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Abstract

In this paper, we consider nonlinear inverse problems where the solution is assumed
to have a sparse expansion with respect to a preassigned basis or frame. We develop a
scheme which allows to minimize a Tikhonov functional where the usual quadratic regu-
larization term is replaced by a one–homogeneous (typically weighted `p) penalty on the
coefficients (or isometrically transformed coefficients) of such expansions. For p < 2, the
regularized solution will have a sparser expansion with respect to the basis or frame under
consideration. The computation of the regularized solution amounts in our setting to a
Landweber–fixed–point iteration with a projection applied in each fixed–point iteration
step. The performance of the resulting numerical scheme is demonstrated by solving the
nonlinear inverse SPECT (Single Photon Emission Computerized Tomography) problem.

1 Introduction – the scope of the problem

We consider the computation of an approximation to a solution of a nonlinear operator equation

T (x) = y , (1.1)

where T : X → Y is an ill-posed operator between Hilbert spaces X, Y . If only noisy data yδ

with
‖yδ − y‖ ≤ δ (1.2)

are available, problem (1.1) has to be stabilized by regularization methods. In recent years,
many of the well known methods for linear ill-posed problems have been generalized to nonlinear
operator equations. But so far all the proposed schemes for nonlinear problems incorporate at
most quadratic regularization. In many applications the solution is assumed to have sparse
expansion with respect to some preselected frame (or basis). This immediately leads to the

∗Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of
Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria

†Konrad–Zuse–Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin-Dahlem, Ger-
many; Acknowledgement: G. T. was partially supported by Deutsche Forschungsgemeinschaft Grants TE
354/1-2, TE 354/3-1.

1



involvement of non–quadratic penalties, e.g. `p norms with p < 2. In linear lore, this problem
is already solved, see [7]. In this paper, we aim now to carry over the theory to nonlinear
inverse problems and extend it to more general sparsity constraints. More general sparsity
constraints mean here being no longer restricted to weighted `p norms as considered in [7].
We consider here the wide range of one–homogeneous and convex constraints, where the `1
norm is just one famous example for a sparsity constraint. Another famous one–homogeneous
constraint is the TV semi norm which is very often used in image processing when aiming
to reconstruct sharp boundaries and edges in the given image, see e.g. [1, 13, 14, 15, 22].
Since we focus here on constraints on the basis or frame coefficients of the function to be
reconstructed, TV –like constraints are not directly applicable in our context. However, there
is a remarkable relation between TV penalties and one–homogeneous constraints on the frame
or wavelet basis coefficients which can be explained by the inclusion B1

1,1 ⊂ BV ⊂ B1
1,1 −weak

(in two dimensions), see for further Harmonic analysis on BV [4, 5]. This relation yields a
wavelet/frame–based near BV reconstruction when limiting to Haar frames and using a B1

1,1

constraint, see for further elaboration [8, 9]. But we want to be not too restrictive and allow
thus to chose general one–homogeneous and convex functionals on the frame coefficients or its
isometrically transformed versions.

Assume now we are given some preassigned frame {φλ}λ∈Λ ⊂ X for which we have some
associated frame operator F : X → `2 via Fx = {〈x, φλ〉}λ∈Λ with A · I ≤ F ∗F ≤ B · I.
Assuming, moreover, a Gaussian error noise model for the data misfit term, the variational
formulation of the nonlinear inverse problem with sparsity, or more general, one–homogeneous
constraints can be casted as follows: find a sequence of coefficients g ∈ `2 such that

Jα(g) = ‖yδ − T (F ∗g)‖2
Y + 2αΨ(Lg) (1.3)

is minimized. Here Ψ stands for some positive, one–homogeneous, lower semi–continuous and
convex penalty (which is usually some weighted `p norm of the frame coefficients), and the
infinite matrix L is restricted to be an isometric mapping. In particular, we also need to
require,

‖g‖`2 ≤ Ψ(Lg). (1.4)

The strategies for nonlinear cases where quadratic penalties are well suited, suggested in [21],
seem to be also adequate when dealing with sparsity, or more general, with one–homogeneous
constraints. The idea goes as follows: we replace (1.3) by a sequence of functionals from which
we hope that they are easier to treat and that the sequence of minimizers converge in some
sense to, at least, a critical point of (1.3). To be more concrete, for some auxiliary a ∈ `2, we
introduce the following surrogate functional

Js
α(g,a) := Jα(g) + C‖g − a‖2

`2
− ‖T (F ∗g)− T (F ∗a)‖2

Y (1.5)

and create an iteration process by:

1. Pick g0 and some proper constant C > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = arg min
g
Js

α(g, gk) k = 0, 1, 2, . . .
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As we shall see later on, in order to prove norm convergence of the iterates gk towards a
critical point of Jα, we have to restrict ourselves to a class of nonlinear problems for which all
of the following three requirements hold true,

gk
w→ g =⇒ T (F ∗gk) → T (F ∗g) , (1.6)

T ′(F ∗gk)
∗z → T ′(F ∗g)∗z , for all z , (1.7)

‖T ′(F ∗g)− T ′(F ∗g′)‖ ≤ LB1/2‖g − g′‖`2 . (1.8)

It may happen that T already meets these conditions as an operator from X → Y . If not,
this can be achieved by assuming more regularity of F ∗g, i.e. changing the domain of T a
little. To this end, we assume that there exists a function space Xs, and a compact embedding
operator is : Xs → X. Then we can consider T̃ = T ◦ is : Xs −→ Y . Lipschitz regularity
is preserved. Moreover, if now F ∗gk

w→ F ∗g in Xs, then F ∗gk→F ∗g in X and, moreover,
T̃ ′(F ∗gk) → T̃ ′(F ∗g) in the operator norm. This argument applies to arbitrary nonlinear con-
tinuous and Fréchet differentiable operators T : X → Y with continuous Lipschitz derivative
as long as a function space Xs with compact embedding is into X is available.

The remaining paper is organized as follows: In Section 2, we explain how the replacement
functionals are constructed and discuss the well–posedness of the resulting problem. In Sec-
tion 3, we derive conditions on the minimizing elements. The main results of the paper are
presented in Sections 4 and 5: strong convergence of the iterates towards a critical point and
a regularization result in case of an `1− penalty term. We end this paper with Section 6 in
which we demonstrate the capabilities of the proposed scheme by solving the nonlinear SPECT
problem with respect two classical quadratic and sparsity constraints.

2 On the proper definition of the replacement functional

By the definition of Js
α in (1.5) it is not clear whether the functional is positive definite or even

bounded from below. This will be clarified in this section, i.e. we will show that this is the case
provided the constant C is chosen properly.

For given α > 0 and g0 we define a ball Kr := {g ∈ `2 : Ψ(Lg) ≤ r}, where the radius r is
given by

r :=
‖yδ − T (F ∗g0)‖2

Y + 2αΨ(Lg0)

2α
. (2.1)

This obviously ensures g0 ∈ Kr. Furthermore, we define the constant C by

C := 2Bmax

{(
sup
g∈Kr

‖T ′(F ∗g)‖
)2

, L
√
‖yδ − T (F ∗g0)‖2 + 2αΨ(Lg0)

}
, (2.2)

where L is the Lipschitz constant of the Fréchet derivative of T and B the upper frame bound.
We assume that g0 was chosen such that r <∞ and C <∞.
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Lemma 1 Let r and C be chosen by (2.1), (2.2). Then, for all g ∈ Kr,

C‖g − g0‖2
`2
− ‖T (F ∗g)− T (F ∗g0)‖2

Y ≥ 0 (2.3)

and thus, Jα(g) ≤ Js
α(g, g0).

Proof. By Taylors expansion we have

T (F ∗g + F ∗h) = T (F ∗g) +

1∫
0

T ′(F ∗g + τF ∗h)F ∗h dτ

and thus we get with h = g0 − g

‖T (F ∗g)− T (F ∗g0)‖Y ≤
1∫

0

‖T ′(F ∗g + τF ∗(g0 − g))‖‖F ∗(g0 − g)‖Xdτ

≤ sup
g∈Kr

‖T ′(F ∗g)‖‖F ∗(g0 − g)‖X

≤ sup
g∈Kr

‖T ′(F ∗g)‖B1/2‖g0 − g‖`2

Consequently, we get for all g ∈ Kr

C‖g − g0‖2
`2
− ‖T (F ∗g)− T (F ∗g0)‖2

Y ≥ C‖g − g0‖2
`2
−B

(
sup
g∈Kr

‖T ′(F ∗g)‖‖g − g0‖`2

)2

≥ C

2
‖g − g0‖2

`2
≥ 0,

and the functional Js
α(g, g0) is non–negative for all g ∈ Kr. �

Next, we show that this carries over to all of the iterates:

Proposition 2 Let g0, α be given and r, C be defined by (2.1), (2.2). Then the functionals
Js

α(g, gk) are bounded from below for all g ∈ `2 and all k ∈ N and have thus minimizers. For
the minimizer gk+1 of Js

α(g, gk) holds gk+1 ∈ Kr.

Proof. The proof will be done by induction. For k = 1, we show in a first step that Js
α(g, g0)

is bounded from below. We have

‖yδ−T (F ∗g)‖2
Y = ‖yδ−T (F ∗g0)‖2

Y +‖T (F ∗g0)−T (F ∗g)‖2
Y +2〈yδ−T (F ∗g0), T (F ∗g0)−T (F ∗g)〉Y .

(2.4)
Thus,

Js
α(g, g0)− 2αΨ(Lg) = ‖yδ − T (F ∗g0)‖2

Y + 2〈yδ − T (F ∗g0), T (F ∗g0)− T (F ∗g)〉Y
+C‖g − g0‖2

`2
(2.5)

≥ ‖yδ − T (F ∗g0)‖2
Y − 2‖yδ − T (F ∗g0)‖Y ‖T (F ∗g0)− T (F ∗g)‖Y

+C‖g − g0‖2
`2
.

(2.6)
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Again by Taylor expansion,

‖T (F ∗g0)− T (F ∗g)‖Y ≤ B1/2‖T ′(F ∗g0)‖‖g0 − g‖`2 +
BL

2
‖g0 − g‖2

`2
. (2.7)

Now let us assume that Js
α(g, g0) is not bounded from below, e.g. there exists a sequence gl

such that Js
α(gl, g0) → −∞. This can only hold if ‖T (F ∗g0) − T (F ∗gl)‖Y → ∞, and because

of (2.7) follows ‖gl‖`2 →∞ as well. In particular, for l large enough, we derive from (2.7)

‖T (F ∗g0)− T (F ∗gl)‖Y ≤ BL‖g0 − gl‖2
`2
,

and combining this estimate with (2.6) yields

Js
α(gl, g0)− 2αΨ(Lgl) ≥ ‖yδ − T (F ∗g0)‖2

Y − 2BL‖yδ − T (F ∗g0)‖Y ‖gl − g0‖2
`2

+ C‖gl − g0‖2
`2
.

¿From the definition of C in (2.2) follows 2BL‖yδ − T (F ∗g0)‖Y ≤ C and thus

Js
α(gl, g0)− 2αΨ(Lgl) ≥ ‖yδ − T (F ∗g0)‖2

Y ≥ 0,

in contradiction to our assumption Js
α(gl, g0) → −∞, and thus Js

α(g, g0) is bounded from below.
By the same argument, we find Js

α(gl, g0) ≥ 2αΨ(Lgl) for any sequence gl with ‖gl‖`2 → ∞,
and by (1.4) we conclude Js

α(gl, g0) → ∞, i.e. the functional is coercive and has a minimizer
g1.

As in (2.6), we get by using (2.7),

Js
α(g1, g0)− 2αΨ(Lg1) ≥ ‖yδ − T (F ∗g0)‖2

Y + 2〈yδ − T (F ∗g0), T (F ∗g0)− T (F ∗g1)〉Y
+C‖g1 − g0‖2

`2

≥ ‖yδ − T (F ∗g0)‖2
Y − 2B1/2‖yδ − T (F ∗g0)‖Y ‖T ′(F ∗g0)‖‖g1 − g0‖`2

−BL‖yδ − T (F ∗g0)‖Y ‖g1 − g0‖2
`2

+ C‖g1 − g0‖2
`2
.

By (2.2), we have C/2 ≥ BL‖yδ − T (F ∗g0)‖Y , and thus

Js
α(g1, g0)− 2αΨ(Lg1) ≥ ‖yδ − T (F ∗g0)‖2

Y − 2B1/2‖yδ − T (F ∗g0)‖Y ‖T ′(F ∗g0)‖‖g1 − g0‖`2

+
C

2
‖g1 − g0‖2

`2
.

As g0 ∈ Kr, it follows from (2.2) that B1/2‖T ′(F ∗g0)‖ ≤
√
C/2 holds, and consequently,

Js
α(g1, g0)− 2αΨ(Lg1) ≥ ‖yδ − T (F ∗g0)‖2

Y − 2

√
C√
2
‖yδ − T (F ∗g0)‖Y ‖g1 − g0‖`2

+
C

2
‖g1 − g0‖2

`2

=

(
‖yδ − T (F ∗g0)‖Y −

√
C√
2
‖g1 − g0‖`2

)2

≥ 0.

In particular,

2αΨ(Lg1) ≤ Js
α(g1, g0) = min

g
Js

α(g, g0) ≤ Js
α(g0, g0)

= ‖yδ − T (F ∗g0)‖2
Y + 2αΨ(Lg0) ,
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i.e.

Ψ(Lg1) ≤
‖yδ − T (F ∗g0)‖2

Y + 2αΨ(Lg0)

2α
= r,

and thus g1 ∈ Kr.
Next, thanks to Lemma 1,

C‖g1 − g0‖2
`2
− ‖T (F ∗g1)− T (F ∗g0)‖2

Y ≥ 0 and Jα(g1) ≤ Js
α(g1, g0) ,

and we thus have

‖yδ − T (F ∗g1)‖2
Y ≤ Jα(g1) ≤ Js

α(g1, g0) ≤ Js
α(g0, g0) ≤ ‖yδ − T (F ∗g0)‖2

Y + 2αΨ(Lg0),

and combining this estimate with the definition of C in (2.2) yields

2BL‖yδ − T (F ∗g1)‖Y ≤ 2BL
√
‖yδ − T (F ∗g0)‖2

Y + 2αΨ(Lg0) ≤ C. (2.8)

Assuming now that the following properties hold for all i = 1, · · · k − 1:

gi ∈ Kr (2.9)

C‖gi − gi−1‖2
`2
− ‖T (F ∗gi)− T (F ∗gi−1)‖2

Y ≥ 0 (2.10)

2BL‖yδ − T (F ∗gi)‖ ≤ C, (2.11)

where gi denotes a minimizer of the functional Js
α(g, gi−1), we may deduce by the same argu-

ments as for i = 1 that the functional Js
α(g, gk−1) has a minimizer and that gk ∈ Kr. �

As an immediate consequence out of the latter proof we have

Corollary 3 The sequences {Jα(gk)}k=0,1,2,... and {Js
α(gk+1, gk)}k=0,1,2,... are non-increasing.

3 On the minimization of the replacement functional

In this section, we elaborate necessary conditions for a minimizer of the functional Js
α(g,a).

Lemma 4 The necessary condition for a minimum of Js
α(g,a) is given by

0 ∈ −FT ′(F ∗g)∗(yδ − T (F ∗a)) + Cg − Ca + αL∗∂Ψ(Lg) . (3.1)

Proof. Introducing the functional Θ via the relation v ∈ ∂Θ(g) ⇔ Lv ∈ ∂Ψ(Lg), we obtain
in the notion of subgradients ,

∂Js
α(g,a) = −2FT ′(F ∗g)∗(yδ − T (F ∗a)) + 2Cg − 2Ca + 2α∂Θ(g) .

Consequently, the necessary condition (3.1) follows immediately. �

Lemma 5 Let M(g,a) := FT ′(F ∗g)∗(yδ−T (F ∗a))/C+a. The necessary condition (3.1) can
be casted as

g =
α

C
L∗ (I − PC)

(
C

α
LM(g,a)

)
, (3.2)

where PC is an orthogonal projection onto a convex set C.
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Before proving Lemma 5, we will have a closer look to the relation between Ψ and C. We may
consider the Fenchel or so–called dual functional of Ψ, which we will denote by Ψ∗. Since we
have assumed Ψ to be a positive and one homogeneous functional, there exists a convex set
C such that Ψ∗ is equal to the indicator function χC over C. Moreover, in Hilbert space lore,
we have total duality between convex sets and positive and one homogeneous functionals, i.e.
Ψ = (χC)

∗.
Let us now prove Lemma 5:

Proof. With the shorthand M(g,a) for FT ′(F ∗g)∗(yδ − T (F ∗a))/C + a we may rewrite (3.1),

L
M(g,a)− g

α
C

∈ ∂Ψ(Lg) ,

and thus, by standard arguments in convex analysis,

C

α
Lg ∈ C

α
∂Ψ∗

(
L
M(g,a)− g

α
C

)
.

In order to have an expression by means of projections, we expand the latter formula as follows

L
M(g,a)

α
C

∈ L
M(g,a)− g

α
C

+
C

α
∂Ψ∗

(
L
M(g,a)− g

α
C

)
=

(
I +

C

α
∂Ψ∗

)(
L
M(g,a)− g

α
C

)
,

which is equivalent to (
I +

C

α
∂Ψ∗

)−1(
L
M(g,a)

α
C

)
= L

M(g,a)− g
α
C

.

Again, by standard results in convex analysis, it is known that
(
I + C

α
∂Ψ∗)−1

is nothing than
the orthogonal projection onto a convex set C, and hence the assertion follows,

g =
α

C
L∗(I − PC)

(
L
M(g,a)

α
C

)
.

�

The latter lemma states that for minimizing (1.5) we need to solve the fixed point equation
(3.2). To this end, we introduce the associated fixed point map Φα,C with respect to some α
and C, i.e.

Φα,C(g,a) :=
α

C
L∗(I − PC)

(
L
M(g,a)

α
C

)
.

In order to ensure contractivity of Φα,C, for some generic a, we need to analyze I−PC beforehand.

Lemma 6 The mapping I − PC is non–expansive.

To prove this Lemma we need the following two standard properties of convex sets, see [3],
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Lemma 7 Let K be a closed and convex set in some Hilbert space H, then for all u ∈ H and
all k ∈ K the inequality 〈u− PKu, k − PKu〉 ≤ 0 holds true.

Lemma 8 Let K be a closed and convex set, then for all u, v ∈ H the inequality

‖u− v − (PKu− PKv)‖ ≤ ‖u− v‖

holds true.

Thanks to Lemma 8 we still have assured Lemma 6, and with Lemma 6 at hand we are able to
clarify whether Φα,C(·,a) is a contraction operator.

Lemma 9 The operator Φα,C(·,a) is a contraction, i.e.

‖Φα,C(g,a)− Φα,C(g̃,a)‖`2 ≤ q‖g − g̃‖`2 if q :=
BL

C

√
Jα(a) < 1 .

Proof. We have by Lemma 6 and the Lipschitz–continuity of T ′

‖Φα,C(g,a)− Φα,C(g̃,a)‖`2 =
α

C

∥∥∥∥(I − PC)

(
L
M(g,a)

α
C

)
− (I − PC)

(
L
M(g̃,a)

α
C

)∥∥∥∥
`2

≤ ‖M(g,a)−M(g̃,a)‖`2

≤
√
B

C
‖T ′(F ∗g)− T ′(F ∗g̃)‖‖yδ − T (F ∗a)‖Y

≤ BL

C

√
Jα(a)‖g − g̃‖`2

and the assertion follows. �

Proposition 10 The fixed point map Φα,C(g, gk) to solve the fixed point equation (3.2) is for
all k = 0, 1, 2, . . . and all α ≥ 0 and C a contraction.

Proof. By the definition of C in (2.2) and Lemma 9 (setting a = g0), we deduce that Φα,C(g, g0)
is a contraction with

q =
BL

C

√
Jα(g0) ≤

1

2
< 1.

With the help of Corollary 3, we complete the proof

‖Φα,C(g, gk)− Φα,C(g̃, gk)‖`2 ≤ BL

C

√
Jα(gk)‖g − g̃‖`2

≤ . . . ≤ BL

C

√
Jα(g0)‖g − g̃‖`2 ≤

1

2
‖g − g̃‖`2 .

�

Up to here, we do know that our fixed point iteration converges towards a critical point of
Js

α(g, gk).
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Proposition 11 The necessary equation (3.2) for a minimum of the functional Js
α(g, gk) has

a unique fixed point, and the fixed point iteration converges towards the minimizer.

Proof. To verify this assertion, we have to investigate the Taylor expansion of Js
α more closely.

By Taylor’s expansion for T and the Lipschitz–continuity of T ′ we get

T (F ∗g + F ∗h) = T (F ∗g) + T ′(F ∗g)F ∗h +R(F ∗g, F ∗h) (3.3)

with

‖R(F ∗g, F ∗h)‖Y ≤ BL

2
‖h‖2

`2
. (3.4)

Next, we observe,

Js
α(g + h, gk)− Js

α(g, gk) = ∂Js
α(g, gk)h + C‖h‖2

`2
+ 2α{Θ(g + h)−Θ(g)− ∂Θ(g)h}

−2〈yδ − T (F ∗gk), R(F ∗g, F ∗h)〉Y
≥ ∂Js

α(g, gk)h + C‖h‖2
`2

+ 2α{Θ(g + h)−Θ(g)− ∂Θ(g)h}

−2‖yδ − T (F ∗gk)‖`2

BL

2
‖h‖2

`2

≥ ∂Js
α(g, gk)h +

C

2
‖h‖2

`2
+ 2α{Θ(g + h)−Θ(g)− ∂Θ(g)h}.

Assuming g is a critical point, i.e. for all v ∈ ∂Js
α(g, gk) and all h ∈ `2 one has 〈v,h〉`2 = 0

or equivalently written ∂Js
α(g, gk)h = 0, we have

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

`2
+ 2α{Θ(g + h)−Θ(g)− ∂Θ(g)h} .

Now via the definition of subgradients: an element v ∈ `2 belongs to ∂Θ(g) if and only if for
all x ∈ `2,

Θ(g) + 〈v,x− g〉`2 ≤ Θ(x) ,

and, in particular for x = g + h, this yields for all v ∈ ∂Θ(g) and all h ∈ `2,

Θ(g) + 〈v,h〉`2 ≤ Θ(g + h) or, equivalently, 0 ≤ Θ(g + h)−Θ(g)− ∂Θ(g)h .

Consequently,

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

`2
,

and thus every critical point is a global minimizer of Js
α(g, gk), and, again by the latter inequal-

ity, there exists only one global minimizer. �

By assuming more regularity on T , the latter statement can be improved a little:

Proposition 12 Let T be a twice continuously differentiable operator. Then the functional
Js

α(g, gk) is strictly convex.

Proof. Since the non–convex part of Js
α is the discrepancy ‖yδ −T (F ∗g)‖2

Y , it remains to show
that

Jd(g) := ‖yδ − T (F ∗g)‖2
Y + C‖g − gk‖2

`2
− ‖T (F ∗g)− T (F ∗gk)‖2

Y (3.5)
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is strictly convex in g, i.e. we have to show that

Jd((1− λ)g1 + λg2) < (1− λ)Jd(g1) + λJd(g2)

holds for λ ∈ (0, 1) and arbitrary g1, g2 ∈ `2. At first, we express Jd by its Taylor expansion,

Jd(g + h) = Jd(g) +DJd(g)h + r(g,h) , (3.6)

where
r(g,h) := −2〈yδ − T (F ∗gk), R(F ∗g, F ∗h)〉Y + C‖h‖2

`2
. (3.7)

We have

Jd((1− λ)g1 + λg2)) = Jd(g1 + λ(g2 − g1)) = Jd(g2 + (1− λ)(g1 − g2))

= (1− λ)Jd(g1 + λ(g2 − g1)) + λJd(g2 + (1− λ)(g1 − g2))

(3.8)

and with

Jd(g1 + λ(g2 − g1)) = Jd(g1) + λDJd(g1)(g2 − g1) + r(g1, λ(g2 − g1))

Jd(g2 + (1− λ)(g1 − g2)) = Jd(g2) + (1− λ)DJd(g2)(g1 − g2) + r(g2, (1− λ)(g1 − g2))

we obtain

Jd((1− λ)g1 + λg2)) = (1− λ)Jd(g1) + λJd(g2) + λ(1− λ)
[
DJd(g1)−DJd(g2)

]
(g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) .

Thus, Js
α is strictly convex if for all λ ∈ (0, 1),

D(g1, g2, λ) := λ(1− λ)
[
DJd(g1)−DJd(g2)

]
(g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) < 0 .

We have[
DJd(g1)−DJd(g2)

]
(g2 − g1) = −2C‖g2 − g1‖2

`2

−2〈yδ − T (F ∗gk), (T
′(F ∗g1)− T ′(F ∗g2))F

∗(g2 − g1)〉Y .

As T is twice continuously Fréchet differentiable, it is

T ′(F ∗g1) = T ′(F ∗g2) +

1∫
0

T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2), ·) dτ

and thus,[
DJd(g1)−DJd(g2)

]
(g2 − g1) =

−2C‖g2 − g1‖2
`2

+ 2〈yδ − T (F ∗gk),

1∫
0

T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2dτ〉,

(3.9)

10



where we have used the shorthand T ′′(·)(·, ·) = T ′′(·)(·)2. Again, as T is twice continuously
Fréchet-differentiable, the function R(F ∗g, F ∗h) in (3.7) is given by

R(F ∗g, F ∗h) =

1∫
0

(1− τ)T ′′(F ∗g + τF ∗h)(F ∗h)2 dτ ,

and thus we obtain

R(F ∗g1, λF
∗(g2 − g1)) = λ2

1∫
0

(1− τ)T ′′(F ∗g1 + τλF ∗(g2 − g1))(F
∗(g2 − g1))

2 dτ

=

1∫
1−λ

(τ − (1− λ))T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

(3.10)

and in the same way

R(F ∗g2, (1−λ)F ∗(g1−g2)) =

1−λ∫
0

(1−λ−τ)T ′′(F ∗g2+τF ∗(g1−g2))(F
∗(g1−g2))

2 dτ . (3.11)

Combining definition (3.7) and equations (3.9), (3.10) and (3.11) yields

D(g1, g2, λ) = −λ(1− λ)C‖g1 − g2‖2
`2

+ 2〈yδ − T (F ∗gk), f(g1, g2, λ)〉Y , (3.12)

where

f(g1, g2, λ) := λ(1− λ)

1∫
0

T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

−λ
1−λ∫
0

(1− λ− τ)T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2)

2 dτ .

The functional f(g1, g2, λ) can now be recasted as follows

f(x1, x2, λ) = λ

1−λ∫
0

τT ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

+(1− λ)

1∫
1−λ

(1− τ)T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ.
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In order to estimate ‖f(g1, g2, λ)‖Y it is necessary to estimate the integrals separately. Due to
the Lipschitz–continuity of the first derivative, the second derivative can be globally estimated
by L, and it follows,

λ

∥∥∥∥∥∥
1−λ∫
0

τT ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

∥∥∥∥∥∥
Y

≤ λ
(1− λ)2

2
BL‖g1 − g2‖2

`2
,

(1− λ)

∥∥∥∥∥∥
1∫

1−λ

(1− τ)T ′′(F ∗g2 + τF ∗(g1 − g2))(F
∗(g1 − g2))

2 dτ

∥∥∥∥∥∥
Y

≤ (1− λ)
λ2

2
BL‖g1 − g2‖2

`2

and thus

‖f(g1, g2, λ)‖Y ≤ λ(1− λ)

2
BL‖g1 − g2‖2

`2
. (3.13)

Combining (3.12) and (3.13) yields for λ ∈ (0, 1)

D(g1, g2, λ) ≤ −λ(1− λ)C‖g1 − g2‖2
`2

+ 2‖yδ − T (F ∗gk)‖Y ‖f(g1, g2, λ)‖Y

≤ −λ(1− λ)C‖g1 − g2‖2
`2

+
λ(1− λ)

2
2BL‖yδ − T (F ∗gk)‖‖g1 − g2‖2

`2

≤ −λ(1− λ)
C

2
‖g1 − g2‖2

`2
< 0 ,

and thus the functional is strictly convex. �

4 Convergence properties of the iteration

Within this section we discuss convergence properties of the proposed scheme, i.e. we aim to
show that the sequence of iterates {gk} converges strongly towards a critical point of Jα, at
least.

Lemma 13 The sequence of iterates {gk} has a weakly convergent subsequence.

Proof. This is an immediate consequence of Proposition 2, in which we have shown that for
k = 0, 1, 2, . . . the iterates gk are contained in Kr, i.e. ‖gk‖`2 ≤ r. Since the iterates are uni-
formly bounded, we deduce that there exists at least one accumulation point g?

α with gkl

w−→ g?
α,

where gkl
denotes a subsequence of gk. �

Lemma 14 For the iterates gk holds limk→∞ ‖gk+1 − gk‖`2 = 0.
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Proof. With the help of Corollary 3, we observe that

0 ≤
N∑

k=0

{
C‖gk+1 − gk‖2

`2
− ‖T (F ∗gk+1)− T (F ∗gk)‖2

Y

}
=

N∑
k=0

{
Js

α(gk+1, gk)− Jα(gk+1)
}
≤

N∑
k=0

{
Jα(gk)− Jα(gk+1)

}
= Jα(g0)− Jα(gN+1) ≤ Jα(g0) ,

i.e. the finite sums are uniformly bounded (independent on N). Now, by the Taylor expansion
of T , we have

‖T (F ∗gk+1)− T (F ∗gk)‖2
Y ≤ C

2
‖gk+1 − gk‖2

`2
,

and thus

0 ≤ C

2
‖gk+1 − gk‖2

`2
≤ C‖gk+1 − gk‖2

`2
− ‖T (F ∗gk+1)− T (F ∗gk)‖2

Y −→ 0

as k →∞ and the assertion follows. �

To obtain a convergence result, we need the following preliminary lemmatas. They state prop-
erties involving the general constraint Θ. However, when showing strong convergence we have
to restrict ourselves to a the class of constraints of weighted `p norms.

Lemma 15 Let Θ be a convex and weakly lower semi–continuous functional. For sequences
vk → v and gk

w→ g, assume vk ∈ ∂Θ(gk) for all k ∈ N. Then, v ∈ ∂Θ(g).

Proof. First, we observe for fixed x ∈ `2,

lim
k→∞

〈vk,x− gk〉`2 = lim
k→∞

〈vk − v,x− gk〉`2 + lim
k→∞

〈v,x− gk〉`2 ,

and because of |〈vk−v,x−gk〉`2| ≤ const · ‖vk−v‖ → 0, it follows from the weak convergence
of {gk} that

lim
k→∞

〈vk,x− gk〉`2 = 〈v,x− g〉`2 .

By definition we have v ∈ ∂Θ(g) if and only if the inequality Θ(x) ≥ Θ(g) + 〈v,x − g〉`2
holds true for all x ∈ `2. Since {vk} converges strongly and {gk} weakly, and by the lower
semi–continuity of Θ, and, moreover, by the assumption vk ∈ ∂Θ(gk) (i.e. for all x ∈ `2 the
inequality Θ(x) ≥ Θ(gk) + 〈vk,x− gk〉`2 holds true) we deduce

Θ(x) ≥ lim inf
k→∞

Θ(gk) + lim inf
k→∞

〈vk,x− gk〉`2
≥ Θ(g) + 〈v,x− g〉`2

for all x, and thus v ∈ ∂Θ(g). �
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Lemma 16 Every subsequence of gk has a weakly convergent subsequence gkl
with weak limit

g?
α that satisfies the necessary condition for a minimizer of Jα,

FT ′(F ∗g?
α)∗(yδ − T (F ∗g?

α)) ∈ α∂Θ(g?
α) . (4.1)

Proof. According to Lemma 4, the minimizer gk+1 of Js
α(g, gk) fulfills

0 ∈ FT ′(F ∗gk+1)
∗(yδ − T (F ∗gk))− Cgk+1 + Cgk − α∂Θ(gk+1).

Thus, by defining

vk+1 := − 1

α

(
Cgk+1 − Cgk − FT ′(F ∗gk+1)

∗(yδ − T (F ∗gk+1))

−FT ′(F ∗gk+1)
∗(T (F ∗gk+1)− T (F ∗gk))

)
we observe

vk+1 ∈ ∂Θ(gk+1) .

In order to derive the limit of {vk}, we apply at first Lemma 14, thus we have

‖FT ′(F ∗gk+1)
∗(T (F ∗gk+1)− T (F ∗gk))‖Y ≤

√
C/2‖gk+1 − gk‖`2 → 0 .

To control the remaining term, we take advantage of Lemma 13, i.e. there exists a subsequence
{gkl

} ⊂ {gk} that converges weakly towards its weak limit g?
α. By the following recast

FT ′(F ∗gkl
)∗(yδ − T (F ∗gkl

)) =

FT ′(F ∗gkl
)∗(yδ − T (F ∗g?

α)) + FT ′(F ∗gkl
)∗(T (F ∗g?

α)− T (F ∗gkl
)) ,

we find that

‖FT ′(F ∗gkl
)∗(T (F ∗g?

α − T (F ∗gkl
))‖`2 ≤

√
C/2‖T (F ∗g?

α)− T (F ∗gkl
)‖`2

(1.6)→ 0

and, moreover by assumption (1.7),

FT ′(F ∗gkl
)∗(yδ − T (F ∗g?

α)) → FT ′(F ∗g?
α)∗(yδ − T (F ∗g?

α)).

Consequently, we obtain

lim
l→∞

FT ′(F ∗gkl
)∗(yδ − T (F ∗gkl

)) = FT ′(F ∗g?
α)∗(yδ − T (F ∗g?

α)) , (4.2)

and hence
lim

l
vkl

= FT ′(F ∗g?
α)∗(yδ − T (F ∗g?

α)) =: v . (4.3)

As we have additionally gkl

w→ g?
α, we conclude from Lemma 15 (applied to {vkl

}) that
v ∈ ∂Θ(g?

α), which completes the proof. �

Lemma 17 Let {gkl
} ⊂ {gk} with gkl

w→ g?
α. Then, liml→∞ Θ(gkl

) = Θ(g?
α)
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Proof. Since Θ is weakly semi–continuous, we have

Θ(g?
α) ≤ lim inf l→∞Θ(gkl

). (4.4)

On the other hand, with the notation of the previous proof, we have seen that vkl
∈ ∂Θ(gkl

),
which means that for all x ∈ `2, Θ(x) ≥ Θ(gkl

) + 〈vkl
,x− gkl

〉. Selecting x = g?
α, we have

Θ(g?
α) ≥ Θ(gkl

) + 〈vkl
, g?

α − gkl
〉

and as vkl
→ v, gkl

w→ g?
α it follows 〈vkl

, g?
α − gkl

〉 → 0 and consequently,

Θ(g?
α) ≥ lim supl→∞Θ(gkl

) . (4.5)

Combining (4.4), (4.5) yields the assertion. �

In next theorem we show that with the help of the previous lemmatas and restricting to weighted
`p norms, we can achieve strong convergence of the subsequence {gkl

}. For simplicity we
have chosen L to be the identity. However, the theorem can also be shown for isometrically
tranformed gkl

’s.

Theorem 18 Let {gkl
} ⊂ {gk} with gkl

w→ g?
α. Assume, moreover, that

Θ(g) = Ψ(g) =

(∑
j

αj|(g)j|p
)1/p

(4.6)

with αj ≥ 1 and 1 ≤ p ≤ 2. Then the subsequence {gkl
} converges also in norm.

Proof. Let us first assume for all l that (gkl
)j ≤ 1. Setting D =

∣∣∣∑∞
j |(gkl

)j|2 −
∑∞

j |(g?
α)j|2

∣∣∣,
we have

D ≤

∣∣∣∣∣
N∑
j

|(gkl
)j|2 − |(g?

α)j|2
∣∣∣∣∣+

∞∑
N+1

|(gkl
)j|2 +

∞∑
N+1

|(g?
α)j|2 (4.7)

For fixed 0 < ε, we choose N such that

∞∑
N+1

αj|(g?
α)j|p ≤

ε

5
. (4.8)

As 1 ≤ p ≤ 2, it then follows immediately

∞∑
N+1

|(g?
α)j|2 ≤

ε

5
. (4.9)

Choosing now the iteration index l large enough s.t.

∞∑
j=1

αj|(gkl
)j|p =

∞∑
j=1

αj|(g?
α)j|p + ε̃ (4.10)

|(gkl
)j|p

′
= |(g?

α)j|p
′
+

ε̃

Nαj

|ε̃| ≤ ε

5
, j = 1, · · · , N, p′ ∈ {2, p} . (4.11)
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This is possible for (4.10) because of Lemma 17, and (4.11) can be fulfilled as N is already
fixed and (gkl

)j → (g?
α)j for l→∞. It follows

∞∑
j=N+1

|(gkl
)j|2 ≤

∞∑
j=N+1

αj|(gkl
)j|p

=
∞∑

j=1

αj|(gkl
)j|p −

N∑
j=1

αj|(gkl
)j|p

(4.10)(4.11)

≤
∞∑

j=1

αj|(g?
α)j|p + |ε̃| −

N∑
1

αj|(g?
α)j|p +N

|ε̃|
N

=
∞∑

N+1

αj|(g?
α)j|p + 2|ε̃|

(4.9)

≤ 3

5
ε . (4.12)

Moreover, since all αj ≥ 1, we have by (4.11)∣∣∣∣∣
N∑
j

|(gkl
)j|2 − |(g?

α)j|2
∣∣∣∣∣ ≤

N∑
j

|ε̃|
N

≤ ε

5
. (4.13)

Combing estimates (4.9), (4.12) and (4.13) into (4.7), we obtain

D ≤ ε ,

and consequently, liml→∞ ‖gkl
‖ = ‖g?

α‖.

If now for some l, j one has (gkl
)j > 1, we rescale the sequences and proceed in the same way,

i.e. at first we find by (1.4) a scaling factor

lim sup ‖gkl
‖ ≤ lim sup Ψ(gkl

) = Ψ(g?
α) =: K ,

that rescale the subsequences by g̃kl
:= gkl

/K. Hence, we have

‖g̃kl
‖ ≤ 1, (g̃kl

)j → (g̃?
α)j =:

1

K
g?

α .

In particular, one has |(g̃kl
)j| ≤ 1 and liml→∞ Θ(g̃kl

) = Θ(g̃?
α). By the same arguments as

above we conclude liml→∞ ‖g̃kl
‖ = ‖g̃?

α‖, and thus also liml→∞ ‖gkl
‖ = ‖g?

α‖. �

In principle, the limits of different convergent subsequences of gk may differ. Let gkl
→ g?

α

be a subsequence of gk, and let g′kl
the predecessor of gkl

in gk, i.e. gkl
= gi and g̃′k = gi−1.

Then we observe, Js
α(gkl

, g′kl
) → Jα(g?

α). Moreover, as we have Js
α(gk+1, gk) ≤ Js

α(gk, gk−1) for
all k, it turns out that the value of the Tikhonov functional for every limit g?

α of a convergent
subsequence remains the same, i.e. Jα(g?

α) = const .

We may now summarize our findings and give a simple criterion that ensures strong con-
vergence of the whole sequence {gk} towards a critical point of Jα.
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Theorem 19 Assume that there exists at least one isolated limit g?
α of a subsequence gkl

of
gk. Then gk → g?

α as k → ∞. The accumulation point g?
α is a minimizer for the functional

Js
α(g, g?

α) and fulfills the necessary condition for a minimizer of Jα.

Proof. As in the proof of Proposition 11 we obtain, Js
α(x?

α + h, x?
α) ≥ Js

α(x?
α, x

?
α) + C

2
‖h‖2 and

with Lemma 4.1 the second assertion is shown. The first assertion can be directly taken from
[21]. �

5 Regularization properties

A first regularization result can now be stated when restricting the analysis to the very promi-
nent `1 case, i.e.

Ψ(Lg) = ‖Lg‖`1 =
∑
λ∈Λ

|(Lg)λ| .

The related convex set is then nothing else than

C = {g ∈ `2 : sup
λ∈Λ

|(g)λ| ≤ 1} .

This yields the componentwise acting projection PC(Lg) = {PC((Lg)λ)}λ∈Λ with

PC((Lg)λ) =

{
(Lg)λ if |(Lg)λ| ≤ 1
sgn(Lg)λ if |(Lg)λ| > 1

,

and consequently,

(I − PC)((Lg)λ) =

{
0 if |(Lg)λ| ≤ 1
sgn(Lg)λ(|(Lg)λ| − 1) if |(Lg)λ| > 1

.

This is the well–known softshrinkage operation with threshold 1, which we denote here by S1.
The necessary condition (3.2) thus reads as

g =
α

C
L∗S1

(
C

α
LM(g,a)

)
= L∗S α

C
(LM(g,a)) .

For this specific case we may now state the following result.

Theorem 20 Let yδ ∈ Y with ‖yδ − y‖ ≤ δ and let α(δ) be chosen with α(δ) → 0 and
δ2/α(δ) → 0 as δ → 0. Then every sequence {gδk

αk
} of minimizers of the functional Jαk

(g),
defined in (1.3) where δk → 0 and αk = α(δk) has a convergent subsequence. The limit of
every convergent subsequence is a solution of T (F ∗g) = y with minimal value of Ψ(Lg). If, in
additition, the solution g† with minimal Ψ(Lg) is unique, then we have

lim
δ→0

gδ
α(δ) = g† . (5.1)

17



Proof. Let αk and δk be as above , and g† a solution of T (F ∗g) with minimal value of Ψ(Lg).
As gδk

αk
is a minimizer of Jαk

, we have

‖T (F ∗gδk
αk

)− yδk‖2 + 2αkΨ(Lgδk
αk

) ≤ δ2
k + 2αkΨ(Lg†) . (5.2)

Hence we have ‖T (F ∗gδk
αk

)− yδk‖2 ≤ δ2
k + 2αkΨ(Lg†) and thus

lim
k→∞

T (F ∗gδk
αk

) = y . (5.3)

Moreover, we have Ψ(Lgδk
αk

) ≤ δ2
k/αk(δk) + Ψ(Lg†), which yields

lim sup
k

‖Lgδk
αk
‖`2

(1.4)

≤ lim sup
k

Ψ(Lgδk
αk

) ≤ Ψ(Lg†) , (5.4)

i.e. ‖Lgδk
αk
‖`2 and ‖gδk

αk
‖`2 are bounded, and the sequence has a weakly convergent subsequence,

again denoted by {gδk
αk
},

gδk
αk
⇀ g? . (5.5)

In particular, as T is strongly continuous,

y
(5.3)
= lim

k→∞
T (F ∗gδk

αk
) = T (F ∗g?) ,

and thus g? is a solution of T (F ∗g) = y. By assumption, Ψ is weak semi-continuous, and thus
we derive

Ψ(Lg?) ≤ lim sup
k

Ψ(Lgδk
αk

)
(5.4)

≤ Ψ(Lg†) ≤ Ψ(Lg?) . (5.6)

The last inequality follows from the fact that g† is a solution with minimal value of Ψ(L·). As
a consequence, Ψ(Lg?) = Ψ(Lg†), and g? is also a solution with minimal Ψ-value.
Next, we need to rewrite the absolute value of a real number. Defining

ϕ(x, h) =


−sgn(x) · h if 0 6= sgn(x) = sgn(h) and |x| > |h|
(sgn(x) · h− 2|x|) if 0 6= sgn(x) = sgn(h) and |x| ≤ |h|
|h| if 0 6= sgn(x) = −sgn(h)
|h| if x = 0 ,

(5.7)

we obtain
|x− h| = |x|+ ϕ(x, h) . (5.8)

Setting x = (Lgδk
αk

)j, h = (Lg?)j yields

Ψ(L(gδk
αk
− g?)) =

∑
j

|(Lgδk
αk

)j − (Lg?)j|

=
∑

j

|(Lgδk
αk

)j|+
∑

j

(ϕ((gδk
αk

)j, (g
?)j)

= Ψ(Lgδk
αk

) +
∑

j

(ϕ((gδk
αk

)j, (g
?)j)

(5.6)

≤ Ψ(Lg?) +
∑

j

(ϕ((gδk
αk

)j, (g
?)j) .
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By the definition of ϕ(x, h) in (5.7) follows

|ϕ(x, h)| =


| − sgn(x) · h| ≤ |h| if 0 6= sgn(x) = sgn(h) and |x| > |h|
|sgn(x) · h− 2|x|| ≤ 3|h| if 0 6= sgn(x) = sgn(h) and |x| ≤ |h|
|h| if 0 6= sgn(x) = −sgn(h)
|h| if x = 0 ,

(5.9)

i.e.
|ϕ((gδk

αk
)j, (g

?)j)| ≤ 3|(Lg?)j|

and thus ∑
j

(ϕ((gδk
αk

)j, (g
?)j) ≤ 3

∑
j

|(Lg?)j)| = 3Ψ(Lg?) ,

i.e.
∑

j 3|(Lg?)j)| dominates
∑

j(ϕ((gδk
αk

)j, (g
?)j), and we can interchange limit and sum,

lim
k→∞

∑
j

(ϕ((gδk
αk

)j, (g
?)j) =

∑
j

lim
k→∞

(ϕ((gδk
αk

)j, (g
?)j) (5.10)

As gδk
αk

`2⇀ g?, we have in particular (gδk
αk

)j → (g?)j for k → ∞, and thus (Lgδk
αk

)j → (Lg?)j

for k → ∞. Now assume (Lg?)j 6= 0 for some j. Then there exists k0 s.t. (Lgδk
αk

)j 6= 0 and
sgn((Lgδk

αk
)j) = sgn((Lg?)j) for all k ≥ k0. According to the definition (5.7) of ϕ, we have thus

for k ≥ k0

ϕ((gδk
αk

)j, (g
?)j) =


−sgn((Lgδk

αk
)j) · (Lg?)j = −|(Lg?)j| for |(Lgδk

αk
)j| > |(Lg?)j|

sgn((Lgδk
αk

)j) · (Lg?)j)− 2|(Lgδk
αk

)j| = |(Lg?)j| − 2|(Lgδk
αk

)j|

for |(Lgδk
αk

)j| > |(Lg?)j|

and thus
lim
k→∞

ϕ((gδk
αk

)j, (g
?)j) = −|(Lg?)j| .

Consequently,

0 ≤ lim
k→∞

Ψ(L(gδk
αk
− g?)) ≤ Ψ(Lg?) + lim

k→∞

∑
j

(ϕ((gδk
αk

)j, (g
?)j)

= Ψ(Lg?) +
∑

j

lim
k→∞

(ϕ((gδk
αk

)j, (g
?)j) = Ψ(Lg?)−

∑
j

|(Lg?)j| = 0 ,

which proves gδk
αk
→ g? with respect to Ψ and, because of (1.4), also with respect to `2. If g? is

unique, our assertion about the convergence of gδ
α(δ) follows by the convergence principles from

the fact that every sequence has a convergent subsequence with the same limit g†.
�
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We wish to remark that uniqueness can only be expected in the basis setting. In a frame
lore, every function has several representations with respect to the given frame, and thus the
minimizer cannot be unique.

We finally summarize our proposed scheme: Assume that all the conditions we have imposed
in the previous sections apply to our problem and, moreover, assume we have a parameter rule
at hand that fulfills the conditions of Theorem 20. Then the regularization algorithm (at least
for the `1 case) goes as follows:

• For given error level δ, pick a regularization parameter according to the conditions of
Theorem 20, and choose g0

• pick an admissible C

• [g?
α] = Iteration(T , yδ, C, α, g0):

gk+1 = arg min
g
Js

α(g, gk) (solved by a projected fixed point iteration)

g?
α = lim

k→∞
gk

end

In practice (treatment of limits), we have to incorporate stopping rules that will slightly modify
this scheme:

• For given error level δ, pick a regularization parameter according to the conditions of
Theorem 20, and choose g0

• choose two tolerances τ1, τ2

• pick an admissible C

• [g?
α] = Iteration(T , yδ, C, α, τ1, τ2)

k = 0
while ‖gk+1 − gk‖`2 > τ1

l = 0, gk,0 = gk

while ‖gk,l − gk,l+1‖`2 > τ2
l = l + 1
gk,l = Φα,C(gk,l−1, gk)
end

gk+1 = gk,l

k = k + 1
end

• g?
α = gk
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Figure 1: Activity function f∗ (left) and attenuation function µ∗ (right). The activity function
models a cut through the heart.
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Figure 2: Generated data g(s, ω) = R(f∗, µ∗)(s, ω).

6 Numerical Illustration

In this section, we want to present some first numerical results of a sparse reconstruction
from SPECT (Single Photon Emission Computed Tomography). SPECT is a medical imaging
technique where one aims to reconstruct a radioactivity distribution f from radiation measure-
ments outside the body. The measurements are described by the attenuated Radon transform
(ATRT)

y = R(f, µ)(s, ω) =

∫
R
f(sω⊥ + tω)e−

R∞
t µ(sω⊥+rω)drdt . (6.1)

As the measurements depend on the (usually also unknown) density distribution µ of the
tissue, we have to solve a nonlinear problem in (f, µ). An throughout analysis of the nonlinear
ATRT was presented by Dicken [11], and several approaches for its solution were proposed in
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[2, 12, 24, 25, 20, 17, 18, 19]. If the ATRT operator is considered with

D(R) = Hs1
0 (Ω)×Hs2

0 (Ω) ,

where Hs
0(Ω) denotes a Sobolev space over a bounded area Ω with zero boundary conditions

and smoothness s, then the operator is twice continuous Frèchet differentiable with Lipschitz
continuous first derivative, if s1, s2 are chosen large enough. A possible choice for these pa-
rameters that also reflects the smoothness properties of activity and density distribution is
s1 > 4/9 and s2 = 1/3. For more details we refer to [18, 10]. Additionally, it has been shown
that conditions (1.6), (1.8) hold [16]. For our test computations, we will use the so called
MCAT – phantom [23], see Figure 1. Both functions were given as 80× 80 pixel images. The
sinogram data was gathered on 79 angles, equally spaced over 360 degree, and 80 samples. The
sinogram belonging to the MCAT phantom is shown in Figure 2. At first, we have to choose the
underlaying frame or basis on which we put the sparsity constraint. Since a wavelet expansion
might sparsely represent images/functions (better than pixel basis), we have chosen a wavelet
basis (here Daubechies wavelets of order two) to represent (f, µ), i.e.

(f, µ) =

(∑
k

c(f)kφ0,k +
∑

j≥0,i,k

d(f)i
j,kψ

i
j,k ,

∑
k

c(µ)kφ0,k +
∑

j≥0,i,k

d(µ)i
j,kψ

i
j,k

)
.

For more details we refer the reader to [6]. Moreover, for our implementation we have chosen
L = I, i.e. the penalty is given by Ψ(·) = ‖ · ‖`1 . Our algorithm requires to pick values τ1, τ2
for the termination of the inner and outer iteration. In our implementation, the inner iteration
was stopped if the relative error was smaller than 10−6, i.e.

(‖fk,l − fk,l+1‖2 + ‖µk,l − µk,l+1‖2)
1/2

(‖fk,l‖2 + ‖µk,l‖2)1/2
≤ 10−6 .

For the outer iteration, a relative error of 10−5 was used. The convergence speed of the iteration
depends heavily on the choice of the constant C in (1.5). According to our convergence analysis,
it has to be chosen reasonably large. However, a large C speeds up the convergence of the inner
iteration, but decreases the speed of convergence of the outer iteration. In our example, we
needed only 2-4 inner iteration, but the outer iteration required about 5000 iterations. As the
minimiztion in the quadratic case needed much less iterations, this suggests that the speed of
convergence also increases with p.

According to (1.4), the functional Ψ will always have a bigger value than ‖ · ‖`2 . If Ψ(g) is
not to large, then it will also dominate ‖g‖2

`2
, which also represents the classical L2−norm, and

we might conclude that reconstructions with the classical quadratic Hilbert space constraint
and sparsity constraint will not give comparable results if the same regularization parameter
is used. As Ψ is dominant, we expect a smaller (optimal) regularization parameter in the case
of the penalty term Ψ. This is confirmed by our first test computations: Figure 3 shows the
reconstructions from noisy data where the regularization parameter was chosen as α = 350.
The reconstruction with the quadratic Hilbert space penalty (we have used the L2 norm) is
already quite good, whereas the reconstruction for the sparsity constraint is still far off. In
fact, if we consider Morozov’s discrepancy principle, then the regularization parameter in the
quadratic case has been chosen optimal, as we observe

‖yδ − A(f δ
α, µ

δ
α)‖ ≈ 2δ .
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Figure 3: Reconstructions with 5% noise and α = 350: sparsity constraint (left) and Hilbert
space constraint (right).

To obtain a reasonable basis for comparison, we adjusted the regularization parameter α such
that the residual had also a magnitude of 2δ in the sparsity case, which occurred for α = 5 .
The reconstruction can be seen in Figure 4

A visual inspection shows that the reconstruction with sparsity constraint yields much
sharper contours. In particular, the absolute values of f in the heart are higher in the sparsity
case, and the artefacts are not as bad as in the quadratic constraint case, as can be seen in
Figure 5. It shows a plot of the values of the activity function for both reconstructions along a
row in the image in Figures 3 and 4 respectively. The left graph shows the values at a line that
goes through the heart, and right graph shows the values along a line well outside the heart,
where only artefacts occur. Clearly, both reconstructions are different, but it certainly needs
much more computations in order to decide in which situations a sparsity constraint has to
be preferred. A histogram plot of the wavelet coefficients for both reconstructions shows that
the reconstruction with sparsity constraint has much more small coefficients - it is, as we did
expect, a sparse reconstruction, see Figure 6.
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