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Abstract

This paper is concerened with nonlinear inverse problems where the solution is assumed
to have a sparse expansion with respect to several preassigned bases or frames. We develop
a scheme which allows to minimize a Tikhonov functional where the usual quadratic
regularization term is replaced by one–homogeneous (typically weighted `p, 1 ≤ p ≤ 2)
penalties on the coefficients (or isometrically transformed coefficients) of such multi–frame
expansions. The computation of the solution amounts in this setting to a system of
Landweber–fixed–point iterations with thresholding applied in each fixed–point iteration
step.

1 Scope of the problem

We consider the computation of an approximation to a solution of a nonlinear operator equation

T (x) = y , (1.1)

where T : X → Y is an operator between Hilbert spaces X, Y . In case of having only noisy data
yδ with ‖yδ − y‖ ≤ δ available, there might be the problem of ill-posedness (in the sense of a
discontinuous dependency of the solution on the data). Thus problem (1.1) has to be stabilized
by regularization methods. In recent years, many of the well known methods for linear inverse
problems have been generalized to nonlinear operator equations. But so far all the proposed
schemes for nonlinear problems incorporate at most quadratic regularization whereas in many
applications the solution is assumed to have sparse expansion which immediately leads to the
involvement of nonquadratic penalties, e.g. `p norms with p < 2. In linear lore, this problem
is still solved, see [2]. In nonlinear inverse problems there is an approach, see [5], which solves
nonlinear operator equations with sparsity constraints. However, recent developments indicate
that (higly) redundant systems, such as frames or systems of frames may yield a gain in this
context (optimal representation/decomposition of the solution to be reconstructed). When
dealing with dictionaries of frame systems, there exist certain methods, e.g. such as basis
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pursuit [1], that allow a decomposition of signals/functions into an optimal superposition of
dictionary elements, where optimal means having smallest `1 norm of coefficients among all
such decompositions. In [7], we have presented a method which combines an iterated thresh-
olding scheme for solving linear inverse problems while requiring that the solution is assumed
to have a sparse expansion in a multi–frame dictionary. In this paper, we also assume that
the solution has a sparse expansion in a multi–frame dictionary but we aim now to extend the
theory to nonlinear inverse problems with mixed multi–sparsity constraints. Thus the main
result of this paper, coming out by combing results and technologies elaborated in [3, 4], [6, 5],
and [7], is the development of a new method which is sort of thresholding Landweber iteration
for solving a system of fixed point equations. This scheme is numerically illustrated by solving
a few image processing task, but we also provide a regularization result which shows that this
method is also well suited for ill-posed problems.

As in [7], let us assume we are given a finite family of preassigned frames {φi
λ}λ∈Λi,i∈I ⊂ X,

n = card(I), for which we have associated frame operators

Fi : X → `2 via Fix = {〈x, φi
λ〉}λ∈Λi

with Ai · I ≤ F ∗
i Fi ≤ Bi · I .

The variational formulation of the nonlinear inverse problem in a multi–frame setting with so–
called multi–sparsity, or more general, multi–one–homogeneous constraints can be now casted
as follows: find sequences of coefficients g = (g1, . . . , gn) ∈ (`2)

n such that

Jα(g) = ‖yδ − T (Kg)‖2
Y + 2α ·ΨL(g) (1.2)

is minimized, where α = (α1, . . . , αn) and ΨL(g) = (Ψ1(L1g1), . . . , Ψn(Lngn)). In our case,
Kg = K(g1, . . . , gn) =

∑
i∈I F ∗

i gi, but one could also involve, as in [7], additional linear
and bounded operators Ei, i.e. KE(g1, . . . , gn) =

∑
i∈I EiF

∗
i gi. Moreover, the Ψi stand for

positive, one–homogeneuos, lower semi–continuous and convex penalties (which are usually
some weighted `p norms of the frame coefficients), and the infinite matrices Li are restricted to
be isometric mappings. In particular, we also need to require,

‖g‖(`2)n ≤ ‖ΨL(g)‖`1 . (1.3)

The strategies for nonlinear cases suggested in [6, 5], seem to be also adequate when dealing
with multi–sparsity, or more general, with multi–one–homogeneous constraints. Before sketch-
ing the idea, we need to clarify the (`2)

n–framework. First, for sake of simplicity, we restrict
ourselves to Ei = I, for all i. Note that the suggested theory applies without any changes also
to Ei 6= I. For the preassigned frame operators Fi : X → `2,

K : `2 × . . .× `2 → X via (`2)
n 3 g = (g1, . . . , gn) 7→

∑
i∈I

F ∗
i gi ,

where the Hilbert space (`2)
n is endowed with the scalar 〈g, h〉(`2)n = 〈g1, h1〉`2 + . . .+〈gn, hn〉`2

and thus the associated norm is given by ‖g‖2
(`2)n = ‖g1‖2

`2
+ . . . + ‖gn‖2

`2
. Moreover,

〈Kf , h〉X = 〈f , (F1h, . . . , Fnh)〉(`2)n = 〈f , K∗h〉(`2)n ,

and thus,
‖K‖ ≤

√
B1 + . . . + Bn =: B .
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The general idea for solving the nonlinear inverse problem in a multi–frame setting goes
now as follows: we replace (1.2) by a sequence of functionals from which we hope that they
are easier to treat and that the sequence of minimizers converge in some sense to, at least, a
critical point of (1.2). To be more concrete, for g ∈ (`2)

n and some auxiliary a ∈ (`2)
n, we

introduce
Js

α(g, a) := Jα(g) + C‖g − a‖2
(`2)n − ‖T (Kg)− T (Ka)‖2

Y (1.4)

and create an iteration process by:

1. Pick g0 ∈ (`2)
n and some proper constant C > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = arg min
gk∈(`2)n

Js
α(g, gk) k = 0, 1, 2, . . .

In order to avoid ambiguity, we will always denote (gi)k ∈ `2 as the k–th iterate of the i–th
component of gk ∈ (`2)

n, i.e. (`2)
n 3 gk = ((g1)k, . . . , (gn)k), and a particular coefficient of the

k–th iterate with respect to some index λ ∈ Λi is then denoted by (gλ,i)k; in its full glory we
may thus write the k–th iterate gk = ({(gλ,1)k}λ∈Λ1 , . . . , {(gλ,n)k}λ∈Λn) ∈ (`2)

n. As we shall
see later on, in order to prove norm convergence of the iterates gk towards a critical point of
Jα, we have to restrict ourselves to a class of nonlinear problems for which all of the following
three requirements hold true,

gk
w→ g =⇒ T (Kgk) → T (Kg) ,

FjT
′(Kgk)

∗z → FjT
′(Kg)∗z , for all z and j , (1.5)

‖T ′(Kg)− T ′(Kg′)‖ ≤ LB‖g − g′‖(`2)n .

It may happen that T already meets these conditions as an operator from X → Y . If not, this
can be achieved by assuming more regularity of the solution, i.e. changing the domain of T a
little. To this end, we assume that there exists a function space Xs, and a compact embedding
operator is : Xs → X. Then we can consider T̃ = T ◦ is : Xs −→ Y . Lipschitz regularity is
preserved. Moreover, if now gk

w→ g in Xs, then gk→g in X and, moreover, T̃ ′(Kgk) → T̃ ′(Kg)
in the operator norm. This argument applies to arbitrary nonlinear continuous and Fréchet
differentiable operators T : X → Y with continuous Lipschitz derivative as long as a function
space Xs with compact embedding is into X is available.

The remaining paper is organized as follows: In Section 2, we explain how the replacement
functionals are constructed and discuss the well–posedness of the resulting problem. In Section
3, we derive conditions on the minimizing elements. The main result of the paper is presented in
Section 4: strong convergence of the iterates towards a critical point. Moreover, in Section 5 we
state conditions for which we may ensure that the scheme indeed has regularization properties.
We end this paper with Section 6 in which we demonstrate the capabilities of the proposed
scheme by solving nonlinear image processing tasks.
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2 On the proper definition of the replacement functional

By the definition of Js
α in (1.4) it is not clear whether the functional is positive definite or even

bounded from below. This will be clarified in this section, i.e. we will show that this is the case
provided the constant C is chosen properly.

For given multi–parameter α ∈ Rn
+ and g0 ∈ (`2)

n we may define a ball

Kr := {g ∈ (`2)
n : ‖ΨL(g)‖`1 ≤ r} ,

where the radius r is given by
r := Jα(g0)/(2 min{αi}). (2.1)

This obviously ensures, g0 ∈ Kr. Furthermore, we define the constant C by

C := 2B2 max

{(
sup
g∈Kr

‖T ′(Kg)‖
)2

, L
√
‖yδ − T (Kg0)‖2 + 2α ·ΨL(g0)

}
, (2.2)

where L is the Lipschitz constant of the Fréchet derivative of T . We assume that g0 was chosen
such that r < ∞ and C < ∞.

Lemma 1 Let r and C be chosen by (2.1), (2.2). Then, for all g ∈ Kr,

C‖g − g0‖2
(`2)n − ‖T (Kg)− T (Kg0)‖2

Y ≥ 0 (2.3)

and thus, Jα(g) ≤ Js
α(g, g0).

Proof. By Taylors expansion we have

T (Kg + Kh) = T (Kg) +

1∫
0

T ′(Kg + τKh)Kh dτ

and thus we get with h = g0 − g

‖T (Kg)− T (Kg0)‖Y ≤
1∫

0

‖T ′(Kg + τK(g0 − g))‖‖K(g0 − g)‖Xdτ

≤ sup
g∈Kr

‖T ′(Kg)‖‖K(g0 − g)‖X

≤ sup
g∈Kr

‖T ′(Kg)‖B‖g0 − g‖(`2)n

Consequently, we get for all g ∈ Kr

C‖g − g0‖2
(`2)n − ‖T (Kg)− T (Kg0)‖2

Y ≥

C‖g − g0‖2
(`2)n −B2

(
sup
g∈Kr

‖T ′(Kg)‖‖g − g0‖(`2)n

)2

=
C

2
‖g − g0‖2

(`2)n ≥ 0,

and the functional Js
α(g, g0) is non–negative for all g ∈ Kr. �

Next, we show that this carries over to all of the iterates:
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Proposition 2 Let g0, α be given and r, C be defined by (2.1), (2.2). Then the functionals
Js

α(g, gk) are bounded from below for all k ∈ N and have thus minimizers. For the minimizer
gk+1 of Js

α(g, gk) holds gk+1 ∈ Kr.

Proof. The proof will be done by induction. For k = 1, we show in a first step that Js
α(g, g0)

is bounded from below. We have

‖yδ−T (Kg)‖2
Y = ‖yδ−T (Kg0)‖2

Y +‖T (Kg0)−T (Kg)‖2
Y +2〈yδ−T (Kg0), T (Kg0)−T (Kg)〉Y .

(2.4)
Thus,

Js
α(g, g0)− 2α ·ΨL(g) = ‖yδ − T (Kg0)‖2

Y + 2〈yδ − T (Kg0), T (Kg0)− T (Kg)〉Y
+C‖g − g0‖2

(`2)n (2.5)

≥ ‖yδ − T (Kg0)‖2
Y − 2‖yδ − T (Kg0)‖Y ‖T (Kg0)− T (Kg)‖Y

+C‖g − g0‖2
(`2)n .

(2.6)

Again by Taylor expansion,

‖T (Kg0)− T (Kg)‖Y ≤ B‖T ′(Kg0)‖‖g0 − g‖(`2)n +
B2L

2
‖g0 − g‖2

(`2)n . (2.7)

Now let us assume that Js
α(g, g0) is not bounded from below, e.g. there exists a sequence gl

such that Js
α(gl, g0) → −∞. This can only hold if ‖T (Kg0) − T (Kgl)‖ → ∞, and because of

(2.7) follows ‖gl‖(`2)n →∞ as well. In particular, for l large enough, we derive from (2.7)

‖T (Kg0)− T (Kgl)‖Y ≤ B2L‖g0 − gl‖2
(`2)n ,

and combining this estimate with (2.6) yields

Js
α(gl, g0)−2α·ΨL(gl) ≥ ‖yδ−T (Kg0)‖2

Y −2B2L‖yδ−T (Kg0)‖Y ‖gl−g0‖2
(`2)n +C‖gl−g0‖2

(`2)n .

From the definition of C in (2.2) follows 2B2L‖yδ − T (Kg0)‖Y ≤ C and thus

Js
α(gl, g0)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kg0)‖2

Y ≥ 0,

in contradiction to our assumption Js
α(gl, g0) → −∞, and thus Js

α(g, g0) is bounded from below.
By the same argument, we find Js

α(gl, g0) ≥ 2α ·ΨL(gl) for any sequence gl with ‖gl‖(`2)n →∞,
and by (1.3) we conclude Js

α(gl, g0) → ∞, i.e. the functional is coercive and has a minimizer
g1.

As in (2.6), we get by using (2.7),

Js
α(g1, g0)− 2αΨ(Lg1) ≥ ‖yδ − T (Kg0)‖2

Y − 2B‖yδ − T (Kg0)‖Y ‖T ′(Kg0)‖‖g1 − g0‖(`2)n

−B2L‖yδ − T (Kg0)‖Y ‖g1 − g0‖2
(`2)n + C‖g1 − g0‖2

(`2)n .

By (2.2), C/2 ≥ B2L‖yδ − T (Kg0)‖Y , and thus,

Js
α(g1, g0)− 2α ·ΨL(g1) ≥ ‖yδ − T (Kg0)‖2

Y − 2B‖yδ − T (Kg0)‖Y ‖T ′(Kg0)‖‖g1 − g0‖(`2)n

+
C

2
‖g1 − g0‖2

(`2)n .
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As g0 ∈ Kr, it follows from (2.2) that B‖T ′(Kg0)‖ ≤
√

C/2 holds, and consequently,

Js
α(g1, g0)− 2α ·ΨL(g1) ≥ ‖yδ − T (Kg0)‖2

Y − 2

√
C√
2
‖yδ − T (Kg0)‖Y ‖g1 − g0‖(`2)n

+
C

2
‖g1 − g0‖2

(`2)n

=

(
‖yδ − T (Kg0)‖Y −

√
C√
2
‖g1 − g0‖(`2)n

)2

≥ 0.

In particular,

2 min{αi}‖ΨL(g1)‖`1 ≤ 2α ·ΨL(g1) ≤ Js
α(g1, g0) = min

g
Js

α(g, g0) ≤ Js
α(g0, g0) = Jα(g0) ,

i.e. ‖ΨL(g1)‖`1 ≤ Jα(g0)/(2 min{αi}) = r, and thus, g1 ∈ Kr. Next, thanks to Lemma 1,

C‖g1 − g0‖2
`2
− ‖T (Kg1)− T (Kg0)‖2

Y ≥ 0 and Jα(g1) ≤ Js
α(g1, g0) ,

and thus,

‖yδ − T (Kg1)‖2
Y ≤ Jα(g1) ≤ Js

α(g1, g0) ≤ Js
α(g0, g0) ≤ ‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0),

and combining this estimate with the definition of C in (2.2) yields

2B2L‖yδ − T (Kg1)‖Y ≤ 2B2L
√
‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0) ≤ C. (2.8)

For applying the induction step, assume that for all i = 1, · · · k − 1, the following properties
hold true:

gi ∈ Kr (2.9)

C‖gi − gi−1‖2
(`2)n − ‖T (Kgi)− T (Kgi−1)‖2

Y ≥ 0 (2.10)

2B2L‖yδ − T (Kgi)‖Y ≤ C, (2.11)

where gi denotes a minimizer of the functional Js
α(g, gi−1). For i = 1, these properties have

already been shown. As for the case i = 1, we have to show that the functional Js
α(g, gk−1) has

a minimizer. First, we show that it is bounded from below: As in (2.6),

Js
α(g, gk−1)− 2α ·ΨL(g) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2‖yδ − T (Kgk−1)‖Y ‖T (Kgk−1)− T (Kg)‖Y + C‖g − gk−1‖2
(`2)n .

By Taylor expansion,

‖T (Kgk−1)− T (Kg)‖Y ≤ ‖T ′(Kgk−1)‖Y ‖gk−1 − g‖(`2)n +
B2L

2
‖gk−1 − g‖2

(`2)n . (2.12)

Let us now assume that Js
α(g, gk−1) is not bounded from below. As in the case k = 1, there

exists a sequence {gl}l∈N with ‖gl‖(`2)n →∞ and Js
α(gl, gk−1) → −∞. In particular, for l large

enough, follows from (2.12)

‖T (Kgk−1)− T (Kgl)‖Y ≤ B2L‖gk−1 − gl‖2
(`2)n ,
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and combining this estimate with (2.12) yields

Js
α(gl, gk−1)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2BL‖yδ − T (Kgk−1)‖Y ‖gl − gk−1‖2
(`2)n + C‖gl − gk−1‖2

(`2)n .

By (2.11), 2B2L‖yδ − T (Kgk−1)‖Y ≤ C and thus

Js
α(gl, gk−1)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kgk−1)‖2 ≥ 0,

in contradiction to our assumption Js
α(gl, gk−1) → −∞, and thus Js

α(g, gk−1) is bounded from
below. By the same argument, we find Js

α(gl, gk−1) ≥ 2α · ΨL(gl) → ∞ for any sequence gl

with ‖gl‖(`2)n →∞ and thus the functional is coercive and has a minimizer gk.
As in (2.12), we obtain

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2B‖yδ − T (Kgk−1)‖Y ‖T ′(Kgk−1)‖‖gk − gk−1‖(`2)n

−B2L‖yδ − T (Kgk−1)‖Y ‖gk − gk−1‖2
(`2)n + C‖gk − gk−1‖2

(`2)n .

By (2.2) and assumption (2.11) we have C/2 ≥ B2L‖yδ − T (Kgk−1)‖Y , and thus

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2B‖yδ − T (Kgk−1)‖Y ‖T ′(Kgk−1)‖‖gk − gk−1‖(`2)n

+
C

2
‖gk − gk−1‖2

(`2)n .

As gk−1 ∈ Kr, it follows from (2.2) that B‖T ′(Kgk−1)‖ ≤
√

C/2, and we consequently have

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥

(
‖yδ − T (Kgk−1)‖Y −

√
C√
2
‖gk − gk−1‖(`2)n

)2

≥ 0.

In particular, it follows by (2.10),

2 min{αi}‖ΨL(gk)‖`1 ≤ 2α ·ΨL(gk) ≤ Js
α(gk, gk−1) = min

g
Js

α(g, gk−1) ≤ Js
α(gk−1, gk−1)

= Js
α(gk−1, gk−2) ≤ Js

α(gk−2, gk−2) ≤ · · · ≤ Js
α(g0, g0)

i.e. ‖ΨL(gk)‖`1 ≤ Jα(g0)/(2 min{αi}) = r, and thus, gk ∈ Kr. As in Lemma 1, it follows

C‖gk − gk−1‖2
(`2)n − ‖T (Kgk)− T (Kgk−1)‖2

Y ≥ 0

and
Jα(g) ≤ Js

α(g, gk−1),

and we obtain

‖yδ − T (Kgk)‖2
Y ≤ Jα(gk) ≤ Js

α(gk, gk−1) ≤ Js
α(gk−1, gk−1) ≤ · · · ≤ Js

α(g0, g0)

= ‖yδ − T (Kg0)‖2
Y + 2α ·ΨL(g0), (2.13)
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and combining this estimate with the definition of C (2.2) yields

2B2L‖yδ − T (Kgk)‖Y ≤ 2B2L
√
‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0) ≤ C, (2.14)

i.e. we have shown that the assumptions (2.9)-(2.11) hold also for i = k. �

As an immediate consequence out of the latter proof we have

Corollary 3 The sequences of functionals {Jα(gk)}k=0,1,2,... and {Js
α(gk+1, gk)}k=0,1,2,... are non-

increasing.

3 Minimization of the replacement functional

In this section, we elaborate necessary conditions for a minimizer of the functional Js
α(g, a).

Lemma 4 The necessary condition for a minimum of Js
α(g, a) is given by

0 ∈ −FjT
′(Kg)∗(yδ − T (Ka)) + Cgj − Caj + αjL

∗
j∂Ψj(Ljgj) , for all j = 1, . . . , n . (3.1)

Proof. In the notion of subgradients (which is allowed, see later on for a convexity result), we
have for j = 1, . . . , n,

∂jJ
s
α(g, a) = −2FjT

′(Kg)∗(yδ − T (Ka)) + 2Cgj − 2Caj + 2αj∂Θj(gj) .

Consequently, through v ∈ ∂Θj(gj) ⇔ Ljv ∈ ∂Ψj(Ljgj), the necessary condition (3.1) follows
immediately. �

Before giving an equivalent condition, we will have a closer look to the relation between the
functionals Ψj and associated closed convex sets Cj. We may consider the Fenchel or so–called
dual functional of Ψj, which we will denote by Ψ∗

j . Since we have assumed Ψj to be a positive
and one homogeneous functional, there exists a convex set Cj such that Ψ∗

j is equal to the
indicator function χCj

over Cj. Moreover, in Hilbert space lore, we have total duality between
convex sets and positive and one homogeneous functionals, i.e. Ψj = (χCj

)∗.

Lemma 5 Let Mj(g, a) := FjT
′(F ∗g)∗(yδ − T (F ∗a))/C + aj, then the necessary conditions

(3.1) can be casted as

gj =
αj

C
L∗

j

(
I − PCj

)(C

αj

LjMj(g, a)

)
, j = 1, . . . , n . (3.2)

where PCj
is the orthogonal projection onto the convex set Cj.

Proof. With the shorthand Mj(g, a) we may rewrite (3.1) for each j,

Lj

Mj(g, a)− gj
αj

C

∈ ∂Ψj(Ljgj) ,

and thus, by standard arguments in convex analysis,

C

αj

Ljgj ∈
C

αj

∂Ψ∗
j

(
Lj

Mj(g, a)− gj
αj

C

)
.
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In order to have an expression by means of projections (or generalized shrinkage operations),
we expand the latter formula as follows,

Lj
Mj(g, a)

αj

C

∈ Lj

Mj(g, a)− gj
αj

C

+
C

αj

∂Ψ∗
j

(
Lj

Mj(g, a)− gj
αj

C

)
=

(
I +

C

αj

∂Ψ∗
j

)(
Lj

Mj(g, a)− gj
αj

C

)
,

which is equivalent to(
I +

C

αj

∂Ψ∗
j

)−1(
Lj

Mj(g, a)
αj

C

)
= Lj

Mj(g, a)− gj
αj

C

.

Again, by standard results in convex analysis, it is known that
(
I + C

αj
∂Ψ∗

)−1

is nothing than

the orthogonal projection onto the associated convex set Cj, and hence the assertion follows,

gj =
αj

C
L∗

j(I − PCj
)

(
Lj

Mj(g, a)
αj

C

)
.

�

The latter lemma states that for minimizing (1.4) we need to solve a system of n fixed point
equations (3.2), which are nonlinearly coupled via the PCj

. To condense the notation a little,
we introduce nonlinear operators (and call them generalized shinkage operators)

Sj := Sαj ,Lj ,Cj
=

αj

C
L∗

j(I − PCj
)Lj

C

αj

.

Thus, we may write
g = (S1(M1(g, a)), . . . ,Sn(Mn(g, a))) .

Let us now consider the associated fixed point map

Φ(g, a) = (S1(M1(g, a)), . . . ,Sn(Mn(g, a))) .

Lemma 6 For some generic a, the operator Φ(·, a) is a contraction if B2L/C
√

Jα(a) < 1,
i.e.

‖Φ(g, a)− Φ(g̃, a)‖(`2)n ≤ q‖g − g̃‖(`2)n if q :=
B2L

C

√
Jα(a) < 1 .

Before proving this lemma, we need a result on projections onto convex sets.

Lemma 7 Let K be a closed and convex set, then the mapping I − PK is non–expansive.

This Lemma can be deduced by the following two standard properties of convex sets.

Lemma 8 Let K be a closed and convex set in some Hilbert space H, then for all u ∈ H and
all k ∈ K the inequality 〈u− PKu, k − PKu〉 ≤ 0 holds true.

9



Proof. For all λ ∈ [0, 1] one has

‖u− ((1− λ)PKu + λk)‖2 ≥ ‖u− PKu‖2 .

Thus, for all λ ∈ [0, 1]

−2λ〈u− PKu, k − PKu〉+ λ2‖k − PKu‖2 ≥ 0,

and therewith we have 〈u− PKu, k − PKu〉 ≤ 0. �

Lemma 9 Let K be a closed and convex set, then for all u, v ∈ H the inequality

‖u− v − (PKu− PKv)‖ ≤ ‖u− v‖

holds true.

Proof. We need to prove

−2〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ 0 .

By Lemma 8 we have 〈u− PKu, PKv − PKu〉 ≤ 0, or equivalently

−〈u, PKu〉+ 〈u, PKv〉+ ‖PKu‖2 − 〈PKu, PKv〉 ≤ 0 .

By symmetry we have

−〈v, PKv〉+ 〈v, PKu〉+ ‖PKv‖2 − 〈PKv, PKu〉 ≤ 0 .

Summing the two inequalities leads to

−〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ 0 ,

and thus
−2〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ −‖PKu− PKv‖2 ≤ 0 .

�

Thanks to Lemma 9, we still have assured Lemma 7, and with Lemma 7 at hand, we are able
to prove Lemma 6.

Proof. We have by Lemma 7 and the Lipschitz–continuity of T ′,

‖Φ(g, a)− Φ(g̃, a)‖2
(`2)n =

n∑
j=1

‖Sj(g, a)− Sj(g, a)‖2
`2

=
n∑

j=1

αj

C

∥∥∥∥∥(I − PCj
)

(
Lj

Mj(g, a)
αjj

C

)
− (I − PCj

)

(
Lj

M(g̃, a)
αj

C

)∥∥∥∥∥
2

`2

≤
n∑

j=1

‖Mj(g, a)−Mj(g̃, a)‖2
`2

≤
n∑

j=1

Bj

C2
‖T ′(Kg)− T ′(Kg̃)‖2‖yδ − T (Ka)‖2

Y

≤
n∑

j=1

BjL
2

C2

(
n∑

i=1

B
1/2
i ‖gi − g̃i‖`2

)2

Jα(a) ≤ B4L2

C2
‖g − g̃‖2

(`2)nJα(a)

10



and the assertion follows. �

Proposition 10 The fixed point map Φ(g, gk) is for all k = 0, 1, 2, . . . a contraction.

Proof. By the definition of C in (2.2) and Lemma 6 (setting a = g0), we deduce that Φ(g, g0)
is a contraction with

q =
B2L

C

√
Jα(g0) ≤

1

2
< 1.

With the help of Corollary 3, we complete the proof

‖Φ(g, gk)− Φ(g̃, gk)‖(`2)n ≤ B2L

C

√
Jα(gk)‖g − g̃‖(`2)n

≤ . . . ≤ B2L

C

√
Jα(g0)‖g − g̃‖(`2)n ≤ 1

2
‖g − g̃‖`2 .

�

Up to here, we do know whether our fixed point iteration converges towards a critical point of
Js

α(g, gk).

Proposition 11 The necessary equation (3.2) for a minimum of the functional Js
α(g, gk) has

a unique fixed point, and the fixed point iteration converges towards the minimizer.

Proof. To verify this assertion, we have to investigate the Taylor expansion of Js
α more closely.

By Taylor’s expansion for T and the Lipschitz–continuity of T ′ we get

T (Kg + Kh) = T (Kg) + T ′(Kg)Kh + R(Kg, Kh) (3.3)

with

‖R(Kg, Kh)‖Y ≤
B2L

2
‖h‖2

(`2)n . (3.4)

Denoting with ∇ the multi–valued (sub)gradient (still having in mind that the subgradient is
set–valued) and with gk the k–th iterate (gj indicates the j–th component of g),

Js
α(g + h, gk)− Js

α(g, gk) = ∇Js
α(g, gk) · h + C‖h‖2

(`2)n − 2〈yδ − T (Kgk), R(Kg, Kh)〉Y

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}

≥ ∇Js
α(g, gk) · h + C‖h‖2

(`2)n − 2‖yδ − T (Kgk)‖`2

B2L

2
‖h‖2

`2

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}

≥ ∇Js
α(g, gk) · h +

C

2
‖h‖2

(`2)n

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}.

11



Assuming g is a critical point, i.e. ∇Js
α(g, gk) · h = 0 for all h, we have

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

(`2)n + 2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj} .

By the definition of subgradients (for each individual j): an element v ∈ `2 belongs to ∂Θj(gj)
if and only if for all x ∈ `2,

Θj(gj) + 〈v, x− gj〉`2 ≤ Θj(x) ,

and, in particular for x = gj + hj, this yields for all v ∈ ∂Θj(gj) and all hj ∈ `2,

Θj(gj) + 〈v, hj〉`2 ≤ Θj(gj + hj) or, equivalently, 0 ≤ Θj(gj + hj)−Θj(gj)− ∂Θj(gj)hj .

Consequently,

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

(`2)n ,

and thus every critical point is a global minimizer of Js
α(g, gk), and, again by the latter inequal-

ity, there exists only one global minimizer. �

By assuming more regularity on T , the latter statement can be improved:

Proposition 12 Let T be a twice continuously differentiable operator. Then the functional
Js

α(g, gk) is strictly convex.

Proof. Since the non–convex part of Js
α is the discrepancy ‖yδ − T (Kg)‖2

Y , it remains to show
that

Jd(g) := ‖yδ − T (Kg)‖2
Y + C‖g − gk‖2

`2
− ‖T (Kg)− T (Kgk)‖2

Y (3.5)

is strictly convex in g, i.e. we have to show that

Jd((1− λ)g1 + λg2) < (1− λ)Jd(g1) + λJd(g2)

holds for λ ∈ (0, 1) and arbitrary g1, g2 ∈ (`2)
n. At first, we express Jd by its Taylor expansion,

Jd(g + h) = Jd(g) +∇Jd(g) · h + r(g, h) , (3.6)

where
r(g, h) := −2〈yδ − T (Kgk), R(Kg, Kh)〉Y + C‖h‖2

(`2)n . (3.7)

We have

Jd((1− λ)g1 + λg2)) = Jd(g1 + λ(g2 − g1)) = Jd(g2 + (1− λ)(g1 − g2))

= (1− λ)Jd(g1 + λ(g2 − g1)) + λJd(g2 + (1− λ)(g1 − g2))

(3.8)

and with

Jd(g1 + λ(g2 − g1)) = Jd(g1) + λ∇Jd(g1) · (g2 − g1) + r(g1, λ(g2 − g1))

Jd(g2 + (1− λ)(g1 − g2)) = Jd(g2) + (1− λ)∇Jd(g2) · (g1 − g2) + r(g2, (1− λ)(g1 − g2))

12



we obtain

Jd((1− λ)g1 + λg2)) = (1− λ)Jd(g1) + λJd(g2) + λ(1− λ)
[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) .

Thus, Js
α is strictly convex if for all λ ∈ (0, 1),

D(g1, g2, λ) := λ(1− λ)
[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) < 0 .

We have[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1) = −2C‖g2 − g1‖2

(`2)n

−2〈yδ − T (Kgk), (T
′(Kg1)− T ′(Kg2))K(g2 − g1)〉Y .

As T is twice continuously Fréchet differentiable, it is

T ′(Kg1) = T ′(Kg2) +

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2), ·) dτ

and thus,[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1) =

−2C‖g2 − g1‖2
(`2)n + 2〈yδ − T (Kgk),

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2dτ〉,

(3.9)

where we have used the shorthand T ′′(·)(·, ·) = T ′′(·)(·)2. Again, as T is twice continuously
Fréchet-differentiable, the function R(Kg, Kh) in (3.7) is given by

R(Kg, Kh) =

1∫
0

(1− τ)T ′′(Kg + τKh)(Kh)2 dτ ,

and thus we obtain

R(Kg1, λK(g2 − g1)) = λ2

1∫
0

(1− τ)T ′′(Kg1 + τλK(g2 − g1))(K(g2 − g1))
2 dτ

=

1∫
1−λ

(τ − (1− λ))T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

(3.10)
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and in the same way

R(Kg2, (1− λ)K(g1 − g2)) =

1−λ∫
0

(1− λ− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2)
2 dτ . (3.11)

Combining definition (3.7) and equations (3.9), (3.10) and (3.11) yields

D(g1, g2, λ) = −λ(1− λ)C‖g1 − g2‖2
(`2)n + 2〈yδ − T (Kgk), f(g1, g2, λ)〉Y , (3.12)

where

f(g1, g2, λ) := λ(1− λ)

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

−λ

1−λ∫
0

(1− λ− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2)
2 dτ .

The functional f(g1, g2, λ) can now be recasted as follows

f(x1, x2, λ) = λ

1−λ∫
0

τT ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

+(1− λ)

1∫
1−λ

(1− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ.

In order to estimate ‖f(g1, g2, λ)‖Y it is necessary to estimate the integrals separately. Due to
the Lipschitz–continuity of the first derivative, the second derivative can be globally estimated
by L, and it follows,

λ

∥∥∥∥∥∥
1−λ∫
0

τT ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

∥∥∥∥∥∥
Y

≤ λ
(1− λ)2

2
B2L‖g1 − g2‖2

(`2)n

(1− λ)

∥∥∥∥∥∥
1∫

1−λ

(1− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

∥∥∥∥∥∥
Y

≤ (1− λ)
λ2

2
B2L‖g1 − g2‖2

(`2)n

and thus

‖f(g1, g2, λ)‖Y ≤
λ(1− λ)

2
B2L‖g1 − g2‖2

(`2)n . (3.13)
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Combining (3.12) and (3.13) yields for λ ∈ (0, 1)

D(g1, g2, λ) ≤ −λ(1− λ)C‖g1 − g2‖2
(`2)n + 2‖yδ − T (Kgk)‖Y ‖f(g1, g2, λ)‖Y

≤ −λ(1− λ)C‖g1 − g2‖2
(`2)n +

λ(1− λ)

2
2B2L‖yδ − T (Kgk)‖Y ‖g1 − g2‖2

(`2)n

(2.14)

≤ −λ(1− λ)
C

2
‖g1 − g2‖2

(`2)n < 0 ,

and thus the functional is strictly convex. �

4 Convergence properties of the iteration

Within this section we discuss convergence properties of the proposed scheme, i.e. we aim to
show that the sequence of iterates {gk} converges strongly towards a critical point of Jα, at
least.

Lemma 13 The sequence of iterates {gk}k=0,1,2,... has a weakly convergent subsequence.

Proof. This is an immediate consequence of Proposition 2, in which we have shown that for
k = 0, 1, 2, . . . the iterates gk are contained in Kr, and by requirement (1.3), ‖gk‖(`2)n ≤ r.
Since the iterates are uniformly bounded, we deduce that there exists at least one accumula-
tion point g?

α with gk,l
w−→ g?

α, where gk,l denotes a subsequence of gk. �

Lemma 14 For the iterates gk holds limk→∞ ‖gk+1 − gk‖(`2)n = 0.

Proof. With the help of Corollary 3, we observe that

0 ≤
N∑

k=0

{
C‖gk+1 − gk‖2

(`2)n − ‖T (Kgk+1)− T (Kgk)‖2
Y

}
≤

N∑
k=0

{
Js

α(gk+1, gk)− Jα(gk+1)
}
≤

N∑
k=0

{
Jα(gk)− Jα(gk+1)

}
= Jα(g0)− Jα(gN+1) ≤ Jα(g0) ,

i.e. the finite sums are uniformly bounded (independent on N). Now, by the Taylor expansion
of T , we have

‖T (Kgk+1)− T (Kgk)‖2
Y ≤

C

2
‖gk+1 − gk‖2

(`2)n ,

and thus

0 ≤ C

2
‖gk+1 − gk‖2

(`2)n ≤ C‖gk+1 − gk‖2
(`2)n − ‖T (Kgk+1)− T (Kgk)‖2

Y −→ 0

as k →∞ and the assertion follows. �
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Lemma 15 Every subsequence of gk has a convergent subsequence gk,l that converges strongly
towards a function g?

α, and g?
α satisfies the necessary condition for a minimizer of Jα:

FjT
′(Kg?

α)∗(yδ − T (Kg?
α)) ∈ αj∂Θj((gj)

?
α) , j = 1, . . . , n . (4.1)

Proof. According to Lemma 4, the minimizer gk+1 of Js
α(g, gk) fulfills

0 ∈ FjT
′(Kgk+1)

∗(yδ − T (Kgk))− C(gj)k+1 + C(gj)k − αj∂Θj((gj)k+1).

Thus, for all j = 1, . . . , n,

(gj)k+1 − (gj)k ∈ 1

C

(
FjT

′(Kgk+1)
∗(yδ − T (Kgk+1))− αj∂jΘj((gj)k+1)

+FjT
′(Kgk+1)

∗(T (Kgk+1)− T (Kgk))
)

(4.2)

and, moreover, by Lemma 14,

‖FjT
′(Kgk+1)

∗(T (Kgk+1)− T (Kgk))‖Y ≤
CB

1/2
j

2B
‖gk+1 − gk‖(`2)n → 0 .

Passing to the limit k →∞ in (4.2),

0 ∈ lim
k→∞

(
FjT

′(Kgk+1)
∗(yδ − T (Kgk+1))− αj∂Θj((gj)k+1)

)
. (4.3)

Since gk is bounded, every subsequence has a weakly convergent subsequence. Let gk,l denote
such a weakly convergent subsequence with weak limit g?

α (for simplicity, we will denote this
sequence by gk, too). Since

FjT
′(Kgk+1)

∗(yδ − T (Kgk+1)) =

FjT
′(Kgk+1)

∗(yδ − T (Kg?
α)) + FjT

′(Kgk+1)
∗(T (Kg?

α)− T (Kgk+1)) ,

and because of

‖FjT
′(Kgk+1)

∗(T (Kg?
α − T (Kgk+1))‖`2 ≤

√
CBj√
2B

‖T (Kg?
α)− T (Kgk+1)‖ → 0

and by assumption (1.5), i.e.

FjT
′(Kgk+1)

∗(yδ − T (Kg?
α)) → FjT

′(Kg?
α)∗(yδ − T (Kg?

α)),

we consequently obtain

lim
k→∞

FjT
′(Kgk+1)

∗(yδ − T (Kgk+1)) = FjT
′(Kg?

α)∗(yδ − T (Kg?
α)) . (4.4)

Next, we have to consider limk→∞ ∂Θj((gj)k). By an elementwise consideration we have,
v ∈ ∂Θj((gj)k) if and only if for all x ∈ `2 the inequality Θj(x) ≥ Θj((gj)k) + 〈v, x− (gj)k〉`2
holds true. The assumption that Θj is lower semi-continuous and convex implies weak lower
semi-continuity of all the Θj, i.e. Θj((gj)

?
α) ≤ limk→∞ inf Θj((gj)k) ≤ limk→∞ Θj((gj)k). The

same holds true for the `2–inner product. Thus, we deduce that for all v ∈ limk→∞ ∂Θj((gj)k)
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we have v ∈ ∂Θj((gj)
?
α), i.e. limk→∞ ∂Θj((gj)k) ⊆ ∂Θj((gj)

?
α). Combining (4.4) with (4.2)

proves that gk,l converges, and as g?
α is the weak limit of the sequence, gk,l → g?

α. Equations
(4.1) follow by passing to the limit in (4.3). �

In principle, the limits of different convergent subsequences of gk may differ. Let gk,l → g?
α

be a subsequence of gk, and let g̃k,l the predecessor of gk,l in gk, i.e. gk,l = gi and g̃k,l = gi−1.
Then we observe, Js

α(gk,l, g̃k,l) → Jα(g?
α). Moreover, as we have Js

α(gk+1, gk) ≤ Js
α(gk, gk−1) for

all k, it turns out that the value of the Tikhonov functional for every limit g?
α of a convergent

subsequence remains the same, i.e. Jα(g?
α) = const .

We may now summarize our findings and give a simple criterion that ensures strong con-
vergence of the whole sequence {gk}.

Theorem 16 Assume that there exists at least one isolated limit g?
α of a subsequence gk,l of

gk. Then gk → g?
α as k → ∞. The accumulation point g?

α is a minimizer for the functional
Js

α(g, g?
α).

Proof. As in the proof of Proposition 11 we obtain, Js
α(x?

α + h, x?
α) ≥ Js

α(x?
α, x?

α) + C
2
‖h‖2. The

remaining proof of norm convergence can be directly taken from [6]. �

5 A Regularization result

After stating norm convergence results for the proposed multi–frame approach for solving non-
linear operator equations, we now focus on how to optimally choose the parameter vector α.
In a typical situation of an inverse problem, i.e. considering noisy data or equivalently the
ill–posed case, the vector α plays the most important role in computing stabilized solutions. In
this case, if the ‘error’ e = yδ − T (Kg†) tends to zero, we wish our estimate for the solution of
the inverse problem tend to g†, since the minimizer of Jα(g) differs from g† for α 6= 0. In inverse
problems lore, this means to identify a functional relation between α and the noise floor δ, i.e.
α = α(δ) with α(δ) → 0 and ‖g?

α(δ) − g†‖ → 0 as α → 0. If we find a parameter rule achieving
this, then the suggested iteration scheme would regularize the ill–posed problem. However, in
our context we have to face the fact that N (K) is nontrivial as long as we deal with frames, i.e.
even if the inverse problem would have a unique solution, the corresponding vector of frame
sequences to represent this solution will never have. Thus it is only reasonable to show that we
approach one solution g† when passing to the limit δ → 0.

The next theorem provides conditions on the functional relation α(δ) for which the con-
structed Landweber fixed point iteration with projections in each step is a regularization scheme
(up to uniqueness).

Theorem 17 Let yδ ∈ Y with ‖yδ−y‖Y ≤ δ, αmin(δ) = minj{αj(δ)}, αmax(δ) = maxj{αj(δ)},
and assume α(δ) = (α1(δ), . . . , αn(δ)) is chosen such that

α(δ)
δ→0−→ 0 , δ2/αmin(δ)

δ→0−→ 0 , αmax(δ)/αmin(δ)
δ→0−→ 1 .
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Then every sequence {g?
α(δ)} of minimizers of the functional Jα(g) where δ → 0 and α =

α(δ) has a convergent subsequence. The limit of every convergent subsequence is a solution of
T (Kg) = y with minimal values of Ψ(Ljgj), j = 1, . . . , n.

Proof. As g?
α(δ) = ((g?

α(δ))1, . . . , (g
?
α(δ))n) is a minimizer of Jα, we have

‖yδ − T (Kg?
α(δ))‖2

Y + 2α ·ΨL(g?
α(δ)) ≤ δ2 + 2α ·ΨL(g†) . (5.1)

Thus, by the made assumptions on α(δ), we achieve

lim
δ→0

T (Kg?
α(δ)) = y .

Again by (5.1),

‖ΨL(g?
α(δ))‖`1 ≤

δ2

2αmin(δ)
+

αmax(δ)

αmin(δ)
‖ΨL(g†)‖`1

implying,
lim sup

δ→0
‖g?

α(δ)‖(`2)n ≤ lim sup
δ→0

‖ΨL(g?
α(δ))‖`1 ≤ ‖ΨL(g†)‖`1 ,

i.e. ‖g?
α(δ)‖(`2)n are uniformly bounded. Consequently, the sequence has a weakly convergent

subsequence (again denoted by {g?
α(δ)}) with weak limit g◦,

g◦ = w − lim
δ→0

g?
α(δ) .

Since T is strongly continuous,

y = lim
δ→0

T (Kg?
α(δ)) = T (Kg◦) ,

i.e. g◦ is a solution of T (Kg) = y. Assume now g† is a solution of the inverse problem with
minimal values of Ψj(Lj · ). Then, since all the Ψj are weak semi–continuous, we deduce

Ψj(Ljg
◦
j) ≤ lim sup

δ→0
Ψj(Lj(g

?
α(δ))j) ≤ Ψj(Ljg

†
j) ≤ Ψj(Ljg

◦
j) for j = 1, . . . , n.

Hence g◦ is also a solution with minimal values of Ψj(Lj · ). �

Resulting (regularization) iteration:

We may now summarize our findings and suggest the following regularization method. Assume
that all the conditions we have imposed in the previous sections apply to our problem and,
moreover, assume we have a parameter rule at hand that fulfills the conditions of Theorem 17.
Then the algorithm goes as follows:

• Define a sequence {αn} satifying the condition of Theorem 17, and pick r ≥ 1, g0

• while ‖yδ − T (Kg?
α(δ))‖ > r · δ
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– α = αn

– pick an admissible C

– [g?
α] = Iteration(T , yδ, C, α, g0):

gk+1 = arg min
g

Js
α(g, gk) (solved by a projected fixed point iteration)

g?
α = lim

k→∞
gk

– g0 = g?
α

end

In practice (treatment of limits), we have to incorporate stopping rules that will slightly modify
this scheme:

• Define a sequence {αn} satifying the condition of Theorem 17, and pick r ≥ 1, g0, and
additionally two tolerances τ1, τ2

• while ‖yδ − T (Kg?
α(δ))‖ > r · δ

– α = αn

– pick an admissible C

– [g?
α] = Iteration(T , yδ, C, α, τ1, τ2)

k = 0
while ‖gk+1 − gk‖`2 > τ1

l = 0, gk,0 = gk

while ‖gk,l − gk,l+1‖`2 > τ2

l = l + 1
gk,l = Φα,C(gk,l−1, gk)
end

gk+1 = gk,l

k = k + 1
end
g?

α = gk

end

6 A numerical illustration

In this section, we apply the iterative machinery for solving nonlinear problems in a multi frame
setting. For illustration purposes we focus on a sequence of synthetic nonlinear problems in the
field of signal and image processing.

The first example is devoted to nonlinear image deformation. As the synthetic nonlinear
operator we consider

T (x) = cos(x) .

Assuming our image is given by some x ∈ L2(Ω), where Ω = [0, 1]2, then T is applied to each
value x(k, l), for all (k, l) ∈ Ω,

T (x(k, l)) = cos(x(k, l)).
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Figure 1: Thresholding Landweber fixed point iteration for the pixel basis and orthogonal Haar
wavelet basis L = W and sparsity parameter α = 0.02. From top left to up right: original
image x; T (x) + δ = yδ; final reconstruction of the solution; values of ‖yδ − T (F ∗g)‖2

L2(Ω) (red)

and |Wg|`1 (green) during the whole iteration process; sparsity history (red, green indicates
the reference to original total number of coefficients); error plot; Jα; Gaussian surrogate term;
Jα (red) and Js

α = Jα+‘Gaussian surrogate term’ (blue).

As the frame under consideration we chose the pixel basis with frame operator F and x = F ∗g
for some g ∈ `2. Moreover, we aim to reconstruct an image while requiring sparsity. Sparsity
can be achieved when setting p = 1. However, we still know that sparsity cannot be well
achieved when dealing with a pixel frame. Hence, it would be more feasible to switch to a
wavelet frame (basis) when penalizing the approximation, i.e. we set L = W and W denoting
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Figure 2: Thresholding Landweber fixed point iteration for the pixel basis and orthogonal Haar
wavelet basis L = W and sparsity parameter α = 0.1. From top left to up right: original image
x; T (x) + δ = yδ; final reconstruction of the solution; values of ‖yδ − T (F ∗g)‖2

L2(Ω) (red) and

|Wg|`1 (green) during the whole iteration process; sparsity history (red, green indicates the
reference to original total number of coefficients); error plot; Jα; Gaussian surrogate term; Jα

(red) and Js
α = Jα+‘Gaussian surrogate term’ (blue).

the orthogonal wavelet transform. Consequently, we may cast the problem as follows,

Jα(g) = ‖yδ − T (F ∗g)‖2
L2(Ω) + 2α|Wg|`1 .

The resulting Landweber iteration is then based on solving the following fixed point equation
in each step,

gk+1 =
α

C
W ∗(I − PC)(

C

α
WM(gk+1, gk)) = Sα,W,C(M(gk+1, gk)) ,
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i.e. for each Landweber iteration we have to perform a fixed point iteration with a generalized
shrinkage projection applied in each step

gk+1,l+1 = Sα,W,C(M(gk+1,l, gk)) .

We finally need to derive the generalized shrinkage operator Sα,L,C. Since p = 1,

Ψ(Wg) = |Wg|`1 =
∑
λ∈Λ

|(Wg)λ| ,

the related convex set is then nothing else than

C = {Wg ∈ `2 : sup
λ∈Λ

|(Wg)λ| ≤ 1} .

This yields the componentwise acting projection PC(Wg) = {PC((Wg)λ)}λ∈Λ with

PC((Wg)λ) =

{
(Wg)λ if |(Wg)λ| ≤ 1
sgn(Wg)λ if |(Wg)λ| > 1

,

where sgn(0) ∈ [−1, 1] and consequently,

(I − PC)((Wg)λ) =

{
0 if |(Wg)λ| ≤ 1
sgn(Wg)λ(|(Wg)λ| − 1) if |(Wg)λ| > 1

.

This is the well–known soft shrinkage operation with threshold 1, which we denote here by S1.
Thus,

gk+1,l+1 = Sα/C(M(gk+1,l, gk)) .

The numerical results for two different parameters α are shown in Figures 1 and 2. In Figure 1
we have chosen α = 0.02, in Figure 2, α = 0.1. We may clearly observe that we achieve much
better sparsity in the second case whereas the approximation quality is much higher in the first
example, and that the number of iterations becomes less when α increases.

In the second illustration, we really compute a reconstruction when dealing with multi
frames. For computational reasons we consider a one dimensional synthetic data set, see top
left diagram in Figure 3. The nonlinearity comes into play by setting

y = T (x) = e−x .

Our frame dictionary consists now of two different bases: Daubechies wavelet bases of order
one (Haar wavelet basis) and ten. We denote the corresponding frame operators by F1 and F2,
then

x = Kg = K(g1, g2) = F ∗
1 g1 + F ∗

2 g2 .

Moreover, we again aim to reconstruct a sparse solution of the inverse deformation problem.
Since we still deal with a wavelet based dictionary it is customary to set L1 = L2 = I. The
variational problem to be minimized reads then as

Jα(g) = Jα(g1, g2) = ‖yδ − T (K(g1, g2))‖2
L2(Ω) + 2α1|g1|`1 + 2α2|g2|`1 .
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Figure 3: Thresholding Landweber fixed point iteration for a wavelet based dictionary (F1 ∼
Haar system, F2 ∼ Daubechies wavelet basis of order ten) and sparsity parameters α =
(0.2, 0.5). From top left to up right: original data x; T (x) = y; T (x)+ δ = yδ; final Haar recon-
struction; final Db10 reconstruction; final overall reconstruction; values of ‖yδ − T (F ∗g)‖2

L2(Ω)

(red) and |g1|`1 + |g2|`1 (green) during the whole iteration process; sparsity history (red, green
indicates the reference to original total number of coefficients); error plot; Jα; Gaussian surro-
gate term; Jα (red) and Js

α = Jα+‘Gaussian surrogate term’ (blue).

Hence, the resulting system of fixed point equations (to be solved in the same manner as before)
is given by

(g1)k+1 = Sα1/C(M1(gk+1, gk))

(g2)k+1 = Sα2/C(M2(gk+1, gk)) .
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The results are visualized in Figure 3. The main observation is that we may indeed reconstruct
with the proposed scheme an approximation of x. Moreover, we see that the different compo-
nents of x are at most complementary covered by the two different frames: the Haar system
essentially grabs the non–smooth part whereas the Db10 family describes smoother compo-
nents of x. Of course, we must admit that the information is not completely split, i.e. there
is still some redundant information in g1 and g2. However, the reconstructed approximation
of x requires even by using two bases much less coefficients (approx. 160 coefficients) than the
original data set (256 coefficients).
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