

‖f̃‖ ≤ ‖
(

T |V/kerT |V

)−1 ‖C1 =: C2 < ∞ .

It follows that if suph∈C〈F, h〉 ≤ 2 inff suph∈C〈f, h〉, then there exists an F̄ =

F̃ + PV ⊥F so that for all h ∈ C we have

L(F̄ , h) = L(F, h) , and ‖F̄‖ ≤ C2 +
2

r
‖g‖2 =: R < ∞ .

Consequently, we have

inf
f∈H

sup
h∈C

L(f, h) = inf
f∈H,‖f‖≤R

sup
h∈C

L(f, h) .

�

Under a variety of different possible conditions on C (e.g. if the set C is bounded;
see literature on convex optimization such as [3] or [13] for this and other cases) it
then follows that

inf
f∈H,‖f‖≤R

sup
h∈C

L(f, h) = max
h∈C

min
‖f‖≤R

L(f, h) .

In what follows we shall assume that we can indeed apply the minimax theorem
and that we can first minimize L(f, h) over f , and then maximize over h in C.

3. Solving the inverse problem for convex penalization

3.1. The well-posed case. Although the case where T ∗T does not have a bounded
inverse, i.e. where the inverse problem is ill–posed, is of most interest to us, we start
by sketching the approach in the easier well–posed case.

Theorem 1. Suppose that all assumptions made above hold true, and T ∗T has
bounded inverse in its range. If we define A := (T ∗T )−1/2 and, for an arbitrary
closed convex set K ⊂ H, SK := Id − PK , where PK is the (nonlinear) projection
on K, i.e. PKϕ = arg minh∈C ‖h − ϕ‖, then the minimizing f is given by

f = ASαAC{AT ∗g} .

Proof. According to the last section we compute first

min
‖f‖≤R

‖g − Tf‖2 + 2α〈f, h〉.

Since T is well-posed, the minimizer is easily found

f = (T ∗T )−1(T ∗g − αh) .

In this case it remains to determine

max
h∈C

L((T ∗T )−1(T ∗g − αh), h) = max
h∈C

{‖g‖2 − ‖(T ∗T )−1/2(T ∗g − αh)‖2}

= −min
h∈C

‖(T ∗T )−1/2(T ∗g − αh)‖2 .

This minimum is achieved when α(T ∗T )−1/2h is the convex projection onto the
convex set α(T ∗T )−1/2C of (T ∗T )−1/2T ∗g,

h =
1

α
(T ∗T )1/2Pα(T∗T )−1/2C{(T ∗T )−1/2T ∗g}.
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Finally, the corresponding function f is given by

f = (T ∗T )−1/2
[

(T ∗T )−1/2T ∗g − Pα(T∗T )−1/2C{(T ∗T )−1/2T ∗g}
]

.

�

An obvious example is the case where we just need to denoise an image, without
deblurring:

Example 3. Consider the denoising problem with an ℓ1–constraint in the basis
{φλ}λ∈Λ. In this case T = Id, so that A = Id as well, and

C = {f ; sup
λ

|〈f, φλ〉| ≤ 1} .

Moreover, in the real case we have

〈PCf, φλ〉 =

{

〈f, φλ〉 if |〈f, φλ〉| ≤ 1
sign〈f, φλ〉 if |〈f, φλ〉| > 1 .

This implies that SαAC ◦ AT ∗ is exactly the soft thresholding operator

〈SαAC(AT ∗g), φλ〉 = Sα(〈g, φλ〉) .

In the complex case, we have

〈PCf, φλ〉 =

{

〈f, φλ〉 if |〈f, φλ〉| ≤ 1
〈f,φλ〉
|〈f,φλ〉|

if |〈f, φλ〉| > 1 ,

and the SαAC ◦ AT ∗ reduces to the ”complex soft thresholding operator”, i.e.

〈SαAC(AT ∗g), φλ〉 = Sc
α(〈g, φλ〉) =

{

〈g, φλ〉 − α 〈g,φλ〉
|〈g,φλ〉|

if |〈g, φλ〉| > α

0 if |〈g, φλ〉| ≤ α ,

3.2. The ill–posed case. In the most interesting problems, the operator T ∗T
does not have a bounded inverse. We can then use the surrogate functionals intro-
duced in [7]. We replace (1) by a family of surrogate functionals

Gn,C(f) = FC(f) + ‖fn − f‖2 − ‖T (fn − f)‖2
H

= −2〈f, T ∗g〉 + 2α sup
h∈C

〈f, h〉 − 2〈f, fn〉 + 2〈f, T ∗Tfn〉

+‖f‖2 + ‖g‖2 + ‖fn‖2 − ‖Tfn‖2
H ,

and we have

Proposition 1. Let C be as assumed in Section 2.2. Then the minimizer of Gn,C

is given by

(5) fn+1 := (Id − PαC)(fn + T ∗g − T ∗Tfn) .

Proof. Under the assumptions made on C, we can apply the minimax theorem to
the problem of finding the minimizer of Gn,C , so that we have to determine

max
h∈C

min
f∈H,‖f‖≤R̃

{

‖f‖2 − 2〈f, fn + T ∗g − T ∗Tfn − αh〉
}

.

For fixed h, the argument is minimized for

f = fn + T ∗g − T ∗Tfn − αh ,
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and we need to determine

max
h∈C

{

−‖fn + T ∗g − T ∗Tfn − αh‖2
}

,

which is achieved for

h =
1

α
PαC(fn + T ∗g − T ∗Tfn) .

�

Next, we discuss convergence properties of the iteration (5). We mentioned above
that [6] contains an extensive discussion, including (not easily verifiable) conditions
that ensure strong convergence. The full generality of [6] makes it less easy to read if
one is mainly interested in the special case presented in this paper. For this reason,
we sketch here a more direct (but more specialized) statement. Since the iteration
is very similar to the one in [7], a very similar strategy for the proof of convergence
holds as well. Up to strong convergence the techniques apply in almost the same
way (thus we just sketch the steps). In order to achieve norm convergence, we have
to pay more attention to the structure of C, however.

We start by sketching how to achieve weak convergence for our scheme. To this
end, we define the nonlinear operator T by

Tf := (Id − PαC)(f + T ∗g − T ∗Tf) .

In order to establish weak convergence of the fn = Tnf0 we apply Opial’s Theorem
(see [15]) which reads as follows:

Theorem 2. Let the mapping A from H to H satisfy the following conditions:

(i) A is non-expansive: ∀v, v′ ∈ H, ‖Av − Av′‖ ≤ ‖v − v′‖,
(ii) A is asymptotically regular: ∀v ∈ H, ‖An+1v − Anv‖ n→∞−→ 0,
(iii) the set G of the fixed points of A in H is not empty.

Then, ∀v ∈ H, the sequence (Anv)n∈N
converges weakly to a fixed point in G.

To apply this to T, we thus need to verify that this operator satisfies the three
conditions (i), (ii) and (iii) above.

First of all, condition (iii) is verified, by the following argument. We know that

(1) has a minimizer f̃ . Then f̃ minimizes not only FC , but also

FC(f) + ‖f − f̃‖2 − ‖T (f − f̃)‖2
H .

Consequently, the analysis above implies that Tf̃ = f̃ , so T does indeed have at
least one fixed point.

Next, we ensure that T is asymptotically regular (condition (ii)): we observe
that

FC(fn+1) ≤ Gn,C(fn+1) ≤ Gn,C(fn) = FC(fn) ≤ Gn−1,C(fn) .

This implies
(

1 − ‖T ‖2
)

‖fn − fn+1‖2 ≤ 〈fn − fn+1, (Id − T ∗T )(fn − fn+1)〉
= Gn,C(fn+1) −FC(fn+1) ≤ FC(fn) −FC(fn+1) .
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Consequently,

∞
∑

n=0

‖fn − fn+1‖2 = lim
N→∞

N
∑

n=0

‖fn − fn+1‖2

≤ lim
N→∞

(

1 − ‖T ‖2
)−1

[FC(f0) −FC(fN+1)]

≤
(

1 − ‖T ‖2
)−1 FC(f0) < ∞ ,

and hence we deduce ‖fn − fn+1‖ n→∞−→ 0.

Finally, we need to check that T is non–expansive (condition (i)): in order to
show this property we need the following standard properties of convex sets.

Lemma 3. Let K be a closed and convex set, then for all u ∈ H and all k ∈ K the
inequality 〈u − PKu, k − PKu〉 ≤ 0 holds.

Proof. For all λ ∈ [0, 1] one has

‖u − [(1 − λ)PKu + λk] ‖2 ≥ ‖u − PKu‖2 .

Thus, for all λ ∈ [0, 1]

−2λ〈u − PKu, k − PKu〉 + λ2‖k − PKu‖2 ≥ 0,

so that we have 〈u − PKu, k − PKu〉 ≤ 0. �

Lemma 4. Let K be a closed and convex set, then for all u, v ∈ H the inequality
‖u − v − (PKu − PKv)‖ ≤ ‖u − v‖ holds.

Proof. We need to prove

−2〈u − v, PKu − PKv〉 + ‖PKu − PKv‖2 ≤ 0 .

By Lemma 3 we have 〈u − PKu, PKv − PKu〉 ≤ 0, or equivalently

−〈u, PKu〉 + 〈u, PKv〉 + ‖PKu‖2 − 〈PKu, PKv〉 ≤ 0 .

By symmetry we have

−〈v, PKv〉 + 〈v, PKu〉 + ‖PKv‖2 − 〈PKv, PKu〉 ≤ 0 .

Summing the two inequalities leads to

−〈u − v, PKu − PKv〉 + ‖PKu − PKv‖2 ≤ 0 ,

and thus

−2〈u − v, PKu − PKv〉 + ‖PKu − PKv‖2 ≤ −‖PKu − PKv‖2 ≤ 0 .

�

Now with the help of Lemma 4 and since 0 ≤ T ∗T ≤ Id we obtain

‖Tu − Tv‖ = ‖(Id − PαC)(u + T ∗g − T ∗Tu)− (Id − PαC)(v + T ∗g − T ∗Tv)‖
≤ ‖(u + T ∗g − T ∗Tu)− (v + T ∗g − T ∗Tv)‖
= ‖(Id − T ∗T )(u − v)‖ ≤ ‖u − v‖ .

Thus, we have
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Proposition 2. Opial’s Theorem 2 applies, i.e. fn = Tnf0 converges weakly to a
fixed point f̄ of T.

One can argue that this weak convergence theorem suffices for practical pur-
poses, because every numerical computation is always finite–dimensional so that
weak and strong (i.e. norm) convergence of the fn are equivalent. However, it is
often useful to establish norm convergence for the infinite dimensional Hilbert space
as well, since this then implies that the rate of convergence, and the other constants
involved, do not “blow up” as the dimensionality of the discretization increases.

To obtain norm convergence, we need to do some more work. In summary, we
have established the following facts:

• fn
weak−→ f̄ , for n → ∞,

• f̄ = f̄ + T ∗g − T ∗T f̄ − PαC(f̄ + T ∗g − T ∗T f̄),
• fn+1 = fn + T ∗g − T ∗Tfn − PαC(fn + T ∗g − T ∗Tfn),
• ‖fn+1 − fn‖ → 0, for n → ∞.

Defining

(6) un := fn − f̄ and v := f̄ + T ∗g − T ∗T f̄,

we can recast the results as follows:

un
weak−→ 0, for n → ∞

‖PαC(v) − PαC(v + un − T ∗Tun) − T ∗Tun‖ → 0, for n → ∞ .

We can then apply, without any change, Lemmas 3.15, 3.17 of [7], leading to

‖T ∗Tun‖ → 0, for n → ∞,

so that we obtain the equivalent formulation

(7)
un

weak−→ 0, for n → ∞

‖PαC(v) − PαC(v + un)‖ → 0, for n → ∞.

To obtain norm convergence of the fn, we must establish ‖un‖ → 0. For general
convex sets C the conditions (7), where α > 0 and v ∈ H are arbitrary (but fixed)
actually do not imply norm convergence of the un to 0. Abstract sufficient and nec-
essary conditions for norm convergence are given in [6]; the following theorem gives
a more concrete restriction on C under which we can establish norm convergence.

Theorem 3. Suppose un
weak−→ 0 and ‖PαC(v) − PαC(v + un)‖ → 0. Moreover,

assume that un is orthogonal to v, PC(v). If for some sequence γn (with γn → ∞)
the convex set C satisfies γnun ∈ C then ‖un‖ → 0.

Proof. Since γnun ∈ C,

γn

1 + γn
PC(v) +

1

1 + γn
(γnun) ∈ C .

Thus,

‖ γn

1 + γn
(PC(v) + un) − (v + un)‖ ≥ ‖PC(v + un) − (v + un)‖

≥ ‖PC(v) − (v + un)‖ − ‖PC(v + un) − PC(v)‖.
Inverse Problems and Imaging Volume 1, No. 1 (2007), 1–46
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This yields

‖PC(v) − (v + un)‖ ≤ ‖PC(v + un) − PC(v)‖

+‖PC(v) − v − 1

1 + γn
un − 1

1 + γn
PC(v))‖.

Since the un are uniformly bounded there is some C1 such that

‖PC(v + un) − PC(v)‖ + 2‖PC(v) − v − 1

1 + γn
un − 1

1 + γn
PC(v))‖ ≤ C1

and because un ⊥ PC(v), v, we obtain from the latter inequalities

‖PC(v) − v‖2 + ‖un‖2

≤ C1‖PC(v + un) − PC(v)‖ + ‖ γn

1 + γn
PC(v) − v‖2 +

1

(1 + γn)2
‖un‖2,

which, in turn, gives
(

1 − 1

(1 + γn)2

)

‖un‖2 ≤ C1‖PC(v + un) − PC(v)‖

+‖ γn

1 + γn
PC(v) − v‖2 − ‖PC(v) − v‖2 .

With
1

1 + γn
‖PC(v)‖ + 2‖PC(v) − v‖ ≤ C2

we have

‖ γn

1 + γn
PC(v) − v‖2 ≤ C1

1

1 + γn
‖PC(v)‖ + ‖PC(v) − v‖2

and consequently,
(

1 − 1

(1 + γn)2

)

‖un‖2 ≤ C1‖PC(v + un) − PC(v)‖ + C2
1

1 + γn
‖PC(v)‖

Which shows that if n → ∞ then ‖un‖ → 0. �

Unfortunately, this theorem is not sufficiently strong to be applied to the BV –
functional of Example 2, above. Without going in full detail, we sketch here how it
(just) falls short.

The set C in Example 2 is (loosely speaking) the set of all divergences of 2-dim.
fields that are uniformly bounded by 1. It contains, in particular, the functions

hn(x, y) :=
√

2π(|n1| + |n2|)e2πi(n1x+n2y)

= −idiv

(

1√
2
sign(n1)e

2πi(n1x+n2y),
1√
2
sign(n2)e

2πi(n1x+n2y)

)

,

where |n1| + |n2| 6= 0. Because C is closed and convex, it also contains all the
∑

n∈Z2

αnhn ,

with
∑

n∈Z2 αn = 1. Suppose now (just for the sake of simplifying the argument,
which can also be made, a bit more lengthily, without this assumption) that

‖PC(un)‖ → 0 as n → ∞ ,
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ITER CPU RMSE ‖fn − forig‖/‖forig‖
1 0.28600841 0.17322202591876

100 11.0832407 0.16619377802673
200 21.3800888 0.16053661204032
350 36.9959693 0.15341521024097
500 52.2572860 0.14754897184399
1000 104.031806 0.13476786059559
2000 207.406313 0.12458884053496
3000 312.880765 0.11962522471006
4000 419.051499 0.11633033283685
5000 524.362921 0.11388107705039

Table 1. Convergence rates for the wavelet frame–based shrinkage
algorithm. We give the number of iterations, the CPU time and
the corresponding relative RMSE, applied to the blurry fingerprint
image.

i.e. that the condition

‖PαC(v) − PαC(v + un)‖ → 0 as n → ∞
holds true for v = 0. That would mean that, for all w ∈ C

lim
n→∞

〈un − PC(un), w − PC(un)〉

= lim
n→∞

〈un, w〉 + ‖PC(un)‖2 − 〈un, PC(un)〉 − 〈PC(un), w〉

= lim
n→∞

〈un, w〉 ,

which implies that limn→∞〈un, w〉 is nonpositive. Since the same is true for −w ∈ C,
if follows that limn→∞〈un, w〉 = 0 for all w ∈ C. Consequently, 〈un, hk〉 → 0 as
n → ∞, or even, for all sequences (αk)k∈Z2 with

∑

k∈Z2 αk = 1, αk ∈ [0, 1] ∀k,
∑

k

αk(|k1| + |k2|)〈un, ek〉 → 0 as n → ∞ ,

where ek(x, y) = e2πi(k1x+k2y). This just misses ensuring that
∑

k

|〈un, ek〉|2 → 0 as n → ∞ .

This concludes our theoretical analysis of our first case described in the introduction,
i.e. the case where J(f) in (1) is convex. We now turn to the second approach.

4. Iterative algorithm for PDE–based deblurring and denoising.

We start by recalling briefly the framework of [20], in which the inverse problem
g = Tf + e, which edge-preserving regularization, is cast as the minimization of an
energy functional of the form (assuming Gaussian noise for simplicity)

(8) inf
f

Fφ(f) = ‖Tf − g‖2
L2(Ω) + 2α

∫

Ω

φ(∇f)dx ;
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1

60

0 0 0 0 0 0.25 0 0 0 0 0
0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0 0
0 0.25 0.5 1 1 1 1 1 0.5 0.25 0
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.5 1 1 1 1 1 1 1 0.5 0

0.25 0.5 1 1 1 1 1 1 1 0.5 0.25
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.5 1 1 1 1 1 1 1 0.5 0
0 0.25 0.5 1 1 1 1 1 0.5 0.25 0
0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0 0
0 0 0 0 0 0.25 0 0 0 0 0

Table 2. Spatial discretization of the blur operator T .

here the potential φ : R
2 → R is typically a positive continuous increasing function,

with at most linear growth at infinity, therefore satisfying |φ(ξ)| ≤ c(1 + |ξ|), for
some positive constant c (note that we have replaced the subscript C by φ describing
now the penalty and not the convex set of the previous approach). Convex examples
include (note that, only for illustration reasons, we give also examples beyond the
one–homogeneous case)

• φ(ξ) = |ξ| (the total variation minimization of Rudin-Osher-Fatemi [21], [20]),
• φ(ξ) = |ξ1| + |ξ2|,
• φ(ξ) =

√

1 + |ξ|2 (the function of minimal surfaces),
• φ(ξ) = log cosh(1 + |ξ|2), or

• φ(ξ) =

{

1
2 |ξ|2 if |ξ| ≤ 1
|ξ| − 1

2 if |ξ| ≥ 1
(used in [10], [5]).

In the non-convex case, examples of the potential φ are

• φ(ξ) = |ξ|p

1+|ξ|p or

• φ(ξ) = log(1 + |ξ|p), with p = 1 or p = 2 for instance, see Perona-Malik [18],
Geman-Geman, [11], Geman-Reynolds [12], and more recently [5], [2], [22].

Let us now restrict again to the one–homogeneous case and assume in addition that
φ is differentiable. Then the Euler-Lagrange equation associated with the mini-
mization problem (8), that must be satisfied by a minimizer f , if such a minimizer
exists, is given by

(9) T ∗Tf − T ∗g = αdiv
(

∇ξφ(∇f)
)

, in Ω,

where ∇φξ = (φξ1
, φξ2

), and with the boundary conditions ∇ξφ(∇f) ·~n = 0 on ∂Ω,
where ~n is the unit exterior normal to the boundary. In case α > 0, the partial
differential equation (9) is non-linear for the examples of potential φ given above.
Moreover, the presence of the term T ∗Tf makes it computationally expensive and
numerically nontrivial.

In order to overcome these problems, we propose here to not directly solve (9)
numerically, but to apply the surrogate functional algorithm (see [7], or the previous
sections), i.e. we construct a sequence of iterates fn that approximate f , without
having to invert T ∗T at every iteration. On the other hand, the direct implemen-
tation of the projection PαC associated to our minimization is rather complicated;
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in this case we prefer to avoid it by switching to an expression based on the Euler-
Lagrange equation. The total iteration goes thus as follows: start with an initial
f0; find fn, n > 0 as a minimizer of the surrogate functionals
(10)

Gn−1(fn) = ‖Tfn−g‖2
L2(Ω)−‖Tfn−Tfn−1‖2

L2(Ω)+‖fn−fn−1‖2
L2(Ω)+2α

∫

Ω

φ(∇fn),

where we have assumed that ‖T ∗T ‖ < 1. The associated Euler-Lagrange equation
in fn, now easily solved in practice, is:

(11) fn = fn−1 + T ∗g − T ∗Tfn−1 + αdiv
(

∇ξφ(∇fn)
)

,

together with the same boundary conditions. One then simply carries out this it-
erative algorithm to find (an approximation to) desired minimizer.

Remark The same idea can be also applied to other cases, when the L2(Ω) norm
in (8) is replaced by another norm in a Hilbert space.

For instance, let us consider the minimization problem from Osher-Solé-Vese [16]
for denoising, for simplicity,

(12) inf
f∈BV (Ω)

F(f) with F(f) =

∫

Ω

|∇△−1(f − g)|2dx + 2α

∫

Ω

|∇f |dx.

This model is a refinement over the total variation minimization [21], and decom-
poses the data g into a BV (Ω) component f and an oscillatory component g − f
that belongs to (H1

0 (Ω))′, the dual of H1
0 (Ω) when endowed with the standard semi-

norm. Even in the case without blur, the minimization of the convex functional (12)
leads to a computationally expensive partial differential equation in f ,

(13) △−1(g − f) = αdiv
( ∇f

|∇f |
)

,

or to a fourth order non-linear partial differential equation

(14) g − f = α△
[

div
( ∇f

|∇f |
)]

,

with associated boundary conditions. By applying the surrogate functional ap-
proach to the minimization of (12), we can avoid solving this PDE directly; instead
compute fn as minimizer of the convex functional

Gn−1(fn) =

∫

Ω

|∇△−1(fn − g)|2dx + 2α

∫

Ω

|∇f |dx

−
∫

Ω

|∇△−1(fn − fn−1)|2dx + µ

∫

Ω

|fn − fn−1|2dx.

The minimization of the energy Gn−1 with respect to fn leads to a simpler partial
differential equation

(15) µfn = µfn−1 −△−1g + △−1fn−1 + αdiv
( ∇fn

|∇fn|
)

.
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With surrogate functionals
ITER CPU RMSE‖fn − forig‖/‖forig‖

1 0 0.256365806
100 53.7299995 0.22643654
200 107.440002 0.213100523
350 188.470001 0.19897379
500 268.699982 0.188747868
1000 542.880005 0.168787047
2000 1085.82996 0.153525516
3000 1625.08997 0.148305818
4000 2151.29004 0.146324202
5000 2684.62988 0.145639017

Without surrogate functionals
ITER CPU RMSE‖fn − forig‖/‖forig‖

1 0.400000036 0.257728785
100 55.1000023 0.236117765
200 109.139999 0.226667866
350 191.959991 0.216331303
500 276.119995 0.208168939
1000 551.720032 0.189164072
2000 1105.32996 0.169159457
3000 1666.43994 0.159271181
4000 2234.70996 0.15375042
5000 2790.92993 0.150457606

Table 3. Comparison of the convergence rates: for both algo-
rithms, we give the number of iterations, the CPU time and the
corresponding relative RMSE, applied to the blurry fingerprint im-
age, using the total variation minimization. We notice that the
new method using the surrogate functionals converges faster to the
restored image: the relative RMSE ‖fn − forig‖/‖forig‖ hits the
value 0.15 at 2.500 iterations instead of 5.000, and uses a CPU
time of ∼ 1300 instead of 2790; there seems thus to be a speed–up
factor 2.

5. Numerical Illustrations

In this section, we present numerical results of the two approaches. We assume
the linear degradation model g = Tf + e, where g is the given data, as a square
integrable function in L2(Ω), f is the unknown true image, e is additive noise of
zero mean. The operator T : L2(Ω) → L2(Ω) models a linear and continuous
degradation operator, by a convolution with a Gaussian kernel.

In the first approach let now {ϕλ}λ∈Λ be a frame, i.e. there exists positive and
bounded constants 0 < A ≤ B < ∞, such that for f ∈ L2(Ω),

A‖f‖L2(Ω) ≤
∑

λ∈Λ

|〈f, ϕλ〉|2 ≤ B‖f‖L2(Ω) ;
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Figure 1. Top left: original image. Top right: blurred version.

we define the corresponding frame operator F ,

F : f 7→ {〈f, ϕλ〉}λ∈Λ .

By means of the adjoint F ∗ the variational problem (2) reads in the ℓ1 setting as
follows

(16) F(f) = ‖g − TF ∗f‖2
L2(Ω) + 2α|f |ℓ1 ,

with the shorthand notation f = {fλ}λ∈Λ. The convex set C is now

C = {{hλ}λ∈Λ; sup
λ

|hλ| ≤ 1}.

In accordance with Proposition 1, the resulting iteration scheme reads as

fn+1 = (Id − PαC)(fn + FT ∗g − FT ∗TF ∗fn)

= Sα(fn + FT ∗g − FT ∗TF ∗fn),(17)

where Sα denotes the soft shrinkage operator with shrinkage parameter α. Wavelet–
based methods of this kind (in the context of image decomposition) are considered
in [8, 9].

In particular, we have chosen here a wavelet frame that is simply given by a
translation invariant wavelet system. As the example image we consider a finger
print and its blurred version, see Figure 1. The results obtained with iteration (17)
are visualized in Figure 2 and the convergence rates are given in Table 1. The blur
operator T used in the experiments has the discrete spatial representation given in
Table 2.

The blur convolution is easily implemented as a multiplication in Fourier do-
main, which means that we switch between the wavelet and Fourier representation
at every step of the iteration process.

Next, we present numerical results for the second (PDE) approach. In figure 3
we show the results of the iterative algorithm (11) on the same blurred and noisy
image. For comparison with the purely PDE–based method (without the iterative
approach corresponding to surrogate functionals) we show in Figure 4 the end results
of methods (11) and (9); they look very similar. Table 3 lists the CPU time and
the relative RMSE for the first 5000 iterations of both methods, illustrating that
the surrogate functional method produces a better error decay for the same amount
of CPU time. (These two computations were carried out on the same machine;
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Figure 2. Top left to bottom right: blurred image, several iter-
ates using the wavelets scheme: 1st, 100th, 500th, 1000th, 2000th,
3000th, 4000th.

Figure 3. Top left to bottom right: blurred image, several iterates
using (11): 1st, 100th, 500th, 1000th, 2000th, 3000th, 4000th.

note that the numerical results in Table 2 were obtained on a different computer
and should thus not be compared with this Table.) Finally, we show in Figure 5
the result of a Cartoon+Texture decomposition of the same image (without blur)
obtained by the surrogate–based iteration (15).
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With surrogate functional Without surrogate functional

Figure 4. Deblurring results obtained using the models (11) left

and (9) right, with φ(ξ) =
√

ǫ + |ξ|2 (total variation minimization
with regularization).

OSV model with surrogate functional

Figure 5. Decomposition into cartoon (left) and texture (right)
of the fingerprint image without blur, obtained using the model
(15).

6. Conclusion

In this paper, we have extended the approach of [7], or, alternatively, illustrated
with concrete examples the abstract analysis in [6]. In particular, we have written
an iteration algorithm for solving linear inverse problems of the following general
variational form

FC(f) = ‖g − Tf‖2
H + 2α sup

h∈C
〈f, h〉 ,

and we have applied it to sparse representation w.r.t. a wavelet frame. We have
also shown that the iterative approach that naturally follows from introducing surro-
gate functionals, leads to a simplified solution algorithm for PDE–linked variational
problems, resulting in a more efficient algorithm.

We have discussed convergence and a sequence of numerical illustrations that
verify the usefulness of the iteration.
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