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Abstract

The primary goal of this thesis is to develop new iterative concepts for solving linear and
nonlinear operator equations in its variational form. The basic novel ingredients are multi
frames and mixed sparsity and smoothness constraints. The secondary goal consists of
elaborating special properties of the schemes and applying them in the context of image
and signal processing, inverse problems, harmonic analysis and machine learning.

Zusammenfassung

Der Hauptzweck dieser Arbeit besteht in der Entwicklung neuer iterativer Konzepte zur
Lösung linearer und nichtlinearer Operatorgleichungen. Die Neuheit zeichnet sich dadurch
aus, dass in der Variationsformulierung der Aufgabe gemischte Randbedingungen be-
trachtet und Multi Frames eingesetzt werden. Darüber hinaus werden Eigenschaften der
entwickelten Verfahren analysiert und die Methoden dann in Bereichen wie Bild und
Signalverarbeitung, Inverse Probleme, Harmonischer Analysis und Lern- bzw. Klassifika-
tionsmaschinen angewendet.
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Chapter 1

Introduction

New and promizing developments especially in applied mathematics are made by
merging theories and applications of surrounding areas. Quite recently, first progress
was made while bringing together aspects from operator equations, inverse problems,
harmonic analysis, frame theory, convex and non-convex analysis etc. The merging
of these building blocks from several areas is often caused by and has impact in
many important applications like medicine, physics, astrophysics, machine learning,
and in the wide range of image and signal processing. Naturally, one is faced with
a variety of novel and very interesting mathematical questions, e.g. how to solve
an operator equation by means of frames, or how to solve the problem when being
restricted to certain ‘non-classical’ constraints. A related but more applied question
in this context might be: how to build sparse and fast variants of support vector machines.

In this thesis we shall mainly consider the following situation: given a linear or nonlin-
ear operator equation being potentially ill-posed. Basically, our first step is to find some
feasible way of rewriting the problem in its variational form. Furthermore, involving cer-
tain properties on the solution to be approximated we answer the question what is a
proper analytical and a numerically thrifty way for solving the ‘restricted’ variational for-
mulation. The novelty of this thesis is that we chose the concept of surrogate functionals
for recasting the problem and for discretizing we develop the concept of multi frames, i.e.
we abstain from preselecting a particular basis. Instead we allow highly redundant dictio-
naries of frames. This assures sort of ‘optimal’ approximation of the solution. Moreover,
we involve constraints, e.g. a mixture of smoothness and sparsity, that are beyond clas-
sical theories. In particular, we consider multi constraints of non-quadratic functionals.
These two new ingredients in combination with the nonlinearity of the operator equation
under consideration extend the classical known theory substantially. The capabilities of
the resulting strategies are demonstrated in diverse applications. Moreover, from the
point of view of inverse problems, we ask of course also for additional very important
features such as convergence and regularization properties of the constructed schemes.

In a nutshell: the primary goal of this thesis is to develop numerical schemes
for solving linear and nonlinear operator equations whereas the secondary goal con-
sists of elaborating special properties of the schemes and applying all in the context
of image and signal processing, inverse problems, harmonic analysis and machine learning.

11
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We are especially interested in mathematical problems where the features or signals
of interest cannot be observed directly, but have to be interfered from other observable
quantities. At least, one may find some nonlinear relationship between the feature mod-
eled by a function v, and the derived quantities modeled by another function z such that
we may formulate the problem by an operator equation

F (v) = z .

Such a problem makes only sense when everything in placed in an adequate setting.
Often, when dealing with real data, the observation f are not exactly equal to z, but a
distortion of z. In this situation, we classify the problem ill-posed if the solution of the
problem does not depend continuously on the observations. In such an ill-posed case the
solution might differ substantially from the searched quantity, even if there was only a
little distortion in the data z. In order to stabilize or to circumvent these effects, one has
to use so-called regularization concepts. In linear and nonlinear lore, there still exists a
number of methods, e.g. Tikhonov regularization and iterative strategies like Landweber
methods, Levenberg-Marquardt methods, Gauss-Newton, conjugate gradients etc, that
are regularization schemes for this kind of problems, see e.g. [Lan51, Sch98, EHN96a,
Han95, Ram]. The computation of a minimizer of the Tikhonov functional with some
quadratic constraint

Φ(v) = ‖f − F (v)‖2 + α‖v‖2

is difficult due to the nonlinearity of the operator. Contrary to the linear case where the
functional is convex and the minimizer can be computed via

v = (F ∗F + αI)−1F ∗f ,

the Tikhonov functional for the nonlinear case is non-convex and might thus have several
local minimizers, and the results of the minimization routines might strongly depend
on the initial guess. As still mentioned, alternatively to Tikhonov strategies one may
also use iterative concepts which produce an approximation of the solution within each
iteration step. In the ill-posed situation, the iteration has to be terminated adequately.
The stopping index plays then the role of the regularization parameter. However, to show
for iterative schemes convergence rates and regularization properties is more difficult than
for Tikhonov based concepts. Nevertheless, since iterative techniques are usually not too
difficult to perform, they are mostly used for many applications in the range of inverse
problems as well as in image and signal processing.

Quite recently, a first bridging between Tikhonov functionals and Landweber-like iter-
ations was established in [DDD04]. For some linear operator F , functionals of the form

Φ(v) = ‖f − F (v)‖2 + α‖v‖p
`p,w

are considered. Applying methods from surrogate variational calculus, the minimization
amounts to a Landweber iteration with some ‘general’ shrinkage operation applied in each
iteration step,

vk+1 = Sα,w(vk + F ∗(f − Fvk)) .
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In the quadratic case (p = 2) this is nothing than a classical damped Landweber iteration,
i.e. starting with some Tikhonov functional, a version of Landwebers iteration is con-
structed. This may allow for p = 2 in some sense a dual consideration of regularization
results for Tikhonov and Landweber methods.

Grabbing now the vision and the spine of [DDD04], one may ask the following natural
questions which we aim to answer in this thesis at hand:

• Why not represent the solution of the linear problem by multi frames instead of
using some preselected basis ?

This makes sense when searching for an ‘optimal’ representations of the solution, e.g.
searching for the sparsest representation. Motivations in this direction are given by
recent developments in approximation theory using highly redundant dictionaries
of atoms.

• When dealing with multi frames, what about a mixing of constraints on the
individual frame coefficients ?

Developments in convex and non-convex analysis provide certain tools that seem to
be promizing for treating penalties that are beyond the quadratic ones.

• Main question: Is there a natural way to extend the whole machinery to nonlinear
operator equations ?

Typically, most of the practical problems are modeled by some nonlinear relation-
ship. This requires totally new concepts in order to involve the operator under con-
sideration in its full nonlinearity. Our approach provides new methods to solve such
problems. Moreover, we may allow the solution to have a ‘mixed’ (sparse and/or
smooth) representation by means of atoms coming from a multi frame dictionary.

• What about numerical improvements by involving adaptive strategies ?

Recent progress, see e.g. [Ste03], for solving operator equations by means of frames
in an adaptive framework suggests a possible strategy on how to proceed for varia-
tional problems considered here. In this thesis we do not focus on precise elabora-
tions on that topic but we want to sketch some ideas.

The organization of the thesis follows these questions and is essentially based on seven
papers:

Summary Chapter 2. In this chapter we are concerned with linear inverse problems where
the solution is assumed to have sparse and/or smooth expansion with respect to several
bases or frames. We develop a regularization scheme which is sort of Landweber iteration
with specific frame–wise `p–thresholding in each step. The work was mainly inspired and
driven by discussions on audio coding with B. Torrésani, see also [MT05, JT05], and uses
technical concepts for linear inverse problems with sparsity constraints, see [DDD04], ac-
quired during my sabbatical at Princeton University where I worked with I. Daubechies



14 CHAPTER 1. INTRODUCTION

on related problems. The results shown here are published in [Tes05b].

Summary Chapter 3. The theory for linear problems elaborated in the previous Chapter
2 will here be applied in several fields, such as audio and image coding, published in
[Tes05b], image decomposition and restoration problems (texture analysis), published in
[DT04, DT05], and finally, for speeding–up Reduced Support Vector Machines, published
in [RRTV05].

Summary Chapter 4. This chapter is devoted to the main question: development of
schemes for nonlinear problems, and is split in two sections. In the first Section 4.1, we
are interested in algorithms for the computation of a minimizer of the associated non-
convex Tikhonov functional. Basically, as in the Chapter 2, we aim to use the techniques
of surrogate functionals but now in order to introduce convex replacement functionals
that are better suited as the non-convex one and where the sequence of the minimizers
converge to a minimizer of the original problem. Moreover, assuming certain smoothness
conditions on the problem we may state regularization properties. This theory was de-
veloped in collaboration with R. Ramlau and is published in [RT04].
The second Section 4.2 is concerned with nonlinear inverse problems where the solution,
as in Chapter 2, is assumed to have a sparse expansion with respect to several preas-
signed bases or frames. We develop a new scheme which allows to minimize a non-convex
Tikhonov functional where the usual quadratic regularization term is replaced by a one–
homogeneous (typically weighted `p) penalties on the coefficients (or isometrically trans-
formed coefficients) of such multi–frame expansions. The computation of the solution
amounts in this setting to a system of Landweber–fixed–point iterations with projections
(`p–thresholding) applied in each fixed–point iteration step. The here presented theory is
published in [Tes05c].

Summary Chapter 5. Within this chapter we apply the theory for nonlinear problems
established in Sections 4.1 and 4.2 to the analysis of Single Photon Emission Computer-
ized Tomography (SPECT), the construction of optimally localized coherent states, image
decomposition tasks, and to support vector machines. In the first two sections, we want
to apply the machinery developed in the sections 4.1. The aim is to demonstrate the
capabilities and the performance of our algorithm in solving a full nonlinear ill–posed
SPECT problem. Moreover, we shall see that also the computation of optimally localized
states is an example where the elaborated scheme of Section 4.1 can be usefully applied.
We are concerned with localization properties of coherent states. Instead of looking in
the context of classical uncertainty relations we consider more ‘generalized’ localization
quantities. This is done by introducing measures on the reproducing kernel. Beside
proving the existence of such optimally localized states, we shall see that the numerical
computation (approximation) fits into the class of variational problems with quadratic
constraints. The results written up here are published in [HT05]. In section three and
four of this chapter we apply the concepts developed in Section 4.2. At first, we apply
the techniques to nonlinear image deformation problems (which is somehow artificial but
for illustrating purposes well suited). Secondly, we consider as in Section 3.3 the problem
of accelerating support vector machines but we discuss here the full nonlinear problem,
i.e. simultaneously reducing the number of set vectors and sparsely approximating them.
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Summary Chapter 6. The last chapter is devoted to adaptivity. We briefly sketch on
how adaptivity can be incorporated in the presented iteration schemes. Firstly, based
on [Ste03], we review recently developed frame techniques for operator equations. The
iteration methods mentioned there turn out to be Landweber iterations which are under
consideration in this thesis. We discuss in brief the relations and possible extensions.
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Chapter 2

Linear Operator Equations and
Iterative Concepts

2.1 Preliminaries

Recent studies in the field of signal processing and inverse problems have shown the im-
portance of sparse representations for various tasks, such as signal compression, denoising
etc. Typically, such sparse representations are achieved by using a suitable orthonormal
basis in the underlying function space. However, recent developments also indicate that
redundant systems, such as frames, or dictionaries of ‘waveform’ systems may yield a gain
in this context.

When dealing with dictionaries of ‘waveform’ systems, there exist several methods, e.g.
best orthogonal basis, matching pursuit, basis pursuit etc., see, e.g., [CDS95], that allow
a decomposition of a signal into an ‘optimal’ superposition of dictionary elements, where
optimal means having the smallest `1 norm of coefficients among all such decompositions.
At least basis pursuit in highly over-complete dictionaries leads to very large scale op-
timization problems (but can be attacked by linear programming, i.e. by interior-point
methods).

In this chapter we develop a new iterative method for finding the `p–optimal decom-
position (1 ≤ p ≤ 2) of a given signal into dictionary building blocks. The skeletal idea of
this scheme was originally discovered for solving linear inverse problems with one sparsity
constraint, see [DDD04]. But instead of preselecting one orthonormal basis or frame only,
we typically assume that the signal might be a superposition n different components and
thus, we pick a dictionary consisting of a family of n frames. Moreover, we combine this
with an inverse problem, namely assuming that we have not observed the signal directly,
but only other quantities that are linearly related to the signal.

The advantage of the proposed method is that for achieving convergence of the itera-
tion process, we do not need to require any further assumptions on the preselected family
of frames (e.g. such as incoherence). Moreover, since each individual frame is sepa-
rately penalized we may mix the constraints, i.e. the penalties may vary from `1–sparsity
to `2–quadratic smoothness constraints. A similar attempt where mixed (sparsity and
smoothness) constraints were used was made, e.g., in [DT04, DT05, DD04a], but these
approaches involve one single basis/frame only.

17
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The remaining chapter is organized follows: at first, we review a few facts on frames,
linear inverse problems and constraints. Then, in Section 2.2, we present the main result,
which is the introduction of what we call the multi–frame concept, the resulting variational
problem, its minimization, the convergence and the stability analysis.

2.1.1 Frames

A frame {φλ}λ∈Λ in a Hilbert space H is a set of vectors for which there exists constants
A,B > 0 such that, for all v ∈ H,

A‖v‖2
H ≤

∑
λ∈Λ

|〈v, φλ〉H|2 ≤ B‖v‖2
H ,

see for the roots of frames [DS52]. Frames are typically ‘over-complete’, i.e. for a given
vector v ∈ H, one can find many different sequences g ∈ `2 of coefficients so that

v =
∑
λ∈Λ

gλφλ. (2.1.1)

A few of them have special properties for which they are preferred, e.g. a sequence with
minimal `2 norm. The problem of finding sequences g can be considered as an inverse
problem. To this end, let us consider the operator F (often called the frame operator)
that maps a function v ∈ H to the element Fv of `2 by Fv = {〈v, φλ〉H}λ∈Λ. The adjoint
F ∗ maps a sequence g ∈ `2 to the element F ∗g of H via F ∗g =

∑
λ∈Λ gλφλ, i.e. solving

(2.1.1) amounts to solving F ∗g = v. In order to show how to solve the last equation and
to highlight the relation to standard frame lore, we observe that, for v ∈ H, one has

F ∗Fv =
∑
λ∈Λ

〈v, φλ〉Hφλ ;

for g ∈ `2, the sequence FF ∗g is given by

(FF ∗g)η =
∑
λ∈Λ

gλ〈φλ, φη〉H .

In this context, the sequence g of minimum `2-norm satisfying (2.1.1) is given by g† =
(F ∗)†v. Standard frame concepts suggest g† = F (F ∗F )−1v, so that (F ∗)† = F (F ∗F )−1 in
this case. The latter equation holds true since this inverse problem is well-posed: even
though N (F ∗) 6= {0}, the operator F ∗F has its spectrum completely within the interval
[A,B]. The spectrum of the operator FF ∗ has a gap between the eigenvalue 0 and the
remainder of the spectrum, which is contained in [A,B] (the operator FF ∗ becomes only
invertible if the frame satisfies special properties, e.g. if {φλ}λ∈Λ forms a Riesz basis for
H). The relation between F ∗F and FF ∗ is now as follows: since F ∗F is invertible, every
v ∈ H has expansions

v =
∑
λ∈Λ

〈v, (F ∗F )−1φλ〉Hφλ =
∑
λ∈Λ

〈v, φλ〉H(F ∗F )−1φλ.
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These expansions are only useful if it is possible to calculate (F ∗F )−1φλ (the so-called
‘canonical’ dual frame). Often it is convenient (and also more efficient) to employ an
iterative reconstruction method, which is usually called the frame algorithm: given a
relaxation parameter 0 < γ < 2/B, set δ = max{|1− γA|, |1− γB|} < 1. Let v0 = 0 and
define the iteration

vm+1 = vm + γF ∗F (v − vm) ,

for which ‖v− vm‖H ≤ δm‖v‖H. Let us now rewrite the frame algorithm (based on F ∗F )
by means of the Gram matrix (FF ∗)λ,η = 〈φλ, φη〉H. Suppose that vm =

∑
λ∈Λ(gm)λφλ

with coefficient sequence gm. Then

gm+1 = gm + γF (v − F ∗gm) (2.1.2)

since the coefficients of v1 = γF ∗Fv are γ〈v, φλ〉H and since

F ∗Fvm =
∑
η∈Λ

〈
∑
λ∈Λ

(gm)λφλ, φη〉φη =
∑
η∈Λ

(FF ∗gm)η φη .

Iteration (2.1.2) is nothing than a Landweber iteration, which is a linear regular-
ization scheme (assumed 0 < γ < 2/‖F ∗‖2) and minimizes the discrepancy ‖v −
F ∗g‖2

H. Consequently, the iterates of (2.1.2) approximate the minimum `2-norm sequence
{〈v, (F ∗F )−1φλ〉H}λ∈Λ.

It is now often of interest to find sequences that are sparser than the minimum `2-
norm solution. For instance, one may know a priori that v is a noisy version of a linear
combination of φλ with a coefficient sequence with small `p-norm (p = 1 or, more general,
1 ≤ p ≤ 2). In this situation, it makes sense to compute some g that minimizes

‖v − F ∗g‖2
H + α‖g‖p

`p
.

For p = 2, a possible way to approach the minimizer for the last problem is given by
damped Landweber iterations (for ‖F‖2 < B′)

gm+1 =
1

B′ + α
(B′gm + F (v − F ∗gm)) ;

and for p = 1, by Landweber iterations with shrinkage operation in each step

gm+1 = S α
2B′

(
gm + (B′)−1F (v − F ∗gm)

)
.

2.1.2 Linear Problems

We abstain from introducing all the basic facts of linear inverse problems in its full com-
pleteness. We restrict ourselves to the facts that are really under consideration here and
would rather refer the reader to the abundant literature concerned with this topic, e.g.,
[EHN96b, Kre89, Lou89] and many more.

As we have seen in the last section, the approximation of the dual frame (F ∗F )−1φλ or
of the sequence {〈v, (F ∗F )−1φλ〉H}λ∈Λ can be directly related to solving a linear inverse
problem in its variational form. However, in many applications, the features or signals
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of interest cannot be observed directly, but have to be inferred from other, observable
quantities. Very often, there is a linear relationship between the feature modeled by a
function v, and the derived quantities modeled by another function z, i.e. we can write
the problem of inferring v from z as

Av = z .

This equation and the task of solving it makes only sense when everything is placed in an
adequate setting. The observations (data), which we shall model by yet another function,
f , are typically not exactly equal to z = Av, but a distortion of z. Often the distortion is
modeled by an additive noise error term e (from which one typically assumes that it can
be measured by its L2-norm),

f = z + e = Av + e .

Therefore it is customary to take as the image space L2; even if the true images z lie in a
much smaller space. Thus, we shall always assume that A is a bounded operator from H
to H′ (think of H′ = L2). To find an estimate for v from observed f , one can minimize
the discrepancy

‖f − Av‖2
H′ .

The minimizer of the discrepancy is called the pseudo-solution of the inverse problem.
If A has a trivial null-space, the unique minimizer is given by (A∗A)−1A∗f ; if the null-
space is non-trivial, one picks the unique element z† of minimum norm. This function is
called the generalized solution. Even when A∗A is not invertible, z† = A†f is well-defined
for all f with A∗f ∈ R(A∗A). But the generalized inverse may be unbounded, then
the problem is ill-posed. In such cases, it has to be replaced by bounded approximants,
so that numerically stable solutions can be used as meaningful approximant. This is the
goal of regularization. A regularized version in its variational form, the so-called Tikhonov
functional, is given by

‖f − Av‖2
H′ + α‖v‖2

H .

Let us now put the frame concept and regularization theory together, i.e. given an
observation f , the task is to search for a sequence g of dual frame coefficients for our
feature v. The variational problem of this inverse problems then takes the form

Φ(g) = ‖f − AF ∗g‖2
H′ + α‖g‖p

`p
, (2.1.3)

where we allow 1 ≤ p ≤ 2; the cases p < 2 promote sparse representations of v (typically
one would pick p = 1). This kind of variational problem can be solved by applying the
results and methods presented in [DDD04].

2.1.3 Smoothness, Sparsity, and other Constraints

In this section, we briefly recall some facts on wavelets and their capabilities for the
characterization of smoothness spaces, i.e. for so-called Besov spaces (note that certain
scales of norms or semi-norms of Besov spaces can also be seen as sparsity measures).
Moreover, we shortly explain how frames may characterizes smoothness spaces.
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Wavelets and Besov Scales

Especially important for our approaches are the smoothness characterization properties of
wavelets: one can determine the membership of a function in many different smoothness
functional spaces by examining the decay properties of its wavelets coefficients. For a
comprehensive introduction and overview on this topic we would refer the reader to the
abundant literature, see e.g. [Dau92, Dau93, CDF92, Dah96, DJP92, DJP88, FJ90, Tri78].

Suppose H is a Hilbert space. Let {Vj} be a sequence of closed nested subspaces of
H whose union is dense in H while their intersection is zero. In addition, V0 is shift–
invariant and f ∈ Vj ↔ f(2j·) ∈ V0, so that the sequence {Vj} forms a multi-resolution
analysis. In many cases of practical relevance the spaces Vj are spanned by single scale
bases Φj = {φj,k : k ∈ Ij} which are uniformly stable. Successively updating a current
approximation in Vj to a better one in Vj+1 can be facilitated if stable bases Ψj = {ψj,k :
k ∈ Jj} for some complement Wj of Vj in Vj+1 are available. Hence, any fn ∈ Vn has
an alternative multi-scale representation fn =

∑
k∈I0

f0,kφ0,k +
∑n

j=0

∑
k∈Jj

fj,kψj,k. The

essential constraint on the choice of Wj is that Ψ =
⋃

j Ψj forms a Riesz-basis of H, i.e.
every f ∈ H has a unique expansion

f =
∑

j

∑
k∈Jj

〈f, ψ̃j,k〉ψj,k such that ‖f‖H ∼

∑
j

∑
k∈Jj

|〈f, ψ̃j,k〉|2
 1

2

, (2.1.4)

where Ψ̃ forms a bi-orthogonal system and is in fact also a Riesz-basis for H, see, e.g.,
[Dau92].

For our approach we assume that any function (image) f ∈ L2(I) can be extended
periodically to all of R2. Here I is assumed to be the unit square (0, 1]2 = Ω. Throughout
this paper we only consider compactly supported tensor product wavelet systems (based
on Daubechies’ orthogonal wavelets, see [Dau93], or symmetric bi-orthogonal wavelets by
Cohen, Daubechies, and Feauveau, see [CDF92]).

We are finally interested in characterizations of Besov spaces, see, e.g., [Tri78]. For
β > 0 and 0 < p, q ≤ ∞ the Besov space Bβ

q (Lp(Ω)) of order β is the set of functions

Bβ
q (Lp(Ω)) = {f ∈ Lp(Ω) : |f |Bβ

q (Lp(Ω)) <∞} ,

where |f |Bβ
q (Lp(Ω)) =

(∫∞
0

(t−βωl(f ; t)p)
qdt/t

)1/q
and ωl denotes the l-th modulus of smooth-

ness, l > β. These spaces are endowed with the norm ‖f‖Bβ
q (Lp(Ω)) = ‖f‖Lp(Ω)+|f |Bβ

q (Lp(Ω)).

(For p < 1, this is not a norm, strictly speaking, and the Besov spaces are complete topo-
logical vector spaces but no longer Banach spaces, see [DeV98] for details, including the
characterization of these spaces by wavelets.) What is important to us is that one can
determine whether a function is in Bβ

q (Lp(Ω)) simply by examining its wavelet coeffi-
cients. The case p = q, on which we shall focus, is the easiest. Suppose that φ has
R continuous derivatives and ψ has vanishing moments of order M . Then, as long as
β < min(R,M), one has in, two dimensions, for all f ∈ Bβ

p (Lp(Ω)), the following norm
equivalence (denoted by ∼)

|f |Bβ
p (Lp(Ω)) ∼

(∑
λ

2|λ|sp|fλ|p
)1/p

with fλ := 〈f, ψ̃λ〉, s = β+1−2/p and |λ| = j. (2.1.5)



22CHAPTER 2. LINEAR OPERATOR EQUATIONS AND ITERATIVE CONCEPTS

In what follows, we shall always use the equivalent weighted `p–norm of the {fλ} instead
of the standard Besov norm; with a slight abuse of notation we shall continue to denote
it by the same symbol, however. When p = q = 2, the space Bβ

2 (L2(Ω)) is the Bessel
potential space Hβ(Ω). In analogy with the special case of Bessel potential spaces Hβ(Ω),

the Besov space Bβ
p (Lp(Ω)) with β < 0 can be viewed as the dual space of Bβ′

p′ (Lp′(Ω)),
where β′ = −β and 1/p+ 1/p′ = 1.

Characterizations by Frames

Not only wavelet bases provide reasonable characterizations of function spaces but also
frame based characterizations are possible. First basics on frames were introduced in
Section 2.1.1. Here we just want to give an idea on how frames might characterize function
spaces.

Fundamental developments on modern frame theory can be found in a series of papers
[H.G86, HK88, HK89a, HK89b, HK92]. This very aesthetic and subtle theory is essentially
based on group theory and is a tool to construct so–called coorbit spaces which are defined
by collecting all functions for which the associated wavelet transform is contained in some
(weighted) Lp–space (which can be seen as Besov- and Modulation spaces etc). The basic
idea of characterizations is that for a judicious discretization of the group representation
one may obtain desired frames for these coorbit spaces. Once we have frames for these
coorbit spaces at hand, we might pick the associated coefficient sequence space norm in
order to add adequate constraints to our variational formulation of the inverse problem.
At this point we wish to remark, that frames offer much more freedom in sense that one
is no longer restricted to the whole Euclidean plane. In recently published papers, see
[DST04a, DST04b], we have extended the group based frame concept to bounded domains
and manifolds (e.g. the sphere) which offers especially for certain inverse problems a much
better suited representation of the solution. Because of the complexity of the construction
process of frames, the related coorbit spaces and sequence space characterizations, we
abstain from a detailed review and refer the reader to [DST04a, DST04b]. The essential
message is that involving constraints that are typically given by weighted frame coefficient
sequence space norms is allowed and naturally suggests the usage of adequate (families of)
frames. Adequate frame means here a judiciously discretized family of analyzing atoms.

2.2 Multi–Frames and Mixed Constraints

Instead of using one single frame only, we aim now to represent the function we are
searching for by means of several frames. This makes sense since for certain classes of
signals it often seems that one single frame is not always best suited (in the sense of
locally best sparse approximation).

2.2.1 Formulation of the Variational Problem

LetH andH′ as before. The suggested multi–frame setting requires the presence of a finite
family of frames {φi

λ}λ∈Λ,i∈I where each individual collection {φi
λ}λ∈Λ (i = 1, 2, . . . , n) is
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a frame for H. For each frame we have the frame operator

Fi : H → `2, via v 7→ vi := {〈v, φi
λ〉}λ∈Λi

. (2.2.1)

All the frame operators may now be related by considering the following composition
operator

K : (`2)
n = `2 × . . .× `2 → H, via (v1, . . . , vn) 7→

n∑
i=1

F ∗
i v

i (2.2.2)

or more general, if we additionally involve a linear inverse problem by some bounded
linear operator A : H → H′

KA : (`2)
n = `2 × . . .× `2 → H′, via (v1, . . . , vn) 7→

n∑
i=1

AF ∗
i v

i . (2.2.3)

For later use have to compute the adjoint and a bound for the operator norm of KA.

Lemma 2.2.1 The adjoint operator is given by

K∗
A : H′ 7→ (`2)

n, via g 7→ K∗
Ag = (F1A

∗g, . . . , FnA
∗g) . (2.2.4)

Moreover, if we assume that ‖A‖ < C̃ and that Bi denotes the upper frame bound for Fi,
then

‖KA‖ < C̃
√
B1 + . . .+Bn. (2.2.5)

Proof. First, we note that the Hilbert space (`2)
n is endowed with the scalar

〈g, h〉(`2)n = 〈g1, h1〉`2 + . . .+ 〈gn, hn〉`2

and thus the associated norm is given by

‖g‖2
(`2)n = ‖g1‖2

`2
+ . . .+ ‖g2‖2

`2
.

For f = (f 1, . . . , fn) ∈ (`2)
n and h ∈ H′ the adjoint operator (2.2.4) can now be easily

derived:

〈KAf, h〉H′ =
n∑

i=1

〈AF ∗
i f

i, h〉H′ =
n∑

i=1

〈f i, FiA
∗h〉`2

= 〈f, (F1A
∗h, . . . , FnA

∗h)〉(`2)n = 〈f,K∗
Ah)〉(`2)n

and bound (2.2.5) follows then directly by

‖K∗
Af‖2

(`2)n = ‖F1A
∗f‖2

`2
+ . . .+ ‖FnA

∗f‖2
`2

≤ ‖F1‖2‖A‖2‖f‖2
H + . . .+ ‖Fn‖2‖A‖2‖f‖2

H ,

i.e.
‖KA‖ < C̃

√
B1 + . . .+Bn .

�
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With this specific operator KA we may now formulate the following variational problem

Φ(g) := ‖f −KAg‖2
H′ + α · |||g||| , (2.2.6)

where g = (g1, . . . , gn), |||g||| := (|g1|p1,w1 , . . . , |gn|pn,wn) with | · |pi,wi
denoting a weighted

`pi
(semi)-norm, and α = (α1, . . . , αn) represent n positive regularization parameters.

In principle, we restrict ourselves also to 1 ≤ pi ≤ 2 with not necessarily requiring
pi = pj. Thus Φ is in principal no longer homogeneous and this complicates the choice of α.

A strategy for solving this kind of problem for n = 1, 1 ≤ p1 ≤ 2 and {φλ}λ∈Λ being a
basis (also concepts for frames) is shown in [DDD04], for n = 2, concepts are suggested
in [DT04, DT05, DD04a]. For our purposes, we will follow the techniques introduced
there but the specialty here is that each component gi of g is represented by another
frame, i.e. we are searching for an approximation of v which is a composition of different
frames (or different bases).

In what follows, we propose a strategy how compute or to approximate the vector of
sequences, g. First, we show that Φ is a convex functional. For general frame systems one
cannot expect uniqueness (or strict convexity) since in principal we have ker(F ∗

i ) 6= {0},
i.e. even when N (A) = {0} we have no chance.

Lemma 2.2.2 The functional Φ is convex.

Proof. Consider g = (g1, . . . , gn) ∈ (`2)
n and h = (h1, . . . , hn) ∈ (`2)

n and some τ ∈ (0, 1).
Then,

∆ = Φ(τg + (1− τ)h)− τΦ(g)− (1− τ)Φ(h)

= −τ(1− τ)‖KAg −KAh‖2
H′ + α · (|||τg + (1− τ)h||| − τ |||g||| − (1− τ)|||h|||) .

The second term is non-positive since a Banach (semi) norm is convex, and the first term
is also non-positive. Consequently, ∆ ≤ 0 and Φ is convex. �

The next step is to construct a surrogate or so-called replacement functional for Φ from
which we expect a simplification of the minimization process. The overall goal is to avoid
the appearance of ‖KAg‖2

H′ which typically causes a non-linear coupling of all the frame
coefficients we aim to compute. Defining a constant C := C̃

√
B1 + . . .+Bn the standard

Gaussian surrogate for the data discrepancy takes the following form

Γsur(g; a) = ‖f −KAg‖2
H′ + C2‖g − a‖2

(`2)n − ‖KAg −KAa‖2
H′

for some auxiliary element a ∈ (`2)
n.

Lemma 2.2.3 The functional Γsur(g; a) is a proper surrogate for ‖f −KAg‖2
H′.

Proof. ‘Proper’ in this context means that the problem remains convex and

Γsur(g; a)− ‖f −KAg‖2
H′ ≥ 0 .
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To this end, consider

C2‖g − a‖2
(`2)n − ‖KAg −KAa‖2

H′ = 〈(C2 −K∗
AKA)(g − a), g − a〉(`2)n . (2.2.7)

Defining L :=
√
C2 −K∗

AKA, we observe for τ ∈ (0, 1) and g, h ∈ (`2)
n

‖L(τg + (1− τ)h− a)‖2
(`2)n − τ‖L(g − a)‖2

(`2)n − (1− τ)‖L(h− a)‖2
(`2)n

= −τ(1− τ)‖L(g − h)‖2
(`2)n .

Since C2 − K∗
AKA and therewith L are strictly positive operators, (2.2.7) is strictly

convex and positive for g 6= a. �

Now we are able to define the global surrogate for Φ:

Φsur(g; a) := Γsur(g, a) + α · |||g||| , (2.2.8)

satisfying

Φsur(g; g) = Φ(g) , Φsur(g; a) ≥ Φ(g) for all a ∈ (`2)
n . (2.2.9)

The definition of our surrogate functional (2.2.8) suggests the following iteration in order
to approach the minimizer g? of the initial problem (2.2.6): starting from an arbitrarily
chosen g0, we determine the minimizer g1 of (2.2.8) for a = g0; each successive iterate gm

is then the minimizer for g of (2.2.8) anchored at the previous iterate a = gm−1:

g0 arbitrary ; gm+1 = arg min
g

Φsur(g; gm) m = 0, 1, . . . (2.2.10)

2.2.2 Minimization of Surrogate Functionals

The general principles of minimizing (2.2.8) explored in [DDD04] essentially apply here.
The difference is that we deal instead with one single frame with n frames. For sake
of illustrating the ideas, we limit ourselves to the case pj = 1 for j = 1, . . . , n. The
other cases 1 < pi ≤ 2 (not necessarily requiring pi = pj) cause no additional prob-
lems and can be treated analogously in the same manner and is therefore left to the reader.

First we discuss the minimization of (2.2.8) for some generic a ∈ (`2)
n. The surrogate
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functional has the following form

Φsur(g; a) = ‖f‖2
H′ − 2〈g,K∗

Af〉(`2)n + α · |||g|||

C2‖g − a‖2
(`2)n + 2〈g,K∗

AKAa〉(`2)n − ‖KAa‖2
H′

= C2‖g‖2
(`2)n − 2〈g,K∗

Af + C2a−K∗
AKAa〉(`2)n + α · |||g|||

+‖f‖2
H′ + C2‖a‖2

(`2)n − ‖KAa‖2
H′

=
n∑

i=1

∑
λ∈Λi

(
C2(gi

λ)
2 − 2gi

λ

[
FiA

∗f + C2ai − FiA
∗KAa

]
)λ + αi|gi

λ|
)

+‖f‖2
H′ + C2‖a‖2

(`2)n − ‖KAa‖2
H′ ,

(2.2.11)

where we have used the shorthand gi
λ for 〈g, φi

λ〉 (and implicitly assumed that we are
dealing with real functions; otherwise one needs to parametrize by modulus and phase).
The latter variational equation for the gi

λ decouple. The summand is differentiable in gi
λ

except at gi
λ = 0. To overcome this drawback we introduce set-valued derivatives, i.e. we

allow sign(0) ∈ [−1, 1]. Then the minimization reduces to solving

gi
λ +

αi

2C2
sign(gi

λ) = C−2
[
FiA

∗f + C2ai − FiA
∗KAa

]
)λ . (2.2.12)

Denoting the soft-shrinkage operator by St with shrinkage parameter t, we obtain an
explicit expression for the coefficients

gi
λ = S αi

2C2

(
C−2

[
FiA

∗f + C2ai − FiA
∗KAa

]
)λ

)
. (2.2.13)

Let us now introduce with a slight abuse of notation the soft-shrinkage operation for some
f ∈ ε acting component-wise

St(f) = {St(fλ)}λ∈Λ .

With this shorthand we may introduce the combined shrinkage operator for some vector
of sequences (f 1, . . . , fn) ∈ (`2)

n and a multi parameter t = (t1, . . . , tn)

St(f) =
(
St1(f

1), . . . , Stn(fn)
)
.

In this setting the minimizer g for (2.2.8) can be written in the much simpler form

g = S α
2C2

(
C−2

[
K∗

Af + C2a−K∗
AKAa

]
)
)
. (2.2.14)

We summarize our findings for the particular case pi = 1, wi = 1 for i = 1, . . . , n:

Proposition 2.2.1 Suppose the operator A maps a Hilbert space H to another Hilbert
space H′, with ‖A‖ < C̃, and suppose we are given n frames where the respective frame
operators Fi map H to ε with upper frame bounds Bi, and suppose f is an element of H′.
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Pick pi = 1, wi = 1 for i = 1, . . . , n, and a ∈ (`2)
n. If Φsur(g; a) is defined as in (2.2.8)

on (`2)
n, then Φsur(g; a) has a unique minimizer in (`2)

n. This minimizer is given by

g = S α
2C2

(
C−2

[
K∗

Af + C2a−K∗
AKAa

]
)
)
. (2.2.15)

For all h ∈ (`2)
n, one has

Φsur(g + h; a) ≥ Φsur(g; a) + C2‖h‖2
(`2)n .

Proof. We observe that

Φsur(g+h; a)−Φsur(g; a) = C2‖h‖2
(`2)n+2〈h,C2g−C2a−K∗

A(f−KA)〉(`2)n+α (|||g + h||| − |||g|||) .

Defining sets Λ0
i := {λ ∈ Λi| gi

λ = 0}, and Λ1
i := Λi \ Λ0

i and substituting (2.2.12) for gi
λ,

we recast the latter equation

Φsur(g + h; a)− Φsur(g; a) = C2‖h‖2
(`2)n +

n∑
i=1

∑
λ∈Λ0

i

{αi|hi
λ| − 2hi

λ

[
FiA

∗f + C2ai − FiA
∗KAa

]
)λ}

+
n∑

i=1

∑
λ∈Λ1

i

αi{|gi
λ + hi

λ| − |gi
λ| − hi

λsign(gi
λ)}.

For λ ∈ Λ0
i we have [FiA

∗f + C2ai − FiA
∗KAa])λ ≤ αi/2, so that

αi|hi
λ| − 2hi

λ[FiA
∗f + C2ai − FiA

∗KAa]λ ≥ 0.

For λ ∈ Λ1
i , we consider two cases: if gi

λ > 0, then

|gi
λ + hi

λ| − |gi
λ| − hi

λsign(gi
λ) = |gi

λ + hi
λ| − (gi

λ + hi
λ) ≥ 0;

if gi
λ < 0, then

|gi
λ + hi

λ| − |gi
λ| − hi

λsign(gi
λ) = |gi

λ + hi
λ|+ (gi

λ + hi
λ) ≥ 0,

which proves the assertion. �

Proposition 2.2.1 directly carries over to iteration (2.2.10):

Corollary 2.2.1 Make the same assumptions as in Proposition 2.2.1. Pick g0 ∈ (`2)
n,

and define the functions gm by the algorithm (2.2.10). Then

gm+1 = S α
2C2

(
C−2

[
K∗

Af + C2gm −K∗
AKAgm

]
)
)
. (2.2.16)
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2.2.3 Convergence Analysis

In this section we consider the convergence of the proposed iteration (2.2.10):

Theorem 2.2.1 Suppose the operator A maps a Hilbert space H to another Hilbert space
H′, with ‖A‖ < C̃, and suppose we are given n frames where the respective frame operators
Fi map H to ε with upper frame bounds Bi, and suppose f is an element of H′. Then the
sequence of iterates

gm+1 = S α
2C2

(
C−2

[
K∗

Af + C2gm −K∗
AKAgm

]
)
)

, m = 1, 2, . . . ,

with g0 arbitrarily chosen in (`2)
n, converges in norm to a minimizer of the functional

Φ(g) = ‖f −KAg‖2
H′ + α · |||g||| .

First, we prove weak convergence, and we show that the weak limit is a minimizer for Φ;
and next, we show that the convergence holds also in norm.

With the following shorthand

Tg = S α
2C2

(
C−2

[
K∗

Af + C2g −K∗
AKAg

]
)
)
,

i.e. gm = Tmg0, we may formulate the weak convergence result as follows:

Proposition 2.2.2 The sequence Tmg0, n = 1, 2, . . . convergences weakly, and its limit
is a fixed point for T.

This result can be achieved by applying Opial’s Theorem, see [Opi67]:

Theorem 2.2.2 (Opial) Let the mapping A from H to H satisfy the following condi-
tions:
i) A is non-expansive, i.e. for all v, w ∈ H, ‖Av −Aw‖ ≤ ‖v − w‖,
ii) A is asymptotically regular: for all v ∈ H, ‖An+1v −Anv‖ n→∞−→ 0,
iii) the set F of fixed points of A in H is not empty.
Then, for all v ∈ H, the sequence {Anv}n∈N converges weakly to a fixed point in F .

In order to prove Proposition 2.2.2, we apply Theorem 2.2.2 to T. To this end, we
have to verify conditions i), ii) and iii). We do this by the following series of lemmas.

Lemma 2.2.4 The operator S is non-expansive, i.e. for all v, w ∈ (`2)
n,

‖St(v)− St(v)‖(`2)n ≤ ‖v − w‖(`2)n .

Proof. The results is obtained by applying the fact that each single shrinkage operator
is non-expansive, see, e.g., [DDD04],

‖St(v)− St(v)‖2
(`2)n =

n∑
i=1

‖St(v
i)− St(w

i)‖2
ε =

n∑
i=1

∑
λ∈Λi

|St(v
i
λ)− St(w

i
λ)|2

≤
n∑

i=1

∑
λ∈Λi

|vi
λ − wi

λ|2 = ‖v − w‖(`2)n .
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�

Lemma 2.2.5 The mapping T is non-expansive, i.e. for all v, v′ ∈ (`2)
n

‖Tv −Tw‖(`2)n ≤ ‖v − w‖(`2)n .

Proof. By Lemma 2.2.4 we have

‖Tv −Tw‖(`2)n ≤ ‖(I − C−2K∗
AKA)(v − w)‖(`2)n

≤ ‖(v − w)‖(`2)n

since have chosen C such that ‖KA‖ < C. �

Hence, T satisfies condition i) in Theorem 2.2.2. Next, we verify condition ii):

Lemma 2.2.6 The sequences {Φ(gm)}m∈N and {Φsur(gm+1; gm)}m∈N are non-increasing.

Proof. By the definition of L we have

Φ(gm+1) + ‖L(gm+1 − gm)‖2
(`2)n = Φsur(gm+1; gm) ≤ Φsur(gm; gm) = Φ(gm)

and

Φsur(gm+2; gm+1) ≤ Φ(gm+1) ≤ Φ(gm+1) + ‖L(gm+1 − gm)‖2
(`2)n = Φsur(gm+1; gm).

�

Lemma 2.2.7 The series
∑∞

m=0 ‖gm+1 − gm‖2
(`2)n is convergent.

Proof. Since L is a strictly positive operator, we have

N∑
m=0

‖gm+1 − gm‖2
(`2)n ≤

1

M

N∑
m=0

‖L(gm+1 − gm)‖2
(`2)n

where M is a strictly lower bound for L∗L. By Lemma 2.2.6,

N∑
m=0

‖L(gm+1 − gm)‖2
(`2)n ≤

N∑
m=0

(Φ(gm)− Φ(gm+1)) ≤ Φ(g0),

regardless of the choice of N ∈ N and the infinite series converges. �

Consequently, we have that

Lemma 2.2.8 The mapping T is asymptotically regular, i.e.

‖Tm+1g0 −Tmg0‖(`2)n → 0 for n→∞ .
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We finalize the proof of Theorem 2.2.2 with verifying condition iii):

Lemma 2.2.9 The ‖gm‖(`2)n are bounded uniformly in n.

Proof. By Lemma 2.2.6 and since αi > 0 for i = 1, . . . , n, we have

α · |||gm||| ≤ Φ(gm) ≤ Φ(g0) , i.e.

∣∣∣∣|||gm|||
∣∣∣∣
`1

≤ 1

mini αi

Φ(g0).

Hence the gm are uniformly bounded. Moreover, since

‖gm‖2
(`2)n =

n∑
i=1

‖gi
m‖2

ε =
n∑

i=1

∑
λ∈Λi

|(gi
m)λ|2 =

n∑
i=1

max
λ∈Λi

|(gi
m)λ| · |gi

m|1,1

=

(
max
λ∈Λ1

|(g1
m)λ|, . . . ,max

λ∈Λn

|(gn
m)λ|

)
· |||gm|||

≤ |||gm||| · |||gm||| ≤
∣∣∣∣|||gm|||

∣∣∣∣2
`1

,

we also have a uniform bound on the ‖gm‖2
(`2)n . �

Lemma 2.2.10 Suppose the mapping A from H to H satisfies the conditions i) and ii)
in Theorem 2.2.2. Then, if a subsequence of {Anv}n∈N converges weakly in H, then its
limit is a fixed point of A.

Lemma 2.2.11 The set of fixed points of T is not empty.

Proof. By Lemma 2.2.9, the Tmg0 are uniformly bounded in m. By the Banach-Alaoglu
Theorem, the sequence has a weak accumulation point. By Lemma 2.2.10, this weak
accumulation point is a fixed point for T and consequently, the set of fixed points of T is
not empty. �

Finally, by Lemmas 2.2.5, 2.2.8, and 2.2.11, we have shown Theorem 2.2.2. Moreover, we
can show that this fixed point is also a minimizer for Φ:

Proposition 2.2.3 A fixed point for T is a minimizer for the functional Φ.

Proof. If g? = Tg?, then by Proposition 2.2.1, we have that g? is a minimizer for
Φsur(g; g?). Moreover, for all h ∈ (`2)

n,

Φsur(g? + h; g?) ≥ Φsur(g?; g?) + C2‖h‖2
(`2)n .

With Φsur(g?; g?) = Φ(g?) and Φsur(g? + h; g?) = Φ(g? + h) + C2‖h‖2
(`2)n − ‖KAh‖2

H′ , we

deduce that, for all h ∈ (`2)
n,

Φ(g? + h) ≥ Φ(g?) + ‖KAh‖2
H′ ,
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which proves that g? is also a minimizer for Φ. �

Next, we shall prove that the convergence of {gm}m∈N holds also in the Hilbert space
norm ‖ · ‖(`2)n . Let us introduce the following shorthands

g? = w − lim
m→∞

gm , um = gm − g? , h = g? + C−2K∗
A(f −KAg?) . (2.2.17)

Lemma 2.2.12 ‖KAum‖(`2)n → 0 for m→∞.

Proof. First, observe that with

um+1 = gm+1 − g? = S
(
gm + C−2K∗

A(f −KAgm)
)
− S(h)

= S
(
h+ (I − C−2)um

)
− S(h)

one has
um+1 − um = S

(
h+ (I − C−2K∗

AKA)um

)
− S(h)− um

and since ‖um+1 − um‖(`2)n = ‖gm+1 − gm‖(`2)n → 0 for n → ∞ (by Lemma 2.2.8), we
have

‖S
(
h+ (I − C−2K∗

AKA)um

)
− S(h)− um‖(`2)n → 0 for n→∞ . (2.2.18)

By triangle inequality,∣∣‖um‖(`2)n − ‖S
(
h+ (I − C−2K∗

AKA)um

)
− S(h)‖(`2)n

∣∣→ 0 for n→∞ . (2.2.19)

By Lemma 2.2.4, we have

‖S
(
h+ (I − C−2K∗

AKA)um

)
− S(h)‖(`2)n ≤ ‖(I − C−2K∗

AKA)um‖(`2)n ≤ ‖um‖(`2)n

and thus the modulus in (2.2.19) can be dropped, which implies

‖um‖(`2)n − ‖(I − C−2K∗
AKA)um‖(`2)n → 0 for n→∞ . (2.2.20)

Since ‖um‖(`2)n + ‖(I − C−2K∗
AKA)um‖(`2)n ≤ 2‖gm − g?‖(`2)n ≤ 2(‖g?‖(`2)n +

supm ‖gm‖(`2)n) = τ where τ is finite by Lemma 2.2.9, we obtain by (2.2.20)

0 ≤ ‖um‖2
(`2)n − ‖(I − C−2K∗

AKA)um‖2
(`2)n

≤ τ
(
‖um‖(`2)n − ‖(I − C−2K∗

AKA)um‖(`2)n

)
→ 0 for n→∞ .

The inequality

‖um‖2
(`2)n − ‖(I − C−2K∗

AKA)um‖2
(`2)n = 2C−2‖KAum‖2

(`2)n − ‖C−2K∗
AKAum‖2

(`2)n

≥ C−2‖KAum‖2
(`2)n

finally proves the assertion. �
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Lemma 2.2.13 ‖S(h+ um)− S(h)− um‖(`2)n → 0 for n→∞.

Proof.

‖S(h+ um)− S(h)− um‖(`2)n ≤ ‖S(h+ (I − C−2K∗
AKA)um)− S(h)− um‖(`2)n

+‖S(h+ um)− S(h+ (I − C−2K∗
AKA)um)‖(`2)n

≤ ‖S(h+ (I − C−2K∗
AKA)um)− S(h)− um‖(`2)n

+‖C−2K∗
AKAum‖(`2)n .

The assertion follows because of Lemma 2.2.12 and (2.2.18). �

The next lemma establishes norm convergence.

Lemma 2.2.14 If for some h ∈ (`2)
n, and some sequence {wm}m∈N with w −

limm→∞wm = 0 and limm→∞ ‖S(h + wm) − S(h) − wm‖(`2)n = 0 then ‖wm‖(`2)n → 0
for m→∞.

Proof. First, note again that

‖wm‖2
(`2)n =

n∑
i=1

∑
λ∈Λi

|(wi
m)λ|2 .

For each index i we define finite sets Λ0
i ⊂ Λi, so that

∑
λ∈Λi\Λ0

i
|hi

λ|2 ≤
(

αi

4C2

)2
. Since each

Λ0
i is finite, we have by the weak convergence of the wm that∑

λ∈Λ0
i

|(wi
m)λ|2 → 0 for m→∞

holds for every i, thus

n∑
i=1

∑
λ∈Λ0

i

|(wi
m)λ|2 → 0 for m→∞ .

Let us now focus on the remaining sums
∑

λ∈Λi\Λ0
i
|(wi

m)λ|2 : for each i and each m we

split Λ1
i = Λi \ Λ0

i into two subsets:

Λ1,m
i = {λ ∈ Λ1

i : |(wi
m)λ + hi

λ| < αi/2C
2} and Λ̃1,m

i = Λ1
i \ Λ1,m

i .

If λ ∈ Λ1,m
i , then S αi

2C2
((wi

m)λ + hi
λ) = S αi

2C2
(hi

λ) = 0 such that

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)| = |(wi
m)λ|

and thus
n∑

i=1

∑
λ∈Λ1,m

i

|(wi
m)λ|2 =

n∑
i=1

∑
λ∈Λ1,m

i

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)|2

≤
n∑

i=1

∑
λ∈Λi

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)|2

= ‖S(h+ um)− S(h)− um‖2
(`2)n → 0 for m→∞ . (2.2.21)
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It remains to consider the case λ ∈ Λ̃1,m
i . In this situation, |(wi

m)λ + hi
λ| ≥ αi/2C

2, and
hence we have for all i and m

|(wi
m)λ| ≥ |(wi

m)λ + hi
λ| − |hi

λ| ≥ αi/2C
2 − αi/4C

2 = αi/4C
2 ≥ |hi

λ| ,

implying that (wi
m)λ + hi

λ and hi
λ have the same sign and it follows that for λ ∈ Λ̃1,m

i

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)| = |(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ)|

= |(wi
m)λ − ((wi

m)λ + hi
λ) + αi/2C

2sign((wi
m)λ)|

≥ αi/2C
2 − |hi

λ| ≥ αi/4C
2 .

Consequently, for each individual i and m we deduce,∑
λ∈Λ̃1,m

i

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)|2 ≥ (αi/4C
2)2|Λ̃1,m

i | ,

but since ‖S(h+ um)− S(h)− um‖2
(`2)n → 0 for m→∞, necessarily implying

‖S αi
2C2

(hi + ui
m)− S αi

2C2
(hi)− ui

m‖2
ε → 0 for m→∞ ,

there exists an index m∗ uniform in i so that for m > m∗,∑
λ∈Λ̃1,m

i

|(wi
m)λ − S αi

2C2
((wi

m)λ + hi
λ) + S αi

2C2
(hi

λ)|2 < (αi/4C
2)2 ,

which implies that for all i the sets Λ̃1,m
i are empty when m > m∗. Consequently,

n∑
i=1

∑
λ∈Λ̃1,m

i

|(wi
m)λ|2 = 0 for m > m∗ ,

which completes the proof since we have

‖wm‖2
(`2)n =

n∑
i=1

∑
λ∈Λ0

i

|(wi
m)λ|2 +

∑
λ∈Λ1,m

i

|(wi
m)λ|2 +

∑
λ∈Λ̃1,m

i

|(wi
m)λ|2

→ 0 for m→∞ .

�

Setting wm = um and h and um as in (2.2.17), we have shown that

‖gm − g?‖(`2)n → 0 for m→∞ .

Moreover, setting vm =
∑n

i=1(g
i
m)λφ

i
λ and v? =

∑n
i=1(g

i
?)λφ

i
λ, the estimate

‖vm − v?‖H ≤
(
nmax

i
{Bi}

)1/2

‖gm − g?‖(`2)n

ensures that the convergence holds also in the H-norm topology.
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2.2.4 Regularization Properties

The choice of the damping/threshold vector α may be of course chosen by the user.
But in a more general context, this parameter can be considered as compression or
regularization parameter. In terms of compression, this vector controls the sparsity to
be attained and therewith the approximation quality. But in a typical situation of an
inverse problem, considering some nontrivial operator A and having only noisy data at
hand, the vector α plays the most important role in computing stabilized solutions. In
this case, if the ‘error’ e = f −KAgo tends to zero, we wish our estimate for the solution
of the inverse problem tend to go, since the minimizer of Φ(g) differs from go for α 6= 0.
In inverse problems lore, this means to identify a functional relation between α and the
noise floor δ, i.e. α = α(δ) with α(δ) → 0 and ‖g?,α(δ) − go‖ → 0 as α → 0. If we find
a parameter rule achieving this, then the suggested iteration scheme will regularize the
ill–posed problem. In [DDD04], a regularization theorem is provided for the univariate
case, i.e. for n = 1 and, for reasons of simplicity, for the unique situation, i.e. for
1 < p ≤ 2 or N (A) = {0}. However, in our context we always have to face the fact that
N (KA) is nontrivial as long as we deal with frames, i.e. even if N (A) = {0}. Thus it
is only reasonable to show that we approach one solution g† when passing to the limit
δ → 0. Moreover, we limit the analysis to the homogeneous case pi = 1 (i = 1, . . . , n).
For a non–homogeneous mixing of penalties the analysis requires a slightly different
analysis for proving that one really approaches solutions with minimal penalty value.

Theorem 2.2.1 Let pi = 1 (i = 1, . . . , n), and f ∈ H′ with ‖f − z‖H′ ≤ δ, αmin(δ) =
minj{αj(δ)}, αmax(δ) = maxj{αj(δ)}, and assume α(δ) = (α1(δ), . . . , αn(δ)) is chosen
such that

α(δ)
δ→0−→ 0 , δ2/αmin(δ)

δ→0−→ 0 , αmax(δ)/αmin(δ)
δ→0−→ 1 .

Then every sequence {g?,α(δ)} of minimizers of the functional Φ(g) where δ → 0 and
α = α(δ) has a convergent subsequence. The limit of every convergent subsequence is a

solution of KAg = z with minimal values of

∣∣∣∣||| · |||∣∣∣∣
`1

.

Proof. As g?,α(δ) = ((g?,α(δ))1, . . . , (g?,α(δ))n) is a minimizer of Φ, we have

‖f −KAg
?,α(δ)‖2

H′ + α · |||g?,α(δ)||| ≤ δ2 + α · |||g†||| . (2.2.22)

Thus, by the made assumptions on α(δ), we achieve

lim
δ→0

KAg
?,α(δ) = z .

Again by (2.2.22), ∣∣∣∣|||g?,α(δ)|||
∣∣∣∣
`1

≤ δ2

αmin(δ)
+
αmax(δ)

αmin(δ)

∣∣∣∣|||g†|||∣∣∣∣
`1

implying,

lim sup
δ→0

‖g‖(`2)n ≤ lim sup
δ→0

∣∣∣∣|||g?,α(δ)|||
∣∣∣∣
`1

≤
∣∣∣∣|||g†|||∣∣∣∣

`1

,
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i.e. ‖g?,α(δ)‖(`2)n are uniformly bounded. Consequently, the sequence has a weakly con-
vergent subsequence (again denoted by {g?,α(δ)}) with weak limit g◦,

g◦ = w − lim
δ→0

g?,α(δ) .

Assume now g† is a solution of the inverse problem with minimal values of

∣∣∣∣||| · |||∣∣∣∣
`1

.

Because g?,α(δ) converge weakly to g◦, for all λ ∈ Λi (i = 1, . . . , n),

(g?,α(δ))i
λ → (g◦)i

λ as δ → 0 ,

we may use Fatou’s lemma to obtain∣∣∣∣|||g◦|||∣∣∣∣
`1

≤ lim sup
δ→0

∣∣∣∣|||g?,α(δ)|||
∣∣∣∣
`1

and thus

lim sup
δ→0

∣∣∣∣|||g?,α(δ)|||
∣∣∣∣
`1

≤
∣∣∣∣|||g†|||∣∣∣∣

`1

≤
∣∣∣∣|||g◦|||∣∣∣∣

`1

.

Hence g◦ is also a solution with minimal values of

∣∣∣∣||| · |||∣∣∣∣
`1

. �
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Chapter 3

Applications I: Linear Problems

3.1 Compression for Audio and Image Signals

This section is devoted to show the usefulness of the proposed multi–frame scheme. We
present a little number of numerical experiments from different perspectives: convergence,
sparsity, approximation quality, and applicability to synthetic data, real audio data, and
images.

The overall configuration of our algorithm is as follows: for sake of simplicity, we pick
as our underlying frames a wavelet basis (Haar system) and a (non–local) Fourier basis
only. Hence, B1 = B2 = 1. In the examples, we restrict ourselves to A = I. Consequently,
the constant C in our Gaussian surrogate is not allowed to be equal or smaller than

√
2.

We aim to achieve sparsity in both representations, i.e. we set p1 = p2 = 1; moreover,
we do not involve additional penalty weight sequences, i.e. w1 = w2 = 1. The variational
problem is thus simply given by

Φ(g1, g2) = ‖f − (F ∗
1 g

1 + F ∗
2 g

2)‖2 + α1‖g1‖`1 + α2‖g2‖`1 ,

and the minimization by Gaussian surrogates yields the following iteration (g1)m+1

(g2)m+1

 =

 Sα1/2C2 (C−2{F1f + C2(g1)m − F1F
∗
1 (g1)m − F1F

∗
2 (g2)m})

Sα2/2C2 (C−2{F2f + C2(g1)m − F2F
∗
1 (g1)m − F2F

∗
2 (g2)m})

 .

Since we deal with bases only, the application of F1F
∗
1 , F1F

∗
2 , F2F

∗
1 , and F2F

∗
2 simplifies to

the discrete decomposition and reconstruction schemes. If one really goes beyond bases,
i.e. using frames, one indeed has to compute (approximate) all the (mixed) gram matrices.
This might be of course costly but can be optimized by picking localized and reasonably
incoherent frames. In case the frames are not reasonably incoherent, the scheme amounts
to averaging over all the components and then, all the sequences gi contain very similar
informations.

3.1.1 Application to Audio Coding

Let us now denote by {φ1
λ} the Fourier system and with {φ2

λ} the wavelet system. Then
we consider two frame operators F1 : v 7→ {〈v, φ1

λ〉} = g1 and F2 : v 7→ {〈v, φ2
λ〉} = g2.

37
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A synthetic Example: In this example we have simulated a signal f that is a composition
of two different components: a harmonic wave and noisy perturbation within the interval
[350, 400]. As a sampled discrete vector it has a total number of 641 coefficients in the
time–domain representation. This discrete vector is used as input for our algorithm.
The results for α1 = α2 = 0.2 are visualized in Figure 3.1. We find that involving the
Haar wavelet basis and the Fourier basis splits the signal in very sparse and well separated
components. The sparsity evolution graph shows the rapid decay of the number of Fourier
coefficients which is by the optimal matching of Fourier basis atoms.

Example “Glockenspiel”: This data set represents a real audio signal consisting of tonal
components and a sequence of (bell) attacks. We again try to apply Haar wavelet and
Fourier splitting. For α1 = 0.02 and α2 = 0.01 the results are shown in Figure 3.2.
As expected, the Haar system captures all the bell attacks very well, and, moreover, the
Fourier system the tonal components. We admit that sparsity could be obviously improved
just by taking local Fourier systems (as done in [MT05]). The sparsity evolution graph
shows the rapid decay of the number of wavelet coefficients which can be explained by a
fast “bell attacks” localization process through the iteration.

We summarize, whenever the dictionary consists of complementary frames, the pro-
posed algorithm produces a sparse representation in which the individual components
overlap inconsiderably.

3.1.2 Application to Image Restoration and Compression

In what follows we provide evidence that the machinery can naturally be applied for image
restoration and compression tasks. We consider as test data “Part of woman image” and
verify that non–optimally chosen families of frames may achieve the same reconstruction
results but that the sparsity gets essentially worse (what is typically expected).

Example Wavelet–Wavelet: In this case, see Figure 3.3 (α1 = 10, α2 = 20), we have
picked a Daubechies–6–wavelet and the Haar wavelet system. Both bases capture local
structures but of different smoothness. In order to provide a comparison of sparsity with
the next example, the parameters α1 and α2 are chosen such that similar SNR’s and
relative approximation errors are achieved.

Example Wavelet–Fourier: This example is the same as the latter one except that
we have exchanged the Daubechies–6–wavelet system with the Fourier system (here for
reasons just explained we have chosen α1 = 15 and α1 = 13). As we may observe in
Figure 3.4 (and since the Haar and the Fourier system are complementary), we achieve
much better sparsity as before. The complementary selectivity of wavelets and harmonics
manifests here very visible when splitting into local jumps and oscillatory components.

We finally conclude that even for image restoration/compression tasks (here only de-
noising is illustrated, but deblurring – or more generally: inverting operator equations –
is by construction possible) the proposed method has demonstrated its capabilities.
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Figure 3.1: From top left to up right: synthetic data, Haar wavelet component (g2) (in
time domain) after 100 iterations, SNR evolution through the iteration process, Fourier
component (g1) (in time domain) after 100 iterations, reconstruction and error after 100
iterations, and sparsity evolution through the iteration process.
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Figure 3.2: From top left to up right: “Glockenspiel” data, Haar wavelet component (g2)
(in time domain) after 30 iterations, SNR evolution through the iteration process, Fourier
component (g1) (in time domain) after 30 iterations, reconstruction and error after 30
iterations, and sparsity evolution through the iteration process.
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Figure 3.3: “Part of woman image”, Haar wavelet component (g2) (in time domain)
after 50 iterations, SNR evolution through the iteration process, Daubechies–6–wavelet
component (g1) (in time domain) after 50 iterations, reconstruction and error after 50
iterations, and sparsity evolution through the iteration process.
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Figure 3.4: “Part of woman image”, Haar wavelet component (g2) (in time domain) after
50 iterations, SNR evolution through the iteration process, Fourier component (g1) (in
time domain) after 50 iterations, reconstruction and error after 50 iterations, and sparsity
evolution through the iteration process.



3.2. IMAGE DECOMPOSITION AND RESTORATION PROBLEMS 43

3.2 Image Decomposition and Restoration Problems

Inspired by recent papers of Vese–Osher [OV02] and Osher–Solé–Vese [OSV02] we present
a wavelet–based treatment of variational problems arising in the field of image processing.
In particular, we follow their approach and discuss a special class of variational function-
als that induce a decomposition of images into oscillating and cartoon components and
possibly an appropriate ‘noise’ component. In the setting of [OV02] and [OSV02], the
cartoon component of an image is modeled by a BV function; the corresponding incor-
poration of BV penalty terms in the variational functional leads to PDE schemes that
are numerically intensive. By replacing the BV penalty term by a B1

1(L1) term (which
amounts to a slightly stronger constraint on the minimizer), and writing the problem in
a wavelet framework, we obtain elegant and numerically efficient schemes with results
very similar to those obtained in [OV02] and [OSV02]. This approach allows us, more-
over, to incorporate general bounded linear blur operators into the problem so that the
minimization leads to a simultaneous decomposition, deblurring and denoising.

3.2.1 Variational Problem with Smoothness and Sparsity Con-
straints

In general, an important problem in image processing is the restoration of the ‘true’ image
from an observation. In almost all applications the observed image is a noisy and blurred
version of the true image. In principle, the restoration task can be understood as an
inverse problem, i.e. one can attack it by solving a related variational problem.

Here we focus on a special class of variational problems which induce a decomposition
of images in oscillating and cartoon components; the cartoon part is ideally piecewise
smooth with possible abrupt edges and contours; the oscillation part on the other hand
‘fills’ in the smooth regions in the cartoon with texture -like features. Several authors,
e.g. [OV02, OSV02], propose to model the cartoon component by the space BV which
induces a penalty term that allows edges and contours in the reconstructed cartoon images.
However, the minimization of variational problems of this type usually results in PDE
based schemes that are numerically intensive.

The main goal is to provide a computationally thriftier algorithm by using a wavelet–
based scheme that solves not the same but a very similar variational problem, in which the
BV –constraint, which cannot easily be expressed in the wavelet domain, is replaced by a
B1

1(L1)–term, i.e. a slightly stricter constraint (since B1
1(L1) ⊂ BV in two dimensions).

Moreover, we can allow the involvement of general linear bounded blur operators, which
extends the range of application. By applying recent results, see [DDD04], we show
convergence of the proposed scheme.

In order to give a brief description of the underlying variational problems, we recall
the methods proposed in [OV02, OSV02]. They follow the idea of Y. Meyer [Mey02],
proposed as an improvement on the total variation framework of L. Rudin, S. Osher and
E. Fatemi [ROF92]. In principle, the models can be understood as a decomposition of an
image f into f = u + v, where u represents the cartoon part and v the texture part. In
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the Vese–Osher model, see [OV02], the decomposition is induced by solving

inf
u,g1,g2

Gp(u, g1, g2) , where (3.2.1)

Gp(u, g1, g2) =

∫
Ω

|∇u|+ λ‖f − (u+ divg)‖2
L2(Ω) + µ‖|g|‖Lp(Ω) ,

with f ∈ L2(Ω), Ω ⊂ R2, and v = divg = div(g1, g2). The first term is the total variation
of u. If u ∈ L1 and |∇u| is a finite measure on Ω, then u ∈ BV (Ω). This space allows
discontinuities, therefore edges and contours generally appear in u. The second term
represents the restoration discrepancy; to penalize v, the third term approximates (by
taking p finite) the norm of the space of oscillating functions introduced by Y. Meyer
(with p = ∞) which is in some sense dual to BV (Ω). (For details we refer the reader to
[Mey02].) Setting p = 2 and g = ∇P + Q, where P is a single–valued function and Q
is a divergence–free vector field, it is shown in [OSV02] that the v–penalty term can be
expressed by

‖|g|‖L2(Ω) =

(∫
Ω

|∇(∆)−1v|2
)1/2

= ‖v‖H−1(Ω) .

(The H−1 calculus is allowed as long as we deal with oscillatory texture/noise components
that have zero mean.) With these assumptions, the variational problem (3.2.1) simplifies
to solving

inf
u,g1,g2

G2(u, v) , where (3.2.2)

G2(u, v) =

∫
Ω

|∇u|+ λ‖f − (u+ v)‖2
L2(Ω) + µ‖v‖H−1(Ω) .

In general, one drawback is that the minimization of (3.2.1) or (3.2.2) leads to numerically
intensive schemes.

Instead of solving problem (3.2.2) by means of finite difference schemes, we propose a
wavelet–based treatment. We are encouraged by the fact that elementary methods based
on wavelet shrinkage solve similar extremal problems where BV (Ω) is replaced by the
Besov space B1

1(L1(Ω)). Since BV (Ω) can not be simply described in terms of wavelet
coefficients, it is not clear that BV (Ω) minimizers can be obtained in this way. Yet,
it is shown in [CDPX99], exploiting B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω)) − weak, that

methods using Haar systems provide near BV (Ω) minimizers. So far there exists no
similar result for general (in particular smoother) wavelet systems. We shall nevertheless
use wavelets that have more smoothness/vanishing moments than Haar wavelets, because
we expect them to be better suited to the modeling of the smooth parts in the cartoon
image. Though we may not obtain provable ‘near–best–BV –minimizers’, we hope to
nevertheless not be ‘too far off’. Limiting ourselves to the case p = 2, replacing BV (Ω)
by B1

1(L1(Ω)), and, moreover, extending the range of applicability by incorporating a
bounded linear operator K, we end up with the following variational problem:

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .
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3.2.2 Approximaton of the Solution

As stated in Section 3.2.1, we aim to solve

inf
u,v
Ff (v, u) , where (3.2.3)

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

At first, we may observe the following

Lemma 3.2.1 If the null–space N (K) of the operator K is trivial, then the variational
problem (3.2.3) has a unique minimizer.

This can be seen as follows:

Ff (µ(v, u) + (1− µ)(v′, u′))− µFf ((v, u))− (1− µ)Ff ((v
′, u′)) =

−µ(1− µ)
(
‖K(u− u′ + v − v′)‖2

L2(Ω) + γ‖v − v′‖2
H−1(Ω)

)
+2α

(
|µu+ (1− µ)u′|B1

1(L1(Ω)) − µ|u|B1
1(L1(Ω)) − (1− µ)|u′|B1

1(L1(Ω))

)
(3.2.4)

with 0 < µ < 1. Since the Banach norm is convex the right hand side of (3.2.4) is non-
positive, i.e. Ff is convex. Since N (K) = {0}, the term ‖K(u− u′ + v− v′)‖ can be zero
only if u− u′ + v − v′ = 0, moreover, ‖v − v′‖ is zero only if v − v′ = 0. Hence, (3.2.4) is
strictly convex. �

In order to solve this problem by means of wavelets we have to switch to the sequence
space formulation. When K is the identity operator the problem simplifies to

inf
u,v

{∑
λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|2 + 2α|uλ|

)}
, (3.2.5)

where J = {λ = (i, j, k) : k ∈ Jj, j ∈ Z, i = 1, 2, 3} is the index set used in our separable
setting. The minimization of (3.2.5) is straightforward, since it decouples into easy one–
dimensional minimizations. This results in an explicit shrinkage scheme, presented also
in [DT04]:

Proposition 3.2.1 Let f be a given function. The functional (3.2.5) is minimized by the
parametrized class of functions ṽγ,α and ũγ,α given by the following non-linear filtering of
the wavelet series of f :

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
fλ − Sα(22|λ|+γ)/γ(fλ)

]
)ψλ

and
ũγ,α =

∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator, Jj0 all indices λ for scales larger than j0 and
Ij0 the indices λ for the fixed scale j0.
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In the case where K is not the identity operator the minimization process results in a
coupled system of nonlinear equations for the wavelet coefficients uλ and vλ, which is not
as straightforward to solve. To overcome this problem, we adapt an iterative approach.
As in [DDD04] we derive the iterative algorithm from a sequence of so-called surrogate
functionals that are each easy to minimize, and for which one hopes that the successive
minimizers have the minimizing element of (3.2.3) as limit. However, contrary to [DDD04]
our variational problem has mixed quadratic and non-quadratic penalties. This requires a
slightly different use of surrogate functionals. In [DD04b, DD04a] a similar u+v problem
is solved by an approach that combines u and v into one vector–valued function (u, v).
This leads to alternating iterations with respect to u and v simultaneously. It can be
shown that the minimizers of the resulting alternating algorithm strongly converge to the
desired unique solution, [DD04b].

We will follow a different approach here, in which we first solve the quadratic problem
for v, and then construct an iteration scheme for u. To this end, we introduce the
differential operator T := (−∆)1/2. Setting v = Th the variational problem (3.2.3) reads
as

inf
(u,h)

Ff (h, u) , with (3.2.6)

Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Minimizing (3.2.6) with respect to w results in

h̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently
ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for h̃γ(f, u) in (3.2.6) and defining

fγ := Tγf, T 2
γ := I −KT (T ∗K∗KT + γ)−1T ∗K∗ , (3.2.7)

we obtain
Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) . (3.2.8)

Thus, the remaining task is to solve

inf
u
Ff (h̃γ(f, u), u) , where (3.2.9)

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

The corresponding variational equations in the sequence space representation are

∀λ : (K∗T 2
γKu)λ − (K∗fγ)λ + αsign(uλ) = 0 .

This gives a coupled system of nonlinear equations for uλ. For this reason we construct
surrogate functionals that remove the influence of K∗T 2

γKu. First, we choose a constant
C such that ‖K∗T 2

γK‖ < C. Since ‖Tγ‖ ≤ 1, it suffices to require that ‖K∗K‖ < C.
Then we define the functional

Φ(u; a) := C‖u− a‖2
L2(Ω) − ‖TγK(u− a)‖2

L2(Ω)
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which depends on an auxiliary element a ∈ L2(Ω). We observe that Φ(u, a) is strictly
convex in u for any a. Since K can be rescaled, we limit our analysis without loss of
generality to the case C = 1. We finally add Φ(u; a) to Ff (h̃γ(f, u), u) and obtain the
following surrogate functional

F sur
f (h̃γ(f, a), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a)

=
∑

λ

{u2
λ − 2uλ(a+K∗T 2

γ (f −Ka))λ + 2α|uλ|}

+‖fγ‖2
L2(Ω) + ‖a‖2

L2(Ω) − ‖TγKa‖2
L2(Ω) . (3.2.10)

The advantage of minimizing (3.2.10) is that the variational equations for uλ decou-
ple. The summands of (3.2.10) are differentiable in uλ expect at the point of non-
differentiability. The variational equations for each λ are now given by

uλ + αsign(uλ) = (a+K∗T 2
γ (f −Ka))λ .

This results in an explicit soft-shrinkage operation for uλ

uλ = Sα((a+K∗T 2
γ (f −Ka))λ) .

The next proposition summarizes our findings; it is the specialization to our particular
case of a more general theorem in [DDD04].

Proposition 3.2.2 Suppose K is a linear bounded operator modeling the blur, with K
maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is defined as in (3.2.7) and
the functional F sur

f (h̃, u; a) is given by

F sur
f (h̃γ(f, u), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a) .

Then, for arbitrarily chosen a ∈ L2(Ω), the functional F sur
f (h̃γ(f, u), u; a) has a unique

minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a+K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ .

The proof follows from [DDD04]. One can now define an iterative algorithm by repeated
minimization of F sur

f :

u0 arbitrary ; un = arg min
u

(
F sur

f (h̃γ(f, u), u;u
n−1)

)
n = 1, 2, . . . (3.2.11)

The convergence result of [DDD04] can again be applied directly:
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Theorem 3.2.1 Suppose K is a linear bounded operator, with ‖K∗K‖ < 1, and that Tγ

is defined as in (3.2.7). Then the sequence of iterates

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α of the functional

Ff (h̃γ(f, u), u) = ‖Tγ(f −Ku)‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of iterates
converges to ũγ,α in norm.

Combining the result of Theorem 3.2.1 and the representation for ṽ we summarize how
the image can finally be decomposed in cartoon and oscillating components.

Corollary 3.2.1 Assume that K is a linear bounded operator modeling the blur, with
‖K∗K‖ < 1. Moreover, if Tγ is defined as in (3.2.7) and if ũγ,α is the minimizing element
of (3.2.9), obtained as a limit of un

γ,α (see Theorem 3.2.1), then the variational problem

inf
(u,h)

Ff (h, u), with Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class

(ũγ,α, (T
∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) .

where ũγ,α is the unique limit of the sequence

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . .

3.2.3 Numerics and Improvements by Redundancy

The non-linear filtering rule of Proposition 3.2.1 gives explicit descriptions of ṽ and ũ
that are computed by fast discrete wavelet schemes. However, non-redundant filtering
very often creates artifacts in terms of undesirable oscillations, which manifest themselves
as ringing and edge blurring. Poor directional selectivity of traditional tensor product
wavelet bases likewise cause artifacts. In this section we discuss various refinements on
the basic algorithm that address this problem. In particular, we shall use redundant
translation invariant schemes, complex wavelets, and additional edge dependent penalty
weights.

Translation invariance by cycle–spinning

Assume that we are given an image with 2M rows of 2M pixels, where the gray value of
each pixel gives an average of f on a square 2−M × 2−M , which we denote by fM

k , with k
a double index running through all the elements of {0, 1, . . . , 2M −1}×{0, 1, . . . , 2M −1}.
A traditional wavelet transform then computes f j

l , dj,i
l with j0 ≤ j ≤ M , i = 1, 2, 3 and

l ∈ {0, 1, . . . , 2j−1}×{0, 1, . . . , 2j−1} for each j, where the f j
l stand for an average of f on

mostly localized on (and indexed by) the squares [l12
−j, (l1 + 1)2−j])×[l22

−j, (l2 + 1)2−j]),
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and the dj,i
l stand for the different species of wavelets (in two dimensions, there are three)

in the tensor product multi–resolution analysis. Because the corresponding wavelet basis is
not translation invariant, Coifman and Donoho proposed in [CD95] to recover translation
invariance by averaging over the 22(M+1−j0) translates of the wavelet basis; since many
wavelets occur in more than one of these translated bases (in fact, each ψj,i,k(x− 2Mn) in
exactly 22(j+1−j0) different bases), the average over all these bases uses only (M+1−j0)22M

different basis functions (and not 24(M+1−j0) = number of bases × number of elements
in each basis). This approach is called cycle–spinning. Writing, with a slight abuse of
notation, ψj,i,k+2j−Mn for the translate ψj,i,k(x − 2Mn), this average can then be written
as

fM = 2−2(M+1−j0)

2M−1∑
l1,l2=0

{
f j0

l2−M+j0
φj0,l2−M+j0 +

M−1∑
j=j0

22(j−j0)

3∑
i=1

dj,i
l2−M+jψj,i,l2−M+j

}
.

Carrying out our nonlinear filtering in each of the bases and averaging the result then
corresponds to applying the corresponding nonlinear filtering on the (much smaller number
of) coefficients in the last expression. This is the standard way to implement thresholding
on cycle–spinned representations.

The resulting sequence space representation of the variational functional (3.2.5) has to
be adapted to the redundant representation of f . To this end, we note that the Besov
penalty term takes the form

|f |Bβ
p (Lp) ∼

( ∑
j≥j0,i,k

2(js+2(j−M))|〈f, ψ̃j,i,k2j−M 〉|p
)1/p

.

The norms ‖ · ‖2
L2

and ‖ · ‖2
H−1 change similarly. Consequently, we obtain the same

minimization rule but with respect to a richer class of wavelet coefficients.

Directional sensitivity by frequency projections

It has been shown by several authors [Kin99, Sel01, FvSCB00] that if one treats positive
and negative frequencies separately in the one–dimensional wavelet transform (resulting in
complex wavelets), the directional selectivity of the corresponding two–dimensional multi–
resolution analysis is improved. This can be done by applying the following orthogonal
projections:

P+ : L2 → L2,+ = {f ∈ L2 : supp f̂ ⊆ [0,∞)}
P− : L2 → L2,− = {f ∈ L2 : supp f̂ ⊆ (−∞, 0]} .

The projectors P+ and P− may be either applied to f or to {φ, φ̃} and {ψ, ψ̃}. In a
discrete framework these projections have to be approximated. This has been done in
different ways in the literature. In [Kin99, Sel01] Hilbert transform pairs of wavelets are
used. In [FvSCB00] f is projected (approximately) by multiplying with shifted generator
symbols in the frequency domain. We follow the second approach, i.e.

(P+f)∧(ω) := f̂(ω)H(ω − π/2) and (P−f)∧(ω) := f̂(ω)H(ω + π/2) ,
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where f denotes the function to be analyzed and H is the low–pass filter for a conjugate
quadrature mirror filter pair. One then has

f̂(ω) = (B+P+f)∧(ω) + (B−P−f)∧(ω) , (3.2.12)

where the back–projections are given by

(B+f)∧ = f̂H(· − π/2) and (B−f)∧ = f̂H(·+ π/2)

respectively. This technique provides us with a simple multiplication scheme in Fourier,
or equivalently, a convolution scheme in time domain. In a separable two–dimensional
framework the projections need to be carried out in each of the two frequency variables,
resulting in four approximate projection operators P++, P+−, P−+, P−−. Because f is
real, we have

(P++f)∧(−ω) = (P−−f)∧(ω) and (P+−f)∧(−ω) = (P−+f)∧(ω) ,

so that the computation of P−+f and P−−f can be omitted. Consequently, the modified
variational functional takes the form

Ff (u, v) = 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+ 2α|u|B1

1(L1)

≤ 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+

4α
(
|P++u|B1

1(L1)
+ |P+−u|B1

1(L1)

)
,

which can be minimized with respect to {P++v, P++u} and {P+−v, P+−u} separately.
The projections are be complex–valued, so that the thresholding operator needs to be
adapted. Parameterizing the wavelet coefficients by modulus and angle and minimizing
yields the following filtering rules for the projections of ṽγ,α and ũγ,α (where ·· stands for
any combination of +, −)

P ··ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
P ··fλ − Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)

]
)ψλ

and

P ··ũγ,α =
∑
k∈Ij0

〈P ··f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

(1 + γ2−2|λ|)−1Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)ψλ .

Finally, we have to apply the back-projections to obtain the minimizing functions

ṽBP
γ,α = B++P++ṽγ,α +B−−P++ṽγ,α +B+−P+−ṽγ,α +B−+P+−ṽγ,α

and
ũBP

γ,α = B++P++ũγ,α +B−−P++ũγ,α +B+−P+−ũγ,α +B−+P+−ũγ,α .
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Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a positive
weight sequence wλ in the H−1 penalty term. Consequently, we aim at minimizing a
slightly modified sequence space functional∑

λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ|wλ|vλ|2 + 2α|uλ| · 1{λ∈Jj0

}
)
. (3.2.13)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑
λ∈Jj0

(1 + γwλ2
−2|λ|)−1

[
fλ − Sα(22|λ|+γwλ)/γwλ

(fλ)
]
)ψλ

and
ũw

γ,α =
∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ .

The main goal is to introduce a control parameter that depends on the local structure
of f . The local penalty weight wλ should be large in the presence of an edge and small
otherwise; the result of this weighting is to enhance the sensitivity of u near edges. In
order to do this, we must first localize the edges, which we do by a procedure similar to an
edge detection algorithm in [MZ92]. This scheme rests on the analysis of the cycle-spinned
wavelet coefficients fλ at or near the same location but at different scales. We expect that
the fλ belonging to fine decomposition scales contain informations of edges (well localized)
as well as oscillating components. Oscillating texture components typically show up in
fine scales only; edges on the other hand leave a signature of larger wavelet coefficients
through a wider range of scales. We thus apply the following not very sophisticated edge
detector. Suppose that f ∈ VM and je denotes some ‘critical’ scale, then for a certain
range of scales |λ| = |(i, j, k)| = j ∈ {j0, . . . , j1− je− 2, j1− je− 1} we mark all positions
k where |fλ| is larger than a level dependent threshold parameter tj. Here the value tj is
chosen proportional to the mean value of all wavelet coefficients of level j. We say that
|fλ| represents an edge if k was marked for all j ∈ {j0, . . . , j1− je−2, j1− je−1}. Finally,
we adaptively choose the penalty sequence by setting

wλ =

{
Θλ if j ∈ {M − 1, . . . , j1 − je} and k was marked as an edge ,
ϑλ otherwise ,

where ϑλ is close to one and Θλ is much larger in order to penalize the corresponding
vλ’s.

Numerical Results

Now, we present the numerical experiments obtained with our wavelet–based scheme. We
start with the case where K is the identity operator. In order to show how the nonlinear
(redundant) wavelet scheme acts on piecewise constant functions we decompose a geomet-
ric image (representing cartoon components only) with sharp contours, see Figure 3.5. We
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observe that ũ represents the cartoon part very well. The texture component ṽ (plus a
constant for illustration purposes) contains only some very weak contour structures.

Next, we demonstrate the performance of the Haar shrinkage algorithm successively
incorporating redundancy and local penalty weights. The redundancy is implemented by
cycle spinning as describe in Section 3.2.3. The local penalty weights are computed the
following way: firstly, we apply the shrinkage operator S to f with a level dependent
threshold (the threshold per scale is equal to two times the mean value of all the wavelet
coefficients of the scale under consideration). Secondly, the non zero values of Sthreshold(fλ)
per scale indicate where wλ is set to Θλ = 1+C ′ (here C ′ = 10, moreover, we set wλ equal
to ϑλ = 1 elsewhere). The coefficients Sthreshold(fλ) for the first two scales of a segment
of a woman image are visualized in Figure 3.6. In Figure 3.7, we present our numerical
results. The upper row shows the original and the noisy image. The next row visualizes
the results for non-redundant Haar shrinkage (Method A). The third row shows the same
but incorporating cycle spinning (Method B), and the last row shows the incorporation
of cycle spinning and local penalty weights. Each extension of the shrinkage method
improves the results. This is also be confirmed by comparing the signal–to–noise-ratios
(which is here defined as follows: SNR(f, g) = 10 log10(‖f‖2/‖f − g‖2)), see Table 3.1.

The next experiment is done on a fabric image, see Figure 3.8. But in contrast to the
examples before, we present here the use of frequency projection as introduced in Section
3.2.3. The numerical result shows convincingly that the texture component can be also
well separated from the cartoon part.

In order to compare the performance with the Vese–Osher TV model and with the
Vese–Solé–Osher H−1 model we apply our scheme to a woman image (the same that was
used in [OV02, OSV02]), see Figure 3.9. We obtain very similar results as obtained with
the TV model proposed in [OV02]. Compared with the results obtained with the H−1

model proposed in [OSV02] we observe that our reconstruction of the texture component
contains much less cartoon information. In terms of computational cost we have observed
that even in the case of applying cycle spinning and edge enhancement our proposed
wavelet shrinkage scheme is less time consuming than the Vese–Solé–Osher H−1 restora-
tion scheme, see table 3.2, even when the wavelet method is implemented in Matlab,
which is slower than the compiled version for the Vese–Solé–Osher scheme.

We end this section with presenting an experiment where K is not the identity op-
erator. In our particular case K is a convolution operator with Gaussian kernel. The
implementation is simply done in Fourier space. The upper row in Figure 3.10 shows the
original f and the blurred image Kf . The lower row visualizes the results: the cartoon
component ũ, the texture component ṽ, and the sum of both ũ+ ṽ. One may clearly see
that the deblurred image ũ + ṽ contains (after a small number of iterations) more small
scale details than Kf . This definitely shows the capabilities of the proposed iterative
deblurring scheme (3.2.11).
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Figure 3.5: From left to right: initial geometric image f, ũ, ṽ + 150, computed with Db3
in the translation invariant setting, α = 0.5, γ = 0.01.

Figure 3.6: Left: noisy segment of a woman image, middle and right: first two scales of
S(f) inducing the weight function w.

Haar Shrinkage SNR(f , fε) SNR(f ,u+ v) SNR(f ,u)

Method A 20,7203 18,3319 16,0680
Method B 20,7203 21,6672 16,5886
Method C 20,7203 23,8334 17,5070

Table 3.1: Signal–to–noise ratios of the several decomposition methods (Haar shrink-
age, translation invariant Haar shrinkage, translation invariant Haar shrinkage with edge
enhancement).
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Figure 3.7: Top: initial and noisy image, 2nd row: non-redundant Haar shrinkage (Method
A), 3rd row: translation invariant Haar shrinkage (Method B), bottom: translation invari-
ant Haar shrinkage with edge enhancement (Method C); 2nd-4th row from left to right:
ũ, ṽ+150 and ũ+ ṽ, α = 0.5, γ = 0.0001, computed with Haar wavelets and critical scale
je = −3.
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Figure 3.8: From left to right: initial fabric image f , ũ, ṽ + 150, computed with Db4
incorporating frequency projections, α = 0.8, γ = 0.002.

Figure 3.9: Top from left to right: initial woman image f , ũ and ṽ + 150, computed with
Db10 (Method C), α = 0.5, γ = 0.002; bottom from left to right: u and v obtained by
the Vese–Osher TV model and the v component obtained by the Vese–Solé–Osher H−1

model.
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Data basis ”Barbara” image (512x512 pixel)

Hardware Architecture PC
Operating System linux
OS Distribution redhat7.3
Model PC, AMD Athlon-XP
Memory Size (MB) 1024
Processor Speed (MHz) 1333
Number of CPUs 1

Computational cost (average over 10 runs)
PDE scheme in Fortran (compiler f77) 56,67 sec
wavelet shrinkage Method A (Matlab) 4,20 sec
wavelet shrinkage Method B (Matlab) 24,78 sec
wavelet shrinkage Method C (Matlab) 26,56 sec

Table 3.2: Comparison of computational cost of the PDE– and the wavelet–based meth-
ods.

Figure 3.10: Top from left to right: initial image f , blurred image Kf ; bottom from left
to right: deblurred ũ, deblurred ṽ + 150, deblurred ũ + ṽ, computed with Db3 using the
iterative approach, α = 0.2, γ = 0.001.
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3.3 Acceleration of Support Vector Machines

In this section, we apply the iterative strategy developed in Chapter 2 for reducing the
runtime computational complexity of a Support Vector Machine classifier by an automatic
and very efficient training. We propose an wavelet frame transformation of the Reduced
Support Vector Machine. To achieve high run-time efficiency, the complexity of the classi-
fier is made dependent on the input image patch. The fast classification uses a hierarchical
evaluation over the number and as novelty over different levels of approximation accuracy
of the Reduced Set Vectors. For non-symmetric data we achieve an early rejection of easy
to discriminate vectors. In contrast to former methods the trade-off between accuracy
and speed is very continuous. We compute a Haar-like structure of the Reduced Set Vec-
tors that enables a very fast Support Vector Machine kernel evaluation by use of Integral
Images. We apply this algorithm to the problem of face detection in images, but it can
also be used for other image based classifications. It is shown in the experiments that this
novel algorithm provides, for a comparable accuracy, a 15 fold speed-up over the Reduced
Support Vector Machine and a 530 fold speed-up over the Support Vector Machine. The
proposed face detector application gains real-time performance by a high accuracy.

3.3.1 On Support Vector Machines and its Reduction

Image based classification tasks are time sensitive, e.g. detecting a specific object in an
image, like a face is a computationally expensive task, as all the pixels of the image are
potential object centers. Hence all the pixels have to be classified. Therefore, a method
to increase the classification speed is based on a cascaded evaluation of hierarchical filters:
pixels easy to discriminate are classified by simple and fast filters and pixels that resemble
the object of interest are classified by more involved and slower filters. In the area of
face detection, this method was independently introduced by Keren et al.[KOG01], by
Romdhani et al. [RTSB01] and by Viola and Jones [VJ02].

The detector from Keren et al. [KOG01] assumes that the negative examples (i.e. the
non-faces) are modeled by a Boltzmann distribution and that they are smooth. This
assumption could increase the number of false positive in presence of a cluttered back-
ground. Romdhani et al. [RTSB01] use a Cascaded Reduced Set Vectors expansion of a
Support Vector Machine (SVM) [Vap98]. The speed bottleneck of [RTSB01] is that at
least one convolution of a 20× 20 filter has to be carried out on the full image, resulting
in a computationally expensive evaluation of the kernel with an image patch. Viola &
Jones [VJ02] use Haar-like oriented edge filters having a block like structure enabling a
very fast evaluation by use of an Integral Image. These filters are weak, in the sense that
their discrimination power is low. They are selected, among a finite set, by the Ada-boost
algorithm that yields the ones with the best discrimination. A drawback of their approach
is that it is not clear that the cascade achieves optimal performances. Practically, the
training proceeds by trial and error, and often, the number of filters per stage must be
manually selected so that the false positive rate decreases smoothly. Another drawback
of the method is that the set of available filters is limited and manually selected. Addi-
tionally, the training of the classifier is very slow, as every filter (and there are about 105

of them) is evaluated on the whole set of training examples, and this is done every time
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a filter is added to a stage of the cascade.
Here we present a novel efficient classification algorithm based on following features:

1. Use of a SVM classifier that is known to have optimal generalization capabilities.

2. To achieve high run-time efficiency we use a reduced set of Support Vectors
[RTSB01].

3. The high run-time efficiency is also gained by a coarse-to-fine cascaded complexity
of the classifier. For non-symmetric data (i.e. only few positives to many negatives)
we achieve an early rejection of easy to discriminate vectors. This is realized with
an only as fine as necessary approximated classifier by:

(a) a hierarchical evaluation over the number of RSV’s (only as many RSV’s as
necessary) similar to [RTSB01] and as novelty

(b) over the levels of the approximation accuracy of the RSV’s (only a as fine as
necessary approximation accuracy of the RSV’s).

4. We constrain the RSV’s to have a Haar-like block structure. Similarly to [VJ02],
we use the Integral Image method introduced in [Cro84] to achieve high speed-ups,
because this block structure enables a very fast kernel evaluation.

5. We use wavelet frame theory for gaining a near–optimal approximation of RSV’s.
The proposed learning stage is straightforward, automatic and does not require the
manual selection of ad-hoc parameters, as opposed to the Viola and Jones method
[VJ02].

The novelty to [RRV05] is 3. (b) and 5. by replacing the former ASA optimization using
morphological filters. The difficulties was to result in the global optimum approximation
in general and not in a local minimum. The other problem was to adjust the optimal
approximation accuracy, because only one approximation level was used.

Let us now briefly introduce the terms of Support Vector Machines (SVM) and let
us outline the usage of an approximation of SVMs called Reduced Set Vector Machines
(RVM), see [SMB+99]. To this end, suppose that we have a labeled training set consisting
of a series of 20× 20 image patches xi ∈ X (arranged in a 400 dimensional vector) along
with their class label yi ∈ {±1}. Support Vector classifiers implicitly map the data xi

into a dot product space F via a (usually nonlinear) map Φ : X → F, x 7→ Φ(x). Often,
F is referred to as the feature space. Although F can be high-dimensional, it is usually
not necessary to explicitly work in that space [BGV92]. There exists a class of kernels
k(x,x′) which can be shown to compute the dot products in associated feature spaces,
i.e. k(x,x′) = 〈Φ(x),Φ(x′)〉. It is shown in [Vap98] that the training of a SVM classifier
provides a classifier with the largest margin, i.e. with the best generalization performances
for the given training data and the given kernel. Thus, the classification of an image patch
x by an SVM classification function, with Nx support vectors xi with non-null coefficients
αi and with a threshold b, is expressed as follows:

y = sign

(
Nx∑
i

αik(xi,x) + b

)
(3.3.1)
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A kernel often used, and used here, is the Gaussian Radial Basis Function Kernel:

k(xi,x) = exp

(
−‖xi − x‖2

2 σ2

)
(3.3.2)

The Support Vectors (SV) form a subset of the training vectors. The classification of
one patch by an SVM is slow because there are many support vectors. The SVM can
be approximated by a Reduced Set Vector (RVM) expansion [SMB+99]. We denote by
Ψ1 ∈ F , the vector normal to the separating hyper-plane of the SVM, and by Ψ′

Nz
∈ F ,

the vector normal to the RVM with Nz vectors:

Ψ1 =
Nx∑
i=1

αiΦ(xi), Ψ′
Nz

=
Nz∑
i=1

βiΦ(zi), with Nz � Nx (3.3.3)

The zi are the Reduced Set Vectors and are found by minimizing

‖Ψ1 −Ψ′
Nz
‖2

with respect to zi and to βi. They have the particularity that they can take any values,
they are not limited to be one of the training vectors, as for the support vectors. Hence,
much less Reduced Set Vectors are needed to approximate the SVM. For instance, an
SVM with more than 8000 Support Vectors can be accurately approximated by an RVM
with 100 Reduced Set Vectors. The second advantage of RVM is that they provide a
hierarchy of classifiers. It was shown in [RTSB01] that the first Reduced Set Vector is
the one that discriminates the data the most; and the second Reduced Set Vector is the
one that discriminates most of the data that were mis-classified by the first Reduced
Set Vector, etc. This hierarchy of classifiers is obtained by first finding β1 and z1 that
minimizes ‖Ψ1 − β1Φ(z1)‖2. Then the Reduced Set Vector k is obtained by minimizing
‖Ψk − βkΦ(zk)‖2, where Ψk = Ψ1 −

∑k−1
i=1 βiΦ(zi).

Then, Romdhani et al. used in [RTSB01] a Cascaded Evaluationy based on an early
rejection principle, to that the number of Reduced Set Vectors necessary to classify a
patch is, on average, much less than the number of Reduced Set Vectors, Nz. So, the
classification of a patch x by an RVM with j Reduced Set Vector is:

yj(x) = sign

(
j∑

i=1

βj,ik(x, zi) + bj

)
(3.3.4)

This approach provides a significant speedup over the SVM (by a factor of 30), but is
still not fast enough, as the image has to be convolved, at least by a 20 × 20 filter. The
algorithm presented in this paper improves this method because it does not require to
perform this convolution explicitly. Indeed, it approximates the Reduced Set Vectors by
Haar-like filters and compute the evaluation of a patch using an Integral Image of the
input image. An Integral Image [VJ02] is used to compute the sum of the pixels in a
rectangular area of the input image in constant time, by just four additions. They can be
used to compute very efficiently the dot product of an image patch with an image that
has a block-like structure, i.e. rectangles of constant values.
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3.3.2 Wavelet Frame Approximated Support Vector Machine

RVM provide a hierarchy of classifier of increasing complexity. Their use for fast face
detection is demonstrated in [RTSB01]. But is still not fast enough, as the image has to
be convolved, at least by a n× n filter (n size of the filter, in our case n = 20).

To achieve high run-time efficiency we use a coarse-to-fine cascaded complexity of
the classifier as explained in 3.3.2. For this hierarchical approach we compute once at
the learning stage different levels of approximations of the RSV’s using over-complete
wavelets (3.3.2). The obtained Wavelet Approximated Reduced Set Vectors (W-RSV)
have a Haar-like structure. This rectangle structure enables a fast SVM kernel evaluation
by use of Integral Images as motivated in 3.3.2.

Reduced Support Vector Evaluation by Integral Images

As it is explained in [RRV05], the speed bottleneck of the Cascaded Reduced Set Vector
classifier is the computation of the kernel of a patch, x with a Reduced Set Vector, zk. In
the case of the Gaussian kernel

k(x, zk) = exp

(
−‖x− zk‖2

2 σ2

)
,

the computational load is spent in evaluating the norm of the difference between a patch
and a Reduced Set Vector (see Equation (3.3.2)). This norm can be expanded as follows:

‖x− zk‖2 = x′x− 2x′zk + z′kzk (3.3.5)

As zk is independent of the input image, it can be pre-computed, x′x is efficiently
computed using the Integral Image, finally, the computational load is determined by the
term 2x′zk.

Let us now briefly describe the method of Integral Images which effectively reduces
the computational load, see [Cro84], [VJ02]: The value of the integral image, ii, at point
(x, y), see Figure (3.11), is the sum of all the pixels, in the input image i, above and to
the left of (x,y):

ii(x, y) =
∑

a≤x, b≤y

i(a, b) . (3.3.6)

Consequently, we have∑
x1<a≤x4,
y1<b≤y4

i(a, b) = ii(x4, y4)− ii(x2, y2)− ii(x3, y3) + ii(x1, y1) (3.3.7)

Moreover, an integral image can be recursively computed by

s(x, y) = s(x, y − 1) + i(x, y)
ii(x, y) = ii(x− 1, y) + s(x, y),

(3.3.8)

where s(x, y) is the cumulative column sum.
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Figure 3.11: Definition of Integral Images (left) and computation of the sum of a rectangle
area from the input image (right) by D = ii(4)− ii(2)− ii(3) + ii(1)

Wavelet-Shrinkage and Haar-Frame Reduced Set Vectors

In contrast to other approaches we do not use a wavelet transform of the input space as a
pre-processing during the working process [Kar05, ZS02, CGT99]. The novelty is, that we
apply the over-complete wavelet transform (OCWT) at the learning stage. Our approach
proposes a wavelet transform of the Reduced Support Vector Machine itself.

The reason to proceed this way is because non-redundant representations often creates
artifacts caused by the restricted grid of the wavelet basis. For our purpose, it is essential
to pick a representation that optimally meets the local image structure (see Figure 3.12).
The OCWT has its origin in translation invariance, i.e. representing the image by all
possible shifted versions of the underlying wavelet basis.

In order to make full usage of the concept of integral images it would be desirable to
approximate the computed RSV’s, z by block-wise structured images that are not too far
off while keeping the number of rectangular regions with constant gray value much smaller
than in z. Roughly speaking, we are searching for an approximation of a given image z
by a piecewise block structured image u which is as sparse as possible. As wee have seen
in Section 3.2, this optimization problem can be casted in the following variational form

min
u

‖z− u‖2
L2

+ 2α|u|B1
1(L1) , (3.3.9)

where B1
1(L1) denotes a particular Besov semi–norm; for an overview we again refer the

reader to [Tri78, ST87] and for a detailed discussion of the problem to [CDPX99]. The
Besov (semi) norm of a given function can be expressed by means of its wavelet coefficients
and, moreover, in two dimensions the Besov penalty is nothing else than a `1 constraint
on the wavelet coefficients (promoting sparsity as required).

The minimization of (3.3.9) is easily obtained, see again Section 3.2: at first, we may
completely represent (3.3.9) by means of the associated wavelet coefficients,

min
ûλ

∑
λ∈Λ

{
(zλ − uλ)

2 + 2α|uλ|
}
. (3.3.10)

Since the wavelet basis is linearly independent, we can minimize summand–wise and
obtain the following explicit expression for the optimum uλ, see, e.g. [DDD04, DT04,
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Figure 3.12: Example for a Reduced Set Vector (from left to right) and different Haar-
like approximations: morphological filter [RRV05], standard wavelet transform and more
optimal shifted wavelet transform

DT05],
uλ = Sα(zλ) = sign(zλ) max{|zλ| − α, 0} , (3.3.11)

where Sα is the shorthand for the soft–shrinkage operation with threshold α. Conse-
quently, the optimum u is simply obtained by soft–shrinking the wavelet coefficients of z,
i.e.

u = Sα(z) =
∑
λ∈Λ

Sα(zλ)ψλ.

As we have seen, so far we have involved just an individual wavelet basis. This, of
course, allows a very fast wavelet representation of an image which is computed by fast
discrete wavelet schemes. However, non–redundant representations and filtering very
often creates artifacts in terms of undesirable oscillations or non–optimally represented
details, which manifest themselves as ringing and edge blurring. For our purpose, it is
essential to pick a representation that optimally meets the local image structure. The most
promising method for adequately solving this kind of problem has its origin in translation
invariance (the method of cycle spinning, see, e.g. [CD95]), i.e. representing the image
by all possible shifted versions of the underlying (Haar) wavelet basis. But contrary to
the idea of introducing redundancy by averaging over all possible representations of z (i.e.
really dealing with frames), we just aim to pick only that one which is optimally suited
for our given image.

Hyper-plane Approximation by Wavelet Shrinkage

Once we have approximated the Support Vectors of the SVM by the W-RSV’s, the ques-
tion arises whether the hyper-plane approximation Ψ′′

Nz
=
∑Nz

i=1 βiΦ(ui) is close to ΨNx ,
i.e. we have consider the quantity

‖Ψ′′
Nz
−ΨNx‖ .

We firstly have computed the Reduced Set Vectors, zi by minimizing ‖Ψ′
Nz
−ΨNx‖2 with

respect to zi and to βi (demonstrated in [RRV05] and [RTSB01]). Consequently, by
triangle inequality it remains to show that we may reasonably control

‖Ψ′′
Nz
−Ψ′

Nz
‖ .
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With the help of Cauchy-Schwarz and using a kernel function with k(zi, zi) = 1 (such as
the Gaussian Kernel 3.3.2 chosen in this paper) we obtain

‖Ψ′′
Nz
−Ψ′

Nz
‖2 ≤

Nz∑
i,j=1

|βi||βj| ‖Φ(zi)− Φ(ui)‖‖Φ(zj)− Φ(uj)‖

= 2
Nz∑

i,j=1

|βi||βj|
√

(1− k(zi,ui))(1− k(zj,uj)).

= 2

(
Nz∑
i=1

|βi|
√

(1− k(zi,ui))

)2

. (3.3.12)

Thus, we may control the approximation error for all i = 1, . . . , Nz by

1− k(zi,ui) = 1− exp

(
−‖zi − ui‖2

2σ2

)
=
‖zi − ui‖2

2σ2
+O(‖ · ‖4), (3.3.13)

i.e. that the data misfit discrepancy is directly controlled by the L2 distance (which is
minimized by (3.3.11) in the `1 sense) of the sparse approximation ui of zi. In other
words, up to terms of higher order we have achieved the best approximation of the RVM
under sparsity constraints, i.e.

‖Ψ′′
Nz
−Ψ′

Nz
‖ ≤ σ−2

Nz∑
i=1

|βi| ‖zi − ui‖ . (3.3.14)

Let us now consider more in detail the relation between the approximation error and
the threshold parameter α. This is important in order to control the trade-off between the
sparsity and the approximation. To this end, observe that the argument in the Gaussian
can be expressed by means of the corresponding wavelet coefficients, i.e.

‖zi − ui‖2 =
∑
λ∈Λ

(zi,λ − Sα(zi,λ))
2 ,

and assuming z has 2M × 2M pixel, we have the following bound

1− k(zi,ui) ≤ 1− Πλ∈Λ exp

(
−α2

2σ2

)
= 1− exp

(
−22Mα2

2σ2

)
.

Consequently, the worst case error is given by

‖Ψ′′
Nz
−Ψ′

Nz
‖2 ≤ 2

[
1− exp

(
−22Mα2

2σ2

)]( Nz∑
i=1

|βi|

)2

.

Let us denote this error bound by E. Then, E → 0 as α → 0, and for each α > 0, we
see that 2(

∑Nz

i=1 |βi|)2 ≥ E > 0. Hence, the price for sparsity (reduction of computational
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complexity) is the approximation quality which can be easily controlled: assume a certain
approximation error E is allowed, then the sparsity scaling constraint α must fulfill

0 < α2 ≤ − ln

1− E

2
[∑Nz

i=1 |βi|
]2


2σ22−2M

.

Neglecting the error terms of higher order, the worst case error reduces to

‖Ψ′′
Nz
−Ψ′

Nz
‖ / 2Mασ−1

Nz∑
i=1

|βi|

and thus,

0 < α ≤ σ2−ME∑Nz

i=1 |βi|
.

Algorithmic Considerations

We first compute the Reduced Set Vectors, zi by minimizing ‖Ψ′
Nz
− ΨNx‖2 like demon-

strated in [RTSB01, RRV05]. Then we achieve the Wavelet Approximated Reduced
Set Vectors (W-RSV’s), ul

i using local best shift approximations of the RSV’s, zi

(i = 1, . . . , Nz) at the coarse-to-fine approximation levels l = 1, . . . , Nl . This hierar-
chy of classifiers is obtained by first finding the first W-RSV, ul

1 and βl
1 that minimizes

‖Ψ0
Nz
−βl

1Φ(ul
1)‖2 where Ψ0

Nz
=
∑Nx

i=1 αiΦ(xi) at the first approximation level l = 1. Then
the Wavelet Approximated Reduced Set Vector ul

i is obtained by minimizing the distance
δl
i to the SVM hyper-plane

δl
i = ‖Ψl

i−1 − βl
iΦ(ul

i)‖2, where Ψl
i−1 = Ψl−1

Nz
−

i−1∑
k=1

βl
kΦ(ul

k). (3.3.15)

This evaluation continues until i = Nz and we start with the next finer approximation
level l = l + 1, until l = Nl is reached.

1. Set Ψ0
Nz

=
∑Nx

i=1 αiΦ(xi) and ∀i=1,...,Nz : r1
i = zi, where zi are the Reduced Set

Vectors.

2. Start at the first approximation level l = 1.

3. Start with (the residual of) the first RSV rl
i, i = 1.

4. Evaluate ∀s : ũs = (W s)−1Sα

(
W srl

i

)
where W s is the wavelet decomposition and

(W s)−1 the reconstruction with a shifted wavelet basis by the two dimensional shift
s ∈

{
1, 2, . . . , 2J

}
×
{
1, 2, . . . , 2J

}
. For a 20×20 patch size a shift J = 3 is sufficient.

Sα is the Shrinkage function with the sparsity parameter α (see ?? and ??).

5. Evaluate ∀s : ∆s
δ = δl

i−1 − δl
i where δl

0 = δl−1
Nz

and the number of operations ∆s
ω =

4 ∗# [ũs] + v(ũs) where # [ũs] is the number of piecewise constant rectangles and
v(ũs) the number of gray values of ũs (see 3.3.2).
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Figure 3.13: Example for a RSV zi (top) and its W-RSV ul
i at different approximation

levels (middle row, left to right): e.g. ul
i, l = 1, 2, 10, 19). The bottom row, (left to

right) shows the sum of the W-RSV’s over the approximation levels (e.g
∑n

l=1 ul
i with

n = 1, 2, 10, 19)

6. Select the best shift s∗, where the decrease of the hyper-plane distance ∆s
δ per needed

number of operations ∆s
ω is maximal.

7. Set ul
i = ũs∗ and save the rectangle structure for each approximation level of ul

i

separately and
set the new residual rl+1

i = rl
i − ul

i.

8. Set i = i + 1 and goto 4. until i > Nz, otherwise set l = l + 1 and goto 3. until
l > Nl.

Using this algorithm we obtain from each RSV, zi Nl levels of Wavelet Approximated
RSV’s, ul

i (see Figure 3.13 middle row). It is noticed that the approximation level l + 1
of the W-RSV is not computed by a finer approximation of the original RSV, zi (e.g.
by increasing sparsity parameter α). Instead the algorithm achieves the approximation
ul+1

i from the residual rl+1
i = zi −

∑l
h=1 uh

i . Thus
∑Nl

l=1 ul
i converge to zi if Nl →∞ (see
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3.13 right column). We call it a local best shift method because the shift s∗ is in general
different for each approximation level. It is also noticed, that the rectangle structure of
ul

i is evaluated and stored during the training and applied at the classification process

for each l separately, because #
[∑l

h=1 uh
i

]
<
∑l

h=1 #
[
uh

i

]
. As seen in 3.13 (bottom row)

we obtain more rectangles, because the rectangles overlay by adding the approximations
levels.

Detection Process

To achieve high run-time efficiency we use a coarse-to-fine cascaded complexity of the
classifier. The aim is an early rejection of easy to discriminate vectors (e.g. simple as
non-faces to classify parts of the image). It is achieved by using an only as fine as necessary
approximated classification hyper-plane by:

1. a hierarchical evaluation over the number i of W-RSV’s ul
i (only as many approxi-

mated RSV’s as necessary, similarly to [RTSB01]) and

2. a hierarchical evaluation over the levels of the approximation accuracy l of the W-
RSV’s ul

i (only a as fine as necessary approximation of the RSV’s).

We realized this cascaded detection process using two loops. One inner loop over the
number and an outer loop over the levels of the approximation accuracy of the RSV’s.
Thus, the classification of an image patch x is expressed by the W-RVM classification
function, withN l

z (N l
z ≤ Nz) W-RSV’s, ul

i and their coefficients βl,i for each approximation
level, l = 1, . . . , Nl and the thresholds bli, as follows:

yl
i(x) = sign

 l−1∑
h=1

N l
z∑

j=1

βl,i
h,jk(x,u

h
j ) +

i∑
j=1

βl,i
l,jk(x,u

l
j) + bli

 (3.3.16)

We gain the following detection algorithm:

1. Start at the first approximation level l = 1

2. Start with the fist RSV, ul
1 at the level l

3. Evaluate yl
i(x) for the input patch x using (3.3.16)

4. If yl
i < 0 then the patch is classified as a non-face and the evaluation stops.

5. Set i = i + 1 and goto 3. until i > N l
z, otherwise set l = l + 1 and goto 2. until

l > Nl.

This hierarchical evaluation is a more efficient way to reject more locations by only
few operations. The second reason is, that the adjustment of an optimal approximation
accuracy was very sensitive in [RRV05], if only one approximation level is used. Now the
evaluation applies automatically the most efficient approximation accuracy, dependent on
the input image patch during the working process. In contrast to former methods the
trade-off between accuracy and speed is very continuous.
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Figure 3.14: Left: Ψ1−Ψ′
Nz

distance as function of the number of vectors Nz for the RVM
(dashed line, and the W-RVM (solid line). Right: Percentage of rejected non-face patches
as a function of the number of operations required.

However, the question arise whether to turn to the next approximation level (l++) or
to keep on incorporating more vectors at the current level (i++). The optimum N l

z for
each level l in 3.3.16 can be evaluated once on a training set, by N l

z = i if

∆ω(ul
i+1)

r(ul
i+1)

>
∆ω(ul+1

1 )

r(ul+1
1 )

,

where r is the number of rejections and ∆ω the number of operations of ul
i. The number

of approximation levels is adjusted by the shrinkage parameter α. A low reduction of
wavelets coefficients (fine approximation) causes more approximations levels. But the
number of levels is not so decisive because more levels only mean that the classification
process will change earlier to the next approximation level (smaller N l

z, see above). Hence
the method is not very sensitive concerning α. Using this classification method we gain a
minimal number of operations per rejection.

3.3.3 Numerical Verifications

For the face detector we used a training set that contains several thousand images down-
loaded from the World Wide Web. The training set includes 3500, 20× 20, face patches
and 20000 non-face patches and, the validation set, 1000 face patches, and 100,000 non-
face patches. The SVM computed on the training set yielded about 8000 support vectors
that we approximated by 90 Wavelet Approximated Reduced Set Vectors (W-RSV’s) at
five approximation levels by the method detailed in the previous section.

The first plot in Figure 3.14 shows the evolution of the approximation of the SVM by
the RVM and by the W-RVM (in terms of the distance Ψ−Ψ′) as a function of the number
of vectors used. It can be seen that for a given accuracy more Wavelet Approximated Set
Vectors are needed to approximate the SVM than for the RVM. However, as is seen of
the second plot, for a given computational load, the W-RVM rejects much more non-face
patches than the RVM. This explains the improved run-time performances of the W-RVM.
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Figure 3.15: From top left to up right: input image followed by images showing the
amount of rejected pixels at the 1st, 3rd and 50th stages of the cascade. The white pixels
are rejected and the darkness of a pixel is proportional to the output of the W-RVM
evaluation. The penultimate image shows a box around the pixels alive at the end of the
the W-RSV’s and the last image, after the full SVM is applied

Additionally, it can be seen that the curve is more smooth for the W-RVM, hence a better
trade-off between accuracy and speed can be obtained by the W-RVM. Figure 3.15 shows
an example of face detection in an image using the W-RVM. As the stages in the cascade
increase fewer and fewer patches are evaluated. At the last W-RSV, only 5 pixels have to
be classified using the full SVM.

Figure 3.16 shows the ROCs, computed on the validation set, of the SVM, the RVM
and the W-RVM. It can be seen that the accuracies of the three classifiers are similar
without (left plot) and almost equal with (right plot) the final SVM classification for the
remaining patches.

Table 3.3 compares the accuracy and the average time required to evaluate the patches
of the validation set. As can be seen, the novel W-RVM approach provides a significant
speed-up (530-fold over the SVM and more than 15-fold over the RVM), for no substantial
loss of accuracy.



3.3.3. Numerical Verifications 69

Figure 3.16: ROCs for a set of the SVM, the RVM and the W-RVM (top) without and
(bottom) with the final SVM classification for the remaining patches. The FAR is related
to non-face patches

method FRR FAR time per patch
SVM 1.4% 0.002% 787.34µs
RVM 1.5% 0.001% 22.51µs

W-RVM 1.4% 0.002% 1.48µs

Table 3.3: Comparison of accuracy and speed improvement of the W-RVM to the RVM
and SVM
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Chapter 4

Nonlinear Operator Equations and
Iterative Concepts

This chapter is devoted to the construction of Tikhonov–based iteration schemes for solv-
ing nonlinear operator equations.

4.1 Nonlinear Problems and Quadratic Constraints

We consider the computation of an approximation to a solution of a nonlinear operator
equation

T (x) = y , (4.1.1)

where T : X → Y is an ill-posed operator between Hilbert spaces X, Y . If only noisy
data yδ with

‖yδ − y‖ ≤ δ (4.1.2)

are available, problem (4.1.1) has to be stabilized by regularization methods. In recent
years, many of the well known methods for linear ill-posed problems have been general-
ized to nonlinear operator equations. Unfortunately, it turns out that convergence and
convergence rates can be shown only under severe restrictions to the operator for most
methods. For example, convergence for Landweber method can be shown only if the
operator fulfills

‖T (x)− T (x̃)− T ′(x̃)(x− x̃)‖ ≤ η‖x− x̃‖ with η < 1/2 , (4.1.3)

whereas convergence rates are only available if, for a solution x† of (4.1.1), there exists a
family of bounded operators Rx with

T ′(x) = RxT
′(x†) and ‖I −Rx‖ ≤ K‖x− x†‖ .

For other prominent iterative methods like Gauss–Newton [Bak92, BNS97], Levenberg–
Marquardt [Han97a], conjugate gradient [Han97b] and Newton–like methods
[Kal97, DES98], convergence can be shown under similar restrictions as (4.1.3).
To obtain convergence rates, much stronger restrictions have to be assumed.

71
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An alternative to the above mentioned iterative methods is Tikhonov regularization,
where an approximation to the solution of (4.1.1) is obtained by minimizing the Tikhonov
functional Jα(x),

Jα(x) = ‖yδ − T (x)‖2 + α‖x− x̄‖2 , (4.1.4)

xδ
α = arg min

x
Jα(x) . (4.1.5)

The advantage of Tikhonov regularization is that convergence of the method, i.e.
xδ

α → x† for δ → 0 and an appropriate parameter choice α = α(δ) holds under weak
assumptions to the operator, see, e.g., [EHN96a], and convergence rates are obtained
for Fréchet differentiable operators with Lipschitz continuous derivative. However,
the difficulties for Tikhonov regularization are a proper choice of the regularization
parameter [Sch93, Ram02a] and the computation of the minimizer of the Tikhonov
functional. As the functional is no longer convex for nonlinear operators T , Jα can
even have local minimizers, and classical optimization routines might fail. Recently,
we have introduced iterative methods for the minimization of the Tikhonov functional
that reconstruct a global minimizer of the Tikhonov functional provided a smoothness
assumption x† − x̄ = T ′(x†)∗ω with small ‖ω‖ holds. We wish to remark that it
might be difficult to show such smoothness conditions for practical problems, and for
exponentially ill-posed problems Hölder-type smoothness conditions will not hold, see
[Hoh97]. Thus it would be advantageous to construct iterative methods that reconstruct
a minimizer of the Tikhonov functional under different assumptions. But this seems
to remain a pipe dream: even here in this paper we had to incorporate some smooth-
ness conditions to prove global minimizing properties of the reconstructed solution.
However, all the here made assumptions on T are within the frame of nonlinear tech-
nologies and they are not that strong than for most of the above quoted iterative schemes.

Here we focus on the development of a method that always finds a critical point of the
Tikhonov functional. Under additional assumptions on the operator and a smoothness
condition on the solution we can then assure that this critical point is a global minimizer
of Jα.

The basic idea for our new iteration scheme goes as follows: consider the Tikhonov
variational formulation of the inverse problem. Due to the nonlinearity, a direct recon-
struction of the global minimizer is not possible. Thats why we aim to solve instead of the
pure Tikhonov functional a sequence of so-called surrogate or replacement functionals.
This idea is borrowed from linear regularization methods with general and mixed smooth-
ness constraints, see e.g. [DDD04, DT04, DT05]. The intention in [DDD04, DT04, DT05]
is to decouple the variational equations with respect to the basis coefficients of the
solution caused by the linear operator. The cost of dealing with a decoupled system
of equations is an iteration process from which strong convergence properties can be
shown. The situation in the nonlinear case is completely different and due to the impact
of the Fréchet derivative one cannot expect to end up with similar schemes than in
[DDD04, DT04, DT05]. However, the basic advantage of using replacement functionals is
that each of the functionals is under certain conditions on the construction process glob-
ally convex. The minimization results then in an easy fixed point iteration. Defining now
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an iteration process by iteratively minimizing a sequence of replacement functionals, we
can show that the sequence of minimizing elements of each individual fixed point iteration
converges in norm towards a critical point of the Tikhonov functional of the nonlinear
inverse problem. Imposing additional assumptions (on the quadratic remainder of the
Taylor series expression of our operator under consideration, and a smoothness condition)
we obtain a uniqueness result, i.e. we are able to show that the reconstructed critical point
is a global minimizer. Finally, applying a proper parameter choice rule, we are able to
adopt classical convergence/order optimality results for Tikhonov regularization methods.

The remaining chapter is organized as follows: In Section 4.2.1, we state the scope of the
problem. In Section 4.2.2, we explain how the replacement functionals are constructed
and we minimize them in Section 4.2.3. The main result of the paper is presented in
Section 4.2.4: strong convergence of the iterates towards a global minimizer. We end this
paper with Section 5.3 in which we demonstrate the capabilities of the proposed scheme
by solving the nonlinear SPECT problem.

4.1.1 Formulation of the Variational Problem

We consider the problem of deriving a minimizer of the Tikhonov functional

Jα(x) = ‖yδ − T (x)‖2 + α‖x− x̄‖2 . (4.1.6)

Due to the nonlinearity of the operator T , the minimizer of the functional might not
be unique, or there might exist even local minimizers, such that a standard minimizing
algorithm can fail in reconstructing a global minimizer. In order to obtain an easier
problem which hopefully has a unique solution, we replace the functional Jα by

Js
α(x, a) := ‖yδ − T (x)‖2 + α‖x− x̄‖2 + C‖x− a‖2 − ‖T (x)− T (a)‖2 (4.1.7)

and proceed as follows:

1. Pick x0 and some proper constant C > 0

2. Derive a sequence {xk}k=0,1,... by the iteration:

xk+1 = arg min
x
Js

α(x, xk) k = 0, 1, 2, . . .

The overall goal of this paper is to show that the sequence {xk}k=0,1,... converges in norm
topology towards a global minimizer of the Tikhonov functional (4.2.2).

In order to achieve this result we proceed in two steps: First, we aim to show norm
convergence of the iterates xk towards a critical point of the Tikhonov functional. In a
second step, we verify that the reconstructed critical point is equal to a global minimizer
of the Tikhonov functional. To make this program running, we have to restrict ourselves
as follows:
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• For the first step we limit the analysis to nonlinear operators T for which

xk
w→ x =⇒ T (xk) → T (x) and T ′(xk)

∗z → T ′(x)∗z for all z , (4.1.8)

‖T ′(x)− T ′(x̃)‖ ≤ L‖x− x̃‖ . (4.1.9)

It may happen that T already meets these conditions as an operator from X → Y .
If not, this can be achieved by assuming more regularity of the solution, i.e. we
have to change the domain of T a little. To this end, let us assume that there exists
a function space Xs, and a compact embedding operator is : Xs → X. Now we can
consider

F̃ = F ◦ is : Xs −→ Y .

We obtain
‖T̃ ′(x)− T̃ ′(x̃)‖ ≤ L‖x− x̃‖X ≤ L‖x− x̃‖Xs . (4.1.10)

If now xk
w→ x in Xs, then xk→x in X and, moreover, (4.1.10) yields T̃ ′(xk) → T̃ ′(x)

and T̃ ′(xk)
∗ → T̃ ′(x)∗ in the operator norm. This argument applies to arbitrary non-

linear continuous and Fréchet differentiable operators F : X → Y with continuous
Lipschitz derivative as long as a function space Xs with compact embedding is to
X is available.

• To process the second step, we additionally impose that x† fulfills a smoothness
condition, T is twice differentiable, and that

‖T (x)− T (x̃)− T ′(x̃)(x− x̃)‖ ≤ ‖T (x)− T (x̃)‖ , (4.1.11)

which is a condition on the quadratic remainder of the Taylor series expansion of T .

4.1.2 Proper Surrogate Functionals

By the definition of the replacemant or so–called surrogate functional Js
α in (4.2.4) it is

not clear whether it is positive definite or even bounded from below. This will be clarified
in this section, i.e. we will show that this is the case provided the constant C is chosen
properly.

For given α > 0 and x0 we define a ball Kr(x̄) with radius r around x̄, where the radius
is given by

r2 :=


‖yδ−T (x0)‖2+α‖x0−x̄‖2

α
for α < 1

‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 for α ≥ 1

. (4.1.12)

This obviously ensures, x0 ∈ Kr(x̄). Furthermore, we define the constant C by

C := max

4, 2

(
sup

x∈Kr(x̄)

‖T ′(x)‖

)2

, 2L
√
‖yδ − T (x0)‖2 + α‖x0 − x̄‖2

 , (4.1.13)

where L is the Lipschitz constant of the Fréchet derivative of T . We assume that x0 was
chosen such that r <∞ and C <∞.
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Lemma 1 Let r and C be chosen by (4.2.6), (4.2.7). Then

C‖x− x0‖2 − ‖T (x)− T (x0)‖2 ≥ 0 (4.1.14)

for all x ∈ Kr(x̄), and, thus, Jα(x) ≤ Js
α(x, x0).

Proof. By Taylors expansion we have

T (x+ h) = T (x) +

1∫
0

T ′(x+ τh)h dτ

and thus

‖T (x)− T (x+ h)‖ ≤
1∫

0

‖T ′(x+ τh)‖‖h‖dτ ≤ sup
x∈Kr(x̄)

‖T ′(x)‖‖h‖ .

Consequently, we get for all x ∈ Kr(x̄)

C‖x− x0‖2 − ‖T (x)− T (x0)‖2 ≥ C‖x− x0‖2 − ( sup
x∈Kr(x̄)

‖T ′(x)‖)2‖x− x0‖2

=
C

2
‖x− x0‖2 ≥ 0 ,

and the functional Js
α(x, x0) is positive for all x ∈ Kr(x̄). �

Next, we show that this carries over to all of the iterates:

Proposition 4.1.1 Let x0, α be given and r, C be defined by (4.2.6), (4.2.7). Then the
functionals Js

α(x, xk) are bounded from below for all k ∈ N and have thus minimizers. For
the minimizer xk+1 of Js

α(x, xk) holds xk+1 ∈ Kr(x̄).

Proof. The proof will be done by induction. For k = 1, we show in a first step that
Js

α(x, x0) is bounded from below. We have

‖yδ−T (x)‖2 = ‖yδ−T (x0)‖2 +‖T (x0)−T (x)‖2 +2〈yδ−T (x0), T (x0)−T (x)〉 . (4.1.15)

Thus,

Js
α(x, x0)− α‖x− x̄‖2 = ‖yδ − T (x0)‖2 + 2〈yδ − T (x0), T (x0)− T (x)〉+ C‖x− x0‖2

≥ ‖yδ − T (x0)‖2 − 2‖yδ − T (x0)‖‖T (x0)− T (x)‖+ C‖x− x0‖2 .

(4.1.16)

Again by Taylor expansion, we get

‖T (x0)− T (x)‖ ≤ ‖T ′(x0)‖‖x0 − x‖+
L

2
‖x0 − x‖2 . (4.1.17)

Now let us assume that Js
α(x, x0) is not bounded from below. As T is continuous, there

exists a sequence {xl}l∈N with ‖xl‖ → ∞ and Js
α(xl, x0) → −∞. In particular, for l large

enough, follows from (4.2.12)

‖T (x0)− T (xl)‖ ≤ L‖x0 − xl‖2 ,
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and combining this estimate with (4.2.11) yields

Js
α(xl, x0)− α‖xl − x̄‖2 ≥ ‖yδ − T (x0)‖2 − 2L‖yδ − T (x0)‖‖xl − x0‖2 + C‖xl − x0‖2 .

From the definition of C in (4.2.7) follows 2L‖yδ − T (x0)‖ ≤ C and thus

Js
α(xl, x0)− α‖xl − x̄‖2 ≥ ‖yδ − T (x0)‖2 ≥ 0,

in contradiction to our assumption Js
α(xl, x0) → −∞, and thus Js

α(x, x0) is bounded from
below. By the same argument, we find Js

α(xl, x0) ≥ α‖xl − x̄‖2 →∞ for any sequence xl

with ‖xl‖ → ∞ and thus the functional is coercive and has a minimizer x1.
As in (4.2.11), we get by using (4.2.12)

Js
α(x1, x0)− α‖x1 − x̄‖2 ≥ ‖yδ − T (x0)‖2 + 2〈yδ − T (x0), T (x0)− T (x1)〉+ C‖x1 − x0‖2

≥ ‖yδ − T (x0)‖2 − 2‖yδ − T (x0)‖‖T ′(x0)‖‖x1 − x0‖
−L‖yδ − T (x0)‖‖x1 − x0‖2 + C‖x1 − x0‖2

By (4.2.7), we have C/2 ≥ L‖yδ − T (x0)‖, and thus

Js
α(x1, x0)−α‖x1− x̄‖2 ≥ ‖yδ−T (x0)‖2−2‖yδ−T (x0)‖‖T ′(x0)‖‖x1−x0‖+

C

2
‖x1−x0‖2 .

(4.1.18)
As x0 ∈ Kr(x̄), it follows from (4.2.7) that ‖T ′(x0)‖ ≤

√
C/2 holds, and we get finally

Js
α(x1, x0)− α‖x1 − x̄‖2 ≥ ‖yδ − T (x0)‖2 − 2

√
C√
2
‖yδ − T (x0)‖‖x1 − x0‖+

C

2
‖x1 − x0‖2

=

(
‖yδ − T (x0)‖ −

√
C√
2
‖x1 − x0‖

)2

≥ 0 . (4.1.19)

In particular, it follows for α < 1

α‖x1 − x̄‖2
(4.2.13)

≤ Js
α(x1, x0) = min

x
Js

α(x, x0) ≤ Js
α(x0, x0)

= ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 ,

i.e.

‖x1 − x̄‖2 ≤ ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2

α
= r2 ,

and for α ≥ 1

‖x1 − x̄‖2 ≤ α‖x1 − x̄‖2
(4.2.13)

≤ Js
α(x1, x0) ≤ Js

α(x0, x0)

= ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 = r2 ,

and thus x1 ∈ Kr(x̄).
By Lemma 11 it follows that C‖x1−x0‖2−‖T (x1)−T (x0)‖2 ≥ 0 and Jα(x) ≤ Js

α(x, x0),
and we get

‖yδ − T (x1)‖2 ≤ Jα(x1) ≤ Js
α(x1, x0) ≤ Js

α(x0, x0) ≤ ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 ,
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and combining this estimate with the definition of C in (4.2.7) yields

2L‖yδ − T (x1)‖ ≤ 2L
√
‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 ≤ C . (4.1.20)

Now let us assume that the following properties hold for all i = 1, · · · k − 1:

xi ∈ Kr(x̄) (4.1.21)

C‖xi − xi−1‖ − ‖T (xi)− T (xi−1)‖ ≥ 0 (4.1.22)

2L‖yδ − T (xi)‖ ≤ C , (4.1.23)

where xi denotes a minimizer of the functional Js
α(x, xi−1). For i = 1, these properties

have already been shown. As for the case i = 1, we have to show that the functional
Js

α(x, xk−1) has a minimizer. First, we show that it is bounded from below: As in (4.2.11)
we get

Js
α(x, xk−1)−α‖x−x̄‖2 ≥ ‖yδ−T (xk−1)‖2−2‖yδ−T (xk−1)‖‖T (xk−1)−T (x)‖+C‖x−xk−1‖2

(4.1.24)
By Taylor expansion, we get

‖T (xk−1)− T (x)‖ ≤ ‖T ′(xk−1)‖‖xk−1 − x‖+
L

2
‖xk−1 − x‖2 . (4.1.25)

Now let us assume that Js
α(x, xk−1) is not bounded from below. As T is continuous, there

exists a sequence {xl}l∈N with ‖xl‖ → ∞ and Js
α(xl, xk−1) → −∞. In particular, for l

large enough, follows from (4.2.17)

‖T (xk−1)− T (xl)‖ ≤ L‖xk−1 − xl‖2 ,

and combining this estimate with (4.2.17) yields

Js
α(xl, xk−1)−α‖xl−x̄‖2 ≥ ‖yδ−T (xk−1)‖2−2L‖yδ−T (xk−1)‖‖xl−xk−1‖2+C‖xl−xk−1‖2 .

From (4.2.16) follows 2L‖yδ − T (xk−1)‖ ≤ C and thus

Js
α(xl, xk−1)− α‖xl − x̄‖2 ≥ ‖yδ − T (xk−1)‖2 ≥ 0,

in contradiction to our assumption Js
α(xl, xk−1) → −∞, and thus Js

α(x, xk−1) is bounded
from below. By the same argument, we find Js

α(xl, xk−1) ≥ α‖xl − x̄‖2 → ∞, for any
sequence xl with ‖xl‖ → ∞ and thus the functional is coercive and has a minimizer xk.
As in (4.2.17), we get by using (4.2.17)

Js
α(xk, xk−1)− α‖xk − x̄‖2 ≥ ‖yδ − T (xk−1)‖2 + 2〈yδ − T (xk−1), T (xk−1)− T (xk)〉

+C‖xk − xk−1‖2

≥ ‖yδ − T (xk−1)‖2 − 2‖yδ − T (xk−1)‖‖T ′(xk−1)‖‖xk − xk−1‖
−L‖yδ − T (xk−1)‖‖xk − xk−1‖2 + C‖xk − xk−1‖2 .

By (4.2.7) and assumption (4.2.16) we have C/2 ≥ L‖yδ − T (xk−1)‖, and thus

Js
α(xk, xk−1)− α‖xk − x̄‖2 ≥ ‖yδ − T (xk−1)‖2 − 2‖yδ − T (xk−1)‖‖T ′(xk−1)‖‖xk − xk−1‖

+
C

2
‖xk − xk−1‖2 .
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As xk−1 ∈ Kr(x̄), it follows from (4.2.7) that ‖T ′(xk−1)‖ ≥
√
C/2 holds, and we get

finally

Js
α(xk, xk−1)− α‖xl − x̄‖2 ≥ ‖yδ − T (xk−1)‖2 − 2

√
C√
2
‖yδ − T (xk−1)‖‖xk − xk−1‖

+
C

2
‖xk − xk−1‖2

=

(
‖yδ − T (xk−1)‖ −

√
C√
2
‖xk − xk−1‖

)2

≥ 0 . (4.1.26)

In particular, it follows for α < 1 by assumption (4.2.15)

α‖xk − x̄‖2
(4.2.18)

≤ Js
α(xk, xk−1) = min

x
Js

α(x, xk−1) ≤ Js
α(xk−1, xk−1)

= ‖yδ − T (xk−1)‖2 + α‖xk−1 − x̄‖2

≤ ‖yδ − T (xk−1)‖2 + α‖xk−1 − x̄‖2

+C‖xk−1 − xk−2‖2 − ‖T (xk−1)− T (xk−2)‖2

= Js
α(xk−1, xk−2) ≤ Js

α(xk−2, xk−2) ≤ · · ·sα (x0, x0)

= ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2

i.e.

‖xk − x̄‖2 ≤ ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2

α
≤ r2 ,

and in the same way follows for α ≥ 1

‖xk − x̄‖2 ≤ α‖xk − x̄‖2
(4.2.18)

≤ Js
α(xk, xk−1) ≤ Js

α(xk−1, xk−1) ≤ · · · ≤ Js
α(x0, x0)

= ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 ≤ r2 ,

and thus xk ∈ Kr(x̄).
As in Lemma 11, it follows C‖xk − xk−1‖2 − ‖T (xk) − T (xk−1)‖2 ≥ 0 and Jα(x) ≤
Js

α(x, xk−1), and we get

‖yδ − T (xk)‖2 ≤ Jα(xk) ≤ Js
α(xk, xk−1) ≤ Js

α(xk−1, xk−1) ≤ · · · ≤ Js
α(x0, x0)

= ‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 , (4.1.27)

and combining this estimate with the definition of C (4.2.7) yields

2L‖yδ − T (xk)‖ ≤ 2L
√
‖yδ − T (x0)‖2 + α‖x0 − x̄‖2 ≤ C , (4.1.28)

i.e. we have shown that the assumptions (4.2.14)-(4.2.16) hold also for i = k. �

Corollary 2 The sequences of functionals {Jα(xk)}k=0,1,2,... and {Js
α(xk+1, xk)}k=0,1,2,...

are non-increasing.

Proof. This follows now by Jα(xk+1) ≤ Js
α(xk+1, xk) ≤ Js

α(xk, xk) = Jα(xk) ≤
Js

α(xk, xk−1). �
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4.1.3 Minimization of Surrogate Functionals

In this section, we elaborate necessary conditions for a minimizer of the functional
Js

α(x, xk−1). Moreover, we prove that Js
α(x, xk) is globally convex for each k = 0, 1, 2, . . . .

Lemma 3 The derivative DJs
α(x, a)h of Js

α(x, a) is given by

DJs
α(x, a)h = −2〈T ′(x)∗(yδ − T (a)) + (Ca+ αx̄)− (C + α)x, h〉 . (4.1.29)

Proof. It is

Js
α(x+ h, a) = ‖yδ − T (x+ h)‖2 + α‖x− x̄+ h‖2 +C‖x− a+ h‖2−‖T (x+ h)− T (a)‖2 .

By Taylor’s expansion, T (x+ h) = T (x) + T ′(x)h+O(‖h‖2), we get

Js
α(x+ h, a) = ‖yδ − T (x)− T ′(x)h+O(‖h‖2)‖2 + α‖x− x̄+ h‖2 + C‖x− a+ h‖2

−‖T (x)− T (a) + T ′(x)h+O(‖h‖2)‖2

= ‖yδ − T (x)‖2 + ‖T ′(x)h‖2 − 2〈yδ − T (x), T ′(x)h〉
+α(‖x− x̄‖2 + ‖h‖2 + 2〈x− x̄, h〉) + C(‖x− a‖2 + ‖h‖2 + 2〈x− a, h〉)
−(‖T (x)− T (a)‖2 + ‖T ′(x)h‖2 + 2〈T (x)− T (a), T ′(x)h〉) +O(‖h‖2) .

It follows

Js
α(x+ h, a)− Js

α(x, a)

2
= −〈T ′(x)∗(yδ − T (x)), h〉+ α〈x− x̄, h〉+ C〈x− a, h〉

−〈T ′(x)∗(T (x)− T (a)), h〉+O(‖h‖2)

= −〈T ′(x)∗(yδ − T (a))− α(x− x̄)− C(x− a), h〉+O(‖h‖2)

= −〈T ′(x)∗(yδ − T (a))− (C + α)x+ αx̄+ Ca, h〉+O(‖h‖2) .

and thus the derivative is given by (4.1.29). �

The necessary condition for a minimum of (4.2.4) thus reads as

x =
1

C + α

(
T ′(x)∗(yδ − T (a)) + αx̄+ Ca

)
.︸ ︷︷ ︸

=:Φα(x,a)

(4.1.30)

To minimize (4.2.4), we will use a fixed point iteration for Φα(x, a). As Js
α(x, a) has by

Proposition 4.2.1 a minimizer, (4.1.30) has at least one fixed point. It remains to show
that Φα(x, a) is a contraction operator:

Lemma 4 The operator Φα(x, a) is a contraction, i.e. ‖Φα(x, a)−Φα(x̃, a)‖ ≤ q‖x− x̃‖,
if

q :=
L

C + α

√
Jα(a) < 1 .
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Proof. We have Φα(x, a)− Φα(x̃, a) = 1
C+α

(T ′(x)− T ′(x̃))∗(yδ − T (a)), and by using the
Lipschitz–continuity of T ′ we get

‖Φα(x, a)− Φα(x̃, a)‖ =
1

C + α
‖T ′(x)− T ′(x̃)‖‖yδ − T (a)‖

≤ L

C + α
‖yδ − T (a)‖‖x− x̃‖ ≤ L

C + α

√
Jα(a)‖x− x̃‖ .

�

Proposition 4.1.2 In our algorithm, the operator Φα(x, xk) is for all k = 0, 1, 2, . . . and
all α ≥ 0 a contraction.

Proof. By the definition of C in (4.2.7), Lemma 15 (setting a = x0), we deduce that
Φα(x, x0) is a contraction with

q =
L

C + α

√
Jα(x0) =

C

2(C + α)
≤ 1

2
< 1.

With the help of Corollary 12, we complete the proof

‖Φα(x, xk)− Φα(x̃, xk)‖ ≤ L

C + α

√
Jα(xk)‖x− x̃‖ ≤ L

C + α

√
Jα(xk−1)‖x− x̃‖

≤ . . .
L

C + α

√
Jα(x0)‖x− x̃‖ . (4.1.31)

�

Up to here, we do know that our fixed point iteration for (4.1.30) converges towards a
critical point of Js

α(x, xk).

Proposition 4.1.3 The necessary equation (4.1.30) for a minimum of the functional
Js

α(x, xk) has a unique fixed point, and the fixed point iteration converges towards the
minimizer.

Proof. To prove this Proposition, we have to investigate the Taylor expansion of Js
α more

closely. By Taylor’s expansion for T and the Lipschitz–continuity of T ′ we get

T (x+ h) = T (x) + T ′(x)h+R(x, h) (4.1.32)

with

‖R(x, h)‖ ≤ L

2
‖h‖2 . (4.1.33)

As in the proof of Lemma 13 we get

Js
α(x+ h, xk) = Js

α(x, xk) +DJs
α(x, xk)h

−2〈yδ − T (x), R(x, h)〉 − 2〈T (x)− T (xk), R(x, h)〉+ (α+ C)‖h‖2

= Js
α(x, xk) +DJs

α(x, xk)h− 2〈yδ − T (xk), R(x, h)〉+ (α+ C)‖h‖2 ,

(4.1.34)
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and by using C ≥ 2L‖yδ − T (xk)‖ follows

−2〈yδ − T (xk), R(x, h)〉+ (α+ C)‖h‖2 ≥ −2‖yδ − T (xk)‖‖R(x, h)‖+ (α+ C)‖h‖2

≥ (−L‖yδ − T (xk)‖+ α+ C)‖h‖2

≥ (C/2 + α)‖h‖2 . (4.1.35)

Now assume x̃ is a critical point of Js
α, i.e. DJs

α(x̃, xk)h = 0 for all h. Consequently, by
(4.1.34), (4.1.35) we have

Js
α(x̃+ h, xk) ≥ Js

α(x̃, xk) + (C/2 + α)‖h‖2 ,

and in particular

Js
α(x̃+ h, xk) > Js

α(x̃, xk) for all h 6= 0 . (4.1.36)

Thus, every critical point is a global minimizer of Js
α(x, xk), and, again by (4.1.36), there

exists only one global minimizer. �

By assuming more regularity on T it is possible to sharpen the above given statement:

Proposition 4.1.4 Let T be a twice continuously differentiable operator. Then the func-
tional Js

α(x, xk) is strictly convex.

Proof. With a slight abuse of notation we set Js
α(x) := Js

α(x, xk). By (4.1.34) we have

Js
α(x+ h) = Js

α(x) +DJs
α(x)h+ gα(x, h) , (4.1.37)

where gα(x, h) is defined by

gα(x, h) := −2〈yδ − T (xk), R(x, h)〉+ (α+ C)‖h‖2 . (4.1.38)

For strict convexity, we have to show that

Js
α((1− λ)x1 + λx2) < (1− λ)Js

α(x1) + λJs
α(x2)

holds for λ ∈ (0, 1) and arbitrary x1, x2. We have

Js
α((1− λ)x1 + λx2)) = Js

α(x1 + λ(x2 − x1)) = Js
α(x2 + (1− λ)(x1 − x2))

= (1− λ)Js
α(x1 + λ(x2 − x1)) + λJs

α(x2 + (1− λ)(x1 − x2))

(4.1.39)

and with

Js
α(x1 + λ(x2 − x1)) = Js

α(x1) + λDJs
α(x1)(x2 − x1)

+gα(x1, λ(x2 − x1))

Js
α(x2 + (1− λ)(x1 − x2)) = Js

α(x2) + (1− λ)DJs
α(x2)(x1 − x2)

+gα(x2, (1− λ)(x1 − x2))
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we obtain

Js
α((1− λ)x1 + λx2)) = (1− λ)Js

α(x1) + λJs
α(x2)

+λ(1− λ) [DJs
α(x1)−DJs

α(x2)] (x2 − x1)

+(1− λ)gα(x1, λ(x2 − x1)) + λgα(x2, (1− λ)(x1 − x2)) .

Thus Js
α is strict convex if for all λ ∈ (0, 1)

D(x1, x2, λ) := λ(1− λ) [DJs
α(x1)−DJs

α(x2)] (x2 − x1)

+(1− λ)gα(x1, λ(x2 − x1)) + λgα(x2, (1− λ)(x1 − x2)) < 0 .

We have

DJs
α(x1)−DJs

α(x2)

2
(x2 − x1) = −〈T ′(x1)

∗(yδ − T (xk)) + Cxk + αx̄− (C + α)x1, x2 − x1〉

+〈T ′(x2)
∗(yδ − T (xk)) + Cxk + αx̄− (C + α)x2, x2 − x1〉

= −(C + α)‖x2 − x1‖2

−〈(T ′(x1)− T ′(x2))
∗(yδ − T (xk)), x2 − x1〉 .

= −(C + α)‖x2 − x1‖2

−〈yδ − T (xk), T
′(x1)− T ′(x2)(x2 − x1)〉.

As T is twice continuously Fréchet differentiable, it is

T ′(x1) = T ′(x2) +

1∫
0

T ′′(x2 + τ(x1 − x2))(x1 − x2, ·) dτ

and thus,

[DJs
α(x1)−DJs

α(x2)] (x2 − x1) = −2(C + α)‖x2 − x1‖2 +

2〈yδ − T (xk),

1∫
0

T ′′(x2 + τ(x1 − x2))(x1 − x2)
2dτ〉,

(4.1.40)

where we have used the shorthand T ′′(·)(h, h) = T ′′(·)(h)2. Again, as T is twice continu-
ously Fréchet-differentiable, the function R(x, h) in (4.2.27) is given by

R(x, h) =

1∫
0

(1− τ)T ′′(x+ τh)h2 dτ ,

and thus we obtain

R(x1, λ(x2 − x1)) = λ2

1∫
0

(1− τ)T ′′(x1 + τλ(x2 − x1))(x2 − x1)
2 dτ

=

1∫
1−λ

(τ − (1− λ))T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ (4.1.41)
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and in the same way

R(x2, (1− λ)(x1 − x2)) =

1−λ∫
0

(1− λ− τ)T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ . (4.1.42)

Combining definition (4.2.27) and equations (4.2.29), (4.2.30) and (4.2.31) yields

D(x1, x2, λ) = −λ(1− λ)(C + α)‖x1 − x2‖2 + 2〈yδ − T (xk), T (x1, x2, λ)〉 , (4.1.43)

where

T (x1, x2, λ) := λ(1− λ)

1∫
0

T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−λ
1−λ∫
0

(1− λ− τ)T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ .

The functional T (x1, x2, λ) can now be recasted as follows

T (x1, x2, λ) = λ(1− λ)

1−λ∫
0

T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

+λ(1− λ)

1∫
1−λ

T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−λ
1−λ∫
0

(1− λ− τ)T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

= λ

1−λ∫
0

τT ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

+(1− λ)

1∫
1−λ

(1− τ)T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ.

In order to estimate ‖T (x1, x2, λ)‖ it is necessary to estimate the integrals separately. Due
to the Lipschitz–continuity of the first derivative, the second derivative can be globally
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estimated by ‖T ′′(x)‖ ≤ L, and it follows

λ

∥∥∥∥∥∥
1−λ∫
0

τT ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

∥∥∥∥∥∥ ≤ λ
(1− λ)2

2
L‖x1 − x2‖2 ,

(1− λ)

∥∥∥∥∥∥
1∫

1−λ

(1− τ)T ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

∥∥∥∥∥∥ ≤ (1− λ)
λ2

2
L‖x1 − x2‖2

and thus

‖T (x1, x2, λ)‖ ≤ λ(1− λ)

2
L‖x1 − x2‖2 . (4.1.44)

Combining (4.2.32) and (4.2.33) yields for λ ∈ (0, 1)

D(x1, x2, λ) ≤ −λ(1− λ)(C + α)‖x1 − x2‖2 + 2‖yδ − T (xk)‖‖T (x1, x2, λ)‖

≤ −λ(1− λ)(C + α)‖x1 − x2‖2 +
λ(1− λ)

2
2L‖yδ − T (xk)‖‖x1 − x2‖2

(4.2.19)

≤ −λ(1− λ)

(
C

2
+ α

)
‖x1 − x2‖2 ≤ −λ(1− λ)

C

2
‖x1 − x2‖2 < 0 ,

and thus the functional is strictly convex. �

4.1.4 Convergence Analysis

Within this section we aim to show that the sequence of iterates xk converges strongly
towards a minimizer of the Tikhonov functional. To achieve norm convergence, we prove
some preliminary Lemmas.

Lemma 5 The sequence of iterates {xk}k=0,1,2,... has a weakly convergent subsequence.

Proof. This is an immediate consequence of Proposition 4.2.1, in which it is shown
that for k = 0, 1, 2, . . . the iterates xk are contained in Kr(x̄), i.e. ‖xk+1 − x̄‖X ≤ r or
equivalently ‖xk+1‖X ≤ r + ‖x̄‖X < ∞. Since the iterates are uniformly bounded, we
deduce that there exists at least one accumulation point x?

α with xk,l
w−→ x?

α, where xk,l

denotes a subsequence of xk. �

Lemma 6 The sequence {‖xk+1 − xk‖}k=0,1,2,... converges to zero.

Proof. With the help of Corollary 12, we observe that

0 ≤
N∑
k

{
C‖xk+1 − xk‖2 − ‖T (xk+1)− T (xk)‖2

}
≤

N∑
k

{Js
α(xk+1, xk)− Jα(xk+1)} ≤

N∑
k

{Jα(xk)− Jα(xk+1)}

= Jα(x0)− Jα(xN+1) ≤ Jα(x0) ,
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i.e. the finite sums are uniformly bounded (independent on N). By the Taylor expansion
of T , we have

‖T (xk+1)− T (xk)‖ ≤
∫ 1

0

‖T ′(xk + τ(xk+1 − xk))‖‖xk+1 − xk‖ dτ ≤
C

2
‖xk+1 − xk‖ ,

and thus

0 ≤ C

2
‖xk+1 − xk‖2 ≤ C‖xk+1 − xk‖2 − ‖T (xk+1)− T (xk)‖2 −→ 0

as k →∞ and the assertion follows. �

Lemma 7 Every subsequence of xk has a convergent subsequence xk,l that converges
strongly towards a function x?

α, and x?
α satisfies the necessary condition for a minimizer

of the Tikhonov functional:

α(x?
α − x̄) = T ′(x?

α)∗(yδ − T (x?
α)) . (4.1.45)

Proof. According to (4.1.30), the minimizer xk+1 of Js
α(x, xk) fulfills

xk+1 =
1

C + α

(
Cxk + T ′(xk+1)

∗(yδ − T (xk)) + αx̄
)
.

Thus,

xk+1 − xk = − α

α+ C
xk

+
1

C + α

(
T ′(xk)

∗(yδ − T (xk)) + αx̄+ (T ′(xk+1)− T ′(xk))
∗
(yδ − T (xk))

)
(4.1.46)

and, moreover, by Lemma 20, ‖xk+1 − xk‖ → 0, and thus

‖ (T ′(xk+1)− T ′(xk))
∗
(yδ − T (xk))‖ ≤ L‖xk − xk+1‖‖yδ − T (x0)‖ → 0 .

It follows by taking the limit k →∞ in (4.2.35),

0 = lim
k→∞

(
α(x̄− xk) + T ′(xk)

∗(yδ − T (xk))
)
. (4.1.47)

As the sequence xk is bounded, every subsequence has a weakly convergent subsequence.
Let xk,l be an arbitrary weakly convergent subsequence with weak limit x?

α (for simplicity,
we will denote this sequence by xk, too). Since

T ′(xk)
∗(yδ − T (xk)) = T ′(xk)

∗(yδ − T (x?
α)) + T ′(xk)

∗(T (x?
α)− T (xk)) ,

and because of ‖T ′(xk)
∗(T (x?

α)− T (xk))‖ ≤ 2C‖T (x?
α)− T (xk)‖ → 0 and by assumption

(4.2.5), i.e. T ′(xk)
∗(yδ − T (x?

α)) → T ′(x?
α)∗(yδ − T (x?

α)), we consequently obtain

lim
k→∞

T ′(xk)
∗(yδ − T (xk)) = T ′(x?

α)∗(yδ − T (x?
α)) . (4.1.48)
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Combining (4.2.37) with (4.2.35) proves that xk,l converges, and as x?
α is the weak limit

of the sequence, xk,l → x?
α. Equation (4.2.34) follows by taking the limit in (4.2.36). �

In principle, the limits of different convergent subsequences of xk can be different. Let
xk,l×∗

α be a subsequence of xk, and denote by x̃k,l the predecessor of xk,l in xk, i.e. xk,l = xi

and x̃k,l = xi−1. Then we observe

Js
α(xk,l, x̃k,l) → Jα(x∗α)

Morover, as we have Js
α(xk+1,xk

) ≤ Jα(xk, xk−1) for all k, it turn out that the value of the
Tikhonov functional for every limit x∗α of a convergent subsequence stays the same:

Jα(x∗α) = const . (4.1.49)

We will now give a simple criterion that ensures convergence of the whole sequence xk.

Theorem 8 Assume that there exists at least one isolated limit x∗α of a subsequence xk,l

of xk. Then xk → x∗α holds.

Proof. By x∗α we will denote the isolated limit of the sequence xk,l. Let M denote the
set of all limits of subsequences of the sequence {xk}, and M1 := M \ {x∗α}. Setting
r = dist(x∗α,M1)/2, we define

Br := {xk : ‖xk − x∗α‖ ≤ r}
B̄r := {xk : xk 6∈ Kr} .

Now let us assume M1 6= ∅. Then both Br, B̄r contain infinitely many elements. In
particular, there exist infinitely many pairs of iterates xk, xk+1 with xk ∈ Kr and xk+1 ∈
B̄r, and we can define a subseqence x̃k by picking all pairs xk ∈ Br and xk+1 ∈ B̄r out of
the sequence {xk}k∈N, i.e.

x̃2l = xk ∈ Br

(4.1.50)

x̃2l+1 = xk+1 ∈ B̄r

Because of Lemma 20 we observe ‖x2l − x2l+1‖ → 0, and with (4.1.50) follows that the
elements of x̃l come arbitrary close to ∂Br = {x : ‖x− x∗α‖ = r}, i.e.

lim
l→∞

‖x̃l − x∗α‖ = r . (4.1.51)

According to Lemma 21, every subsequence of xk has a convergent subseqence. Let x̃l,k be
a convergent subsequence of x̃l with limit x̃∗α. Because of (4.1.51) holds x̃∗α ∈ ∂Br. On the
other hand, as x∗α 6= x̃∗α, we have x̃∗α ∈M1, which is a contradiction to dist(x∗α,M1) = 2r.

We conclude M1 = ∅, i.e. x∗α is the only limit of convergent subsequences of xk. As
by Lemma 21 every subsequence of xk has a subsequence that converges towards x∗α, the
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whole sequence converges towards x∗α by the convergence principles. �

On the other hand, we conclude the sequence xk can only not converge if the Tikhonov
functional has a dense set of critical points, and the belonging functional values are
constant.

By the following Proposition, the fixed point x?
α is also a minimizer for the functional

Js
α(x, x?

α).

Proposition 4.1.5 The accumulation point x?
α is a minimizer for the functional

Js
α(x, x?

α).

Proof. We aim to show that for all h ∈ X,

Js
α(x?

α + h, x?
α) ≥ Js

α(x?
α, x

?
α) +

C

2
‖h‖2 .

This is obtained by making use of

Js
α(x?

α+h, x?
α) = Js

α(x?
α, x

?
α)+2〈yδ−T (x?

α), T (x?
α)−T (x?

α+h)〉+2〈α(x?
α−x̄), h〉+(α+C)‖h‖2

and
α(x?

α − x̄) = T ′(x?
α)∗(yδ − T (x?

α)) .

With the Lipschitz–continuity of T ′ this results in

Js
α(x?

α + h, x?
α) ≥ Js

α(x?
α, x

?
α)− 2‖yδ − T (x?

α)‖‖T (x?
α)− T (x?

α + h) + T ′(x?
α)h‖

+(α+ C)‖h‖2

≥ Js
α(x?

α, x
?
α)− 2

C

2L

L

2
‖h‖2 + (α+ C)‖h‖2

= Js
α(x?

α, x
?
α) +

C

2
‖h‖2 + α‖h‖2s

α(x?
α, x

?
α) +

C

2
‖h‖2 .

�

Equation (4.2.34) states that our algorithm reconstructs at least a critical point of the
Tikhonov functional. In general, a critical point will not always be a minimizer of
the Tikhonov functional. However, we will give a condition that ensures this property.
Namely, if we impose the condition (4.1.11) and do assume that the solution x† fulfills a
smoothness condition, then we can show that every critical point of the Tikhonov func-
tional is a global minimizer. We wish to remark that (4.1.11) is a rather strong condition.
However, conditions of this type have been used earlier, e.g. for Landweber iteration
[HNS95, Ram99] and for Levenberg-Marquardt iteration [Han97a].

Theorem 9 Let T be a twice Fréchet differentiable operator with (4.1.11). If a smooth-
ness condition

x† − x̄ = T ′(x†)∗ω , L‖ω‖ < 1/3 (4.1.52)

holds, and the regularization parameter is chosen with

α = δ/η and η ≤ ‖ω‖ (4.1.53)

then (4.2.34) has a unique solution. Thus the minimizer of the Tikhonov-functional is
unique, too.
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Proof. Let xδ
α denote a global minimizer of the Tikhonov functional, and x?

α be a critical
point. With T (x?

α) = T (xδ
α) + T ′(xδ

α)(x?
α − xδ

α) +R(xδ
α, x

?
α − xδ

α) we obtain

‖yδ−T (x?
α)‖2 − ‖yδ − T (xδ

α)‖2 = ‖T (xδ
α)− T (x?

α)‖2 + 2〈yδ − T (xδ
α), T (xδ

α)− T (x?
α)〉

= ‖T (xδ
α)− T (x?

α)‖2 + 2〈T ′(xδ
α)∗(yδ − T (xδ

α)), xδ
α − x?

α〉 − 2〈yδ − T (xδ
α), R(xδ

α, x
?
α − xδ

α)〉
(4.2.34)

= ‖T (xδ
α)− T (x?

α)‖2 + 2α〈xδ
α − x̄, xδ

α − x?
α〉 − 2〈yδ − T (xδ

α), R(xδ
α, x

?
α − xδ

α)〉 .

Because of

α‖x?
α − x̄‖2 − α‖xδ

α − x̄‖2 = α‖x?
α − xδ

α‖2 + 2α〈x?
α − xδ

α, x
δ
α − x̄〉

it follows that

Jα(x?
α)− Jα(xδ

α) = ‖yδ − T (x?
α)‖2 − ‖yδ − T (xδ

α)‖2 + α‖x?
α − x̄‖2 − α‖xδ

α − x̄‖2

= ‖T (xδ
α)− T (x?

α)‖2 + α‖x?
α − xδ

α‖2 − 2〈yδ − T (xδ
α), R(xδ

α, x
?
α − xδ

α)〉.
(4.1.54)

By the same argument, we get

Jα(xδ
α)− Jα(x?

α) = ‖T (xδ
α)− T (x?

α)‖2 + α‖x?
α − xδ

α‖2 − 2〈yδ − T (x?
α), R(x?

α, x
δ
α − x?

α)〉 .
(4.1.55)

Now, adding (4.1.54) and (4.1.55) yields

0 = 2‖T (xδ
α)− T (x?

α)‖2 + 2α‖x?
α − xδ

α‖2

−2〈yδ − T (xδ
α), R(xδ

α, x
?
α − xδ

α)〉 − 2〈yδ − T (x?
α), R(x?

α, x
δ
α − x?

α)〉 . (4.1.56)

For twice continuous differentiable operators, the quadratic remainder of the Taylor
series is given by

R(xδ
α, x

?
α − xδ

α) =

1∫
0

(1− τ)T ′′(xδ
α + τ(x?

α − xδ
α))(x?

α − xδ
α, x

?
α − xδ

α) dτ

R(x?
α, x

δ
α − x?

α) =

1∫
0

(1− τ)T ′′(x?
α + τ(xδ

α − x?
α))(xδ

α − x?
α, x

δ
α − x?

α) dτ .

Setting τ = 1− τ ′ and h = xδ
α − x?

α and we obtain

R(xδ
α, x

?
α − xδ

α) =

1∫
0

τ ′T ′′(x?
α + τ ′h)(h, h) dτ ′
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and thus

〈yδ − T (xδ
α), R(xδ

α, x
?
α − xδ

α)〉 = 〈yδ − T (xδ
α),

1∫
0

τT ′′(x?
α + τh)(h, h) dτ〉

= 〈yδ − T (xδ
α),

1∫
0

(τ − 1)T ′′(x?
α + τh)(h, h) dτ〉+ 〈yδ − T (xδ

α),

1∫
0

T ′′(x?
α + τh)(h, h) dτ〉

= −〈yδ − T (xδ
α), R(x?

α, h)〉+ 〈yδ − T (xδ
α),

1∫
0

T ′′(x?
α + τh)(h, h) dτ〉 (4.1.57)

Inserting (4.1.57) in (4.1.56) yields

0 = 2‖T (xδ
α)− T (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2〈T (x?
α)− T (xδ

α), R(x?
α, x

δ
α − x?

α)〉

−2〈yδ − T (xδ
α),

1∫
0

T ′′(x?
α + τh)(h, h) dτ〉

≥ 2‖T (xδ
α)− T (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2‖T (x?
α)− T (xδ

α)‖‖R(x?
α, x

δ
α − x?

α)‖

−2‖yδ − T (xδ
α)‖‖

1∫
0

T ′′(x?
α + τh)(h, h) dτ‖

By (4.1.11) we conclude ‖R(x?
α, x

δ
α − x?

α)‖ ≤ ‖T (xδ
α)− T (x?

α)‖, and from the smoothness
condition (4.1.52), see [EHN96a] p.246, it follows

‖yδ − T (xδ
α)‖ ≤ δ + 2α‖ω‖

(4.1.53)

≤ 3α‖ω‖ .

Altogether we get

0 ≥ 2‖T (xδ
α)− T (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2‖T (x?
α)− T (xδ

α)‖‖R(x?
α, x

δ
α − x?

α)‖

−2‖yδ − T (xδ
α)‖‖

1∫
0

T ′′(x?
α + τh)(h, h) dτ‖

≥ (2− 6L‖ω‖)α‖x?
α − xδ

α‖2 ≥ 0 ,

and thus we have shown (2 − 6L‖ω‖)α‖x?
α − xδ

α‖2 = 0, and because of (4.1.52) holds
x?

α = xδ
α. �

4.1.5 Regularization Properties

Conditions (4.1.11), (4.1.52) ensure the convergence of our algorithm towards the unique
minimizer of the Tikhonov functional. Using a proper parameter choice rule for the
regularization parameter gives convergence/convergence rates for Tikhonov regularization.
We might recall a few well known parameter rules.
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(I) Let T be a weakly sequentially closed operator, and the regularization parameter α
chosen such that α(δ) → 0 and δ2/α→ 0 as δ → 0. Then every sequence xδk

αk
with δk

has a convergent subsequence that converges toward an x̄- minimum norm solution
x†. In particular, if a smoothness condition (4.1.52) holds, and the regularization
parameter is chosen by α = δ/η, η ≤ ‖ω‖, then we obtain a convergence rate of
O(
√
δ) [EHN96a].

(II) Let T be a Fréchet differentiable operator with (4.1.9). Moreover, assume that x†

fulfills a smoothness condition x† − x̄ = (T ′(x†)∗T ′(x†))νω for ν ∈ [1/2, 1] with
L‖ω‖ < 1/3. If the parameter is chosen by α ∼ δ2/(2ν+1), then we obtain a conver-
gence rate of O(δ2ν/(2ν+1)) [EHN96a].

(III) (Morozov’s discrepancy principle) Let T be a twice continuous differentiable oper-
ator with (4.1.9), and assume x† − x̄ = T ′(x†)∗ω with L‖ω‖ ≤ 0.241. Then there
exists a regularization parameter α ≤ δ/η, η ≤ ‖ω‖ with

δ ≤ ‖yδ − T (xδ
α)‖ ≤ cδ , (4.1.58)

and for a belonging minimizer holds ‖xδ
α−x†‖ = O(

√
δ). A regularization parameter

fulfilling (4.1.58) can be found by testing ‖yδ − T (x
δ

α
k
)‖ for a sequence αk = α0q

k

with appropriate chosen a0 and q < 1, see [Ram03].

Please note that if a solution fulfills smoothness condition from (II), then, for properly
scaled T ′(x†), also a smoothness condition (4.1.52) holds. Thus, if (4.1.11) holds, all rules
are conform with the requirements of our minimization algorithm. Combining all ingredi-
ents and picking a proper parameter rule we may provide the following algorithm which
uses our iteration routine TIREFU (TIkhonov REplacement FUntional) for solving the
nonlinear problem T (x) = y with ‖y − yδ‖ ≤ δ. The exact way for computing a solution
x?

α goes as follows (applying III):

• Define a sequence {αn} with αn
n→∞−→ 0, pick some r and set x0 = x̄ (initial value x0

for the outer iteration)

• while ‖T (x?
α)− yδ‖ > r · δ

– α = αn

– pick an admissible C

– [x?
α] = TIREFU (T , yδ, C, α, x0):

xk+1 = arg min
x
Js

α(x, xk) (solved by a Fixed Point Iteration)

x?
α = lim

k→∞
xk

– x0 = x?
α

end

For this algorithm we may now formulate the following optimality result:
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Theorem 10 Assume that (4.1.11) holds. Then Tikhonov regularization with one of the
parameter rules I-III, where the minimizers are computed by TIREFU , is an optimal
regularization method.

Since in any numerical realization we cannot treat infinite series (computing limits), we
additionally have to incorporate a stopping rule. If Φα(x, a) denotes the operator defined
in (4.1.30), then the algorithm reads as follows:

• Define a sequence {αn} with αn
n→∞−→ 0, pick some r, tolerances τ1 and τ2, set x?

α = x̄

• while ‖T (x?
α)− yδ‖ > r · δ

– α = αn

– pick an admissible C

– [x?
α] = TIREFU (T , yδ, C, α, x0, τ1, τ2)

k = 0
while ‖xk+1 − xk‖ > τ1

l = 0, xk,0 = xk

Repeat
l = l + 1
xk,l = Φα(xk,l−1, xk)

Until ‖xk,l − xk,l+1‖ ≤ τ2
xk+1 = xk,l

k = k + 1
end
x?

α = xk

– x0 = x?
α

end

As we have pointed out, the strongest limitation of TIREFU is condition (4.1.11). How-
ever, this condition was only used once at the very end of our analysis, and we expect
that it will be possible to weaken the condition. As Landweber iteration and Levenberg-
Marquardt iteration work under a similar condition, we might compare TIREFU with
these methods. Landweber iteration is known to be a slow method, and as we use fixed
point methods, we do expect that TIREFU will be faster. Moreover, using our optimiza-
tion routine with rule II, we obtain an optimal method for ν ∈ [1/2, 1]. In contrast, to
obtain convergence rates, Landweber requires an additional conditions T ′(x) = RxT

′(x†),
where Rx is a family of bounded operators with ‖I − Rx‖ ≤ K‖x − x†‖. This condition
is even more restrictive than (4.1.11). In addition, convergence rates are only available
for 0 < ν ≤ 1/2. As for Levenberg-Marquardt, it is only known that the iteration is a
regularization method under a condition slightly more restrictive as (4.1.11), and so far,
nothing is known on convergence rates. Thus we might conclude that TIREFU works
under less restrictive conditions.
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4.2 Multi–Frames and Mixed One–Homogeneous

Constraints

4.2.1 Scope of the Problem

As in the previous section, we consider again the computation of an approximation to a
solution of a nonlinear operator equation

T (x) = y , (4.2.1)

where T : X → Y is an (ill-posed) operator between Hilbert spaces X, Y . If only
noisy data yδ with ‖yδ − y‖ ≤ δ are available, problem (4.2.1) has to be stabilized by
regularization methods. Many of the well known methods for linear ill-posed problems
have been generalized to nonlinear operator equations. But so far all the proposed
schemes for nonlinear problems incorporate at most quadratic regularization. In many
applications the solution is assumed to have sparse expansion which immediately leads
to the involvement of nonquadratic penalties, e.g. `p norms with p < 2. In linear
lore, this problem is still solved, see [DDD04]. In nonlinear inverse problems there is a
very recent first attempt, see [RT05a], which solves nonlinear operator equations with
sparsity constraints. However, recent developments indicate that (higly) redundant
systems, such as frames or systems of frames may yield a gain in this context (optimal
representation/decomposition of the solution to be reconstructed). When dealing with
dictionaries of frame systems, there exist certain methods, e.g. such as basis pursuit
[CDS95], that allow a decomposition of signals/functions into an optimal superposition of
dictionary elements, where optimal means having smallest `1 norm of coefficients among
all such decompositions. In [Tes05b], we have presented a method which combines an
iterated thresholding scheme for solving linear inverse problems while requiring that the
solution is assumed to have a sparse expansion in a multi–frame dictionary. Here we now
also assume that the solution has a sparse expansion in a multi–frame dictionary but we
aim now to extend the theory to nonlinear inverse problems with mixed multi–sparsity
constraints. The main result, coming out by combing previously elaborated results
([DT04, DT05], [RT05b, RT05a], and [Tes05b]) is the development of a new method
which is sort of projected thresholding Landweber iteration for solving a system of fixed
point equations.

As in [Tes05b], let us assume we are given a finite family of preassigned frames
{φi

λ}λ∈Λi,i∈I ⊂ X, n = card(I), for which we have associated frame operators

Fi : X → `2 via Fix = {〈x, φi
λ〉}λ∈Λi

with Ai · I ≤ F ∗
i Fi ≤ Bi · I .

The variational formulation of the nonlinear inverse problem in a multi–frame setting
with so–called multi–sparsity, or more general, multi–one–homogeneous constraints can
be now casted as follows: find sequences of coefficients g = (g1, . . . , gn) ∈ (`2)

n such that

Jα(g) = ‖yδ − T (Kg)‖2
Y + 2α ·ΨL(g) (4.2.2)
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is minimized, where α = (α1, . . . , αn) and ΨL(g) = (Ψ1(L1g1), . . . ,Ψn(Lngn)). In our
case, Kg = K(g1, . . . , gn) =

∑
i∈I F

∗
i gi, but one could also involve, as in [Tes05b], addi-

tional linear and bounded operators Ei, i.e. KE(g1, . . . , gn) =
∑

i∈I EiF
∗
i gi. Moreover,

the Ψi stand for positive, one–homogeneuos, lower semi–continuous and convex penal-
ties (which are usually some weighted `p norms of the frame coefficients), and the infinite
matrices Li are restricted to be isometric mappings. In particular, we also need to require,

‖g‖(`2)n ≤ ‖ΨL(g)‖`1 . (4.2.3)

The strategies for nonlinear cases suggested in [RT05b, RT05a], seem to be also ade-
quate when dealing with multi–sparsity, or more general, with multi–one–homogeneous
constraints. Before sketching the idea, we need to clarify the (`2)

n–framework. First,
for sake of simplicity, we restrict ourselves to Ei = I, for all i. Note that the suggested
theory applies without any changes also to Ei 6= I. For the preassigned frame operators
Fi : X → `2,

K : `2 × . . .× `2 → X via (`2)
n 3 g = (g1, . . . , gn) 7→

∑
i∈I

F ∗
i gi ,

where the Hilbert space (`2)
n is endowed with the scalar 〈g,h〉(`2)n = 〈g1,h1〉`2 + . . . +

〈gn,hn〉`2 and thus the associated norm is given by ‖g‖2
(`2)n = ‖g1‖2

`2
+ . . . + ‖gn‖2

`2
.

Moreover,
〈Kf , h〉X = 〈f , (F1h, . . . , Fnh)〉(`2)n = 〈f , K∗h〉(`2)n ,

and thus,
‖K‖ ≤

√
B1 + . . .+Bn =: B .

The general idea for solving the nonlinear inverse problem in a multi–frame setting goes
now as follows: we replace (4.2.2) by a sequence of functionals from which we hope that
they are easier to treat and that the sequence of minimizers converge in some sense to,
at least, a critical point of (4.2.2). To be more concrete, for g ∈ (`2)

n and some auxiliary
a ∈ (`2)

n, we introduce

Js
α(g,a) := Jα(g) + C‖g − a‖2

(`2)n − ‖T (Kg)− T (Ka)‖2
Y (4.2.4)

and create an iteration process by:

1. Pick g0 ∈ (`2)
n and some proper constant C > 0

2. Derive a sequence {gk}k=0,1,... by the iteration:

gk+1 = arg min
gk∈(`2)n

Js
α(g, gk) k = 0, 1, 2, . . .

In order to avoid ambiguity, we will always denote (gi)k ∈ `2 as the k–th iterate of the i–th
component of gk ∈ (`2)

n, i.e. (`2)
n 3 gk = ((g1)k, . . . , (gn)k), and a particular coefficient

of the k–th iterate with respect to some index λ ∈ Λi is then denoted by (gλ,i)k; in its full
glory we may thus write the k–th iterate gk = ({(gλ,1)k}λ∈Λ1 , . . . , {(gλ,n)k}λ∈Λn) ∈ (`2)

n.
As we shall see later on, in order to prove norm convergence of the iterates gk towards
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a critical point of Jα, we have to restrict ourselves to a class of nonlinear problems for
which all of the following three requirements hold true,

gk
w→ g =⇒ T (Kgk) → T (Kg) ,

FjT
′(Kgk)

∗z → FjT
′(Kg)∗z , for all z and j , (4.2.5)

‖T ′(Kg)− T ′(Kg′)‖ ≤ LB‖g − g′‖(`2)n .

It may happen that T already meets these conditions as an operator from X → Y . If
not, we may proceed as stated in the last section.

The remaining section is organized as follows: In Section 4.2.2, we explain how the
replacement functionals are constructed and discuss the well–posedness of the resulting
problem. In Section 4.2.3, we derive conditions on the minimizing elements. The main
result of the paper is presented in Section 4.2.4: strong convergence of the iterates towards
a critical point. We end with giving a regularization theorem.

4.2.2 Proper Surrogate Functionals

By the definition of Js
α in (4.2.4) it is not clear whether the functional is positive definite

or even bounded from below. This will be clarified in this section, i.e. we will show that
this is the case provided the constant C is chosen properly.

For given multi–parameter α ∈ Rn
+ and g0 ∈ (`2)

n we may define a ball

Kr := {g ∈ (`2)
n : ‖ΨL(g)‖`1 ≤ r} ,

where the radius r is given by

r := Jα(g0)/(2 min{αi}). (4.2.6)

This obviously ensures, g0 ∈ Kr. Furthermore, we define the constant C by

C := 2B2 max

{(
sup
g∈Kr

‖T ′(Kg)‖
)2

, L
√
‖yδ − T (Kg0)‖2 + 2α ·ΨL(g0)

}
, (4.2.7)

where L is the Lipschitz constant of the Fréchet derivative of T . We assume that g0 was
chosen such that r <∞ and C <∞.

Lemma 11 Let r and C be chosen by (4.2.6), (4.2.7). Then, for all g ∈ Kr,

C‖g − g0‖2
(`2)n − ‖T (Kg)− T (Kg0)‖2

Y ≥ 0 (4.2.8)

and thus, Jα(g) ≤ Js
α(g, g0).

Proof. By Taylors expansion we have

T (Kg +Kh) = T (Kg) +

1∫
0

T ′(Kg + τKh)Kh dτ
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and thus we get with h = g0 − g

‖T (Kg)− T (Kg0)‖Y ≤
1∫

0

‖T ′(Kg + τK(g0 − g))‖‖K(g0 − g)‖Xdτ

≤ sup
g∈Kr

‖T ′(Kg)‖‖K(g0 − g)‖X

≤ sup
g∈Kr

‖T ′(Kg)‖B‖g0 − g‖(`2)n

Consequently, we get for all g ∈ Kr

C‖g − g0‖2
(`2)n − ‖T (Kg)− T (Kg0)‖2

Y ≥

C‖g − g0‖2
(`2)n −B2

(
sup
g∈Kr

‖T ′(Kg)‖‖g − g0‖(`2)n

)2

=
C

2
‖g − g0‖2

(`2)n ≥ 0,

and the functional Js
α(g, g0) is non–negative for all g ∈ Kr. �

Next, we show that this carries over to all of the iterates:

Proposition 4.2.1 Let g0, α be given and r, C be defined by (4.2.6), (4.2.7). Then the
functionals Js

α(g, gk) are bounded from below for all k ∈ N and have thus minimizers. For
the minimizer gk+1 of Js

α(g, gk) holds gk+1 ∈ Kr.

Proof. The proof will be done by induction. For k = 1, we show in a first step that
Js

α(g, g0) is bounded from below. We have

‖yδ − T (Kg)‖2
Y = ‖yδ − T (Kg0)‖2

Y + ‖T (Kg0)− T (Kg)‖2
Y

+2〈yδ − T (Kg0), T (Kg0)− T (Kg)〉Y . (4.2.9)

Thus,

Js
α(g, g0)− 2α ·ΨL(g) = ‖yδ − T (Kg0)‖2

Y + 2〈yδ − T (Kg0), T (Kg0)− T (Kg)〉Y
+C‖g − g0‖2

(`2)n (4.2.10)

≥ ‖yδ − T (Kg0)‖2
Y − 2‖yδ − T (Kg0)‖Y ‖T (Kg0)− T (Kg)‖Y

+C‖g − g0‖2
(`2)n .

(4.2.11)

Again by Taylor expansion,

‖T (Kg0)− T (Kg)‖Y ≤ B‖T ′(Kg0)‖‖g0 − g‖(`2)n +
B2L

2
‖g0 − g‖2

(`2)n . (4.2.12)

Now let us assume that Js
α(g, g0) is not bounded from below, e.g. there exists a sequence

gl such that Js
α(gl, g0) → −∞. This can only hold if ‖T (Kg0) − T (Kgl)‖ → ∞, and
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because of (4.2.12) follows ‖gl‖(`2)n → ∞ as well. In particular, for l large enough, we
derive from (4.2.12)

‖T (Kg0)− T (Kgl)‖Y ≤ B2L‖g0 − gl‖2
(`2)n ,

and combining this estimate with (4.2.11) yields

Js
α(gl, g0)−2α·ΨL(gl) ≥ ‖yδ−T (Kg0)‖2

Y−2B2L‖yδ−T (Kg0)‖Y ‖gl−g0‖2
(`2)n+C‖gl−g0‖2

(`2)n .

From the definition of C in (4.2.7) follows 2B2L‖yδ − T (Kg0)‖Y ≤ C and thus

Js
α(gl, g0)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kg0)‖2

Y ≥ 0,

in contradiction to our assumption Js
α(gl, g0) → −∞, and thus Js

α(g, g0) is bounded from
below. By the same argument, we find Js

α(gl, g0) ≥ 2α ·ΨL(gl) for any sequence gl with
‖gl‖(`2)n →∞, and by (4.2.3) we conclude Js

α(gl, g0) →∞, i.e. the functional is coercive
and has a minimizer g1.

As in (4.2.11), we get by using (4.2.12),

Js
α(g1, g0)− 2αΨ(Lg1) ≥ ‖yδ − T (Kg0)‖2

Y

−2B‖yδ − T (Kg0)‖Y ‖T ′(Kg0)‖‖g1 − g0‖(`2)n

−B2L‖yδ − T (Kg0)‖Y ‖g1 − g0‖2
(`2)n + C‖g1 − g0‖2

(`2)n .

By (4.2.7), C/2 ≥ B2L‖yδ − T (Kg0)‖Y , and thus,

Js
α(g1, g0)− 2α ·ΨL(g1) ≥ ‖yδ − T (Kg0)‖2

Y

−2B‖yδ − T (Kg0)‖Y ‖T ′(Kg0)‖‖g1 − g0‖(`2)n

+
C

2
‖g1 − g0‖2

(`2)n .

As g0 ∈ Kr, it follows from (4.2.7) that B‖T ′(Kg0)‖ ≤
√
C/2 holds, and consequently,

Js
α(g1, g0)− 2α ·ΨL(g1) ≥ ‖yδ − T (Kg0)‖2

Y − 2

√
C√
2
‖yδ − T (Kg0)‖Y ‖g1 − g0‖(`2)n

+
C

2
‖g1 − g0‖2

(`2)n

=

(
‖yδ − T (Kg0)‖Y −

√
C√
2
‖g1 − g0‖(`2)n

)2

≥ 0.

In particular,

2 min{αi}‖ΨL(g1)‖`1 ≤ 2α ·ΨL(g1) ≤ Js
α(g1, g0) = min

g
Js

α(g, g0) ≤ Js
α(g0, g0) = Jα(g0) ,

i.e. ‖ΨL(g1)‖`1 ≤ Jα(g0)/(2 min{αi}) = r, and thus, g1 ∈ Kr. Next, thanks to Lemma
11,

C‖g1 − g0‖2
`2
− ‖T (Kg1)− T (Kg0)‖2

Y ≥ 0 and Jα(g1) ≤ Js
α(g1, g0) ,
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and thus,

‖yδ − T (Kg1)‖2
Y ≤ Jα(g1) ≤ Js

α(g1, g0) ≤ Js
α(g0, g0) ≤ ‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0),

and combining this estimate with the definition of C in (4.2.7) yields

2B2L‖yδ − T (Kg1)‖Y ≤ 2B2L
√
‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0) ≤ C. (4.2.13)

For applying the induction step, assume that for all i = 1, · · · k−1, the following properties
hold true:

gi ∈ Kr (4.2.14)

C‖gi − gi−1‖2
(`2)n − ‖T (Kgi)− T (Kgi−1)‖2

Y ≥ 0 (4.2.15)

2B2L‖yδ − T (Kgi)‖Y ≤ C, (4.2.16)

where gi denotes a minimizer of the functional Js
α(g, gi−1). For i = 1, these properties have

already been shown. As for the case i = 1, we have to show that the functional Js
α(g, gk−1)

has a minimizer. First, we show that it is bounded from below: As in (4.2.11),

Js
α(g, gk−1)− 2α ·ΨL(g) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2‖yδ − T (Kgk−1)‖Y ‖T (Kgk−1)− T (Kg)‖Y

+C‖g − gk−1‖2
(`2)n .

By Taylor expansion,

‖T (Kgk−1)− T (Kg)‖Y ≤ ‖T ′(Kgk−1)‖Y ‖gk−1 − g‖(`2)n +
B2L

2
‖gk−1 − g‖2

(`2)n . (4.2.17)

Let us now assume that Js
α(g, gk−1) is not bounded from below. As in the case k = 1,

there exists a sequence {gl}l∈N with ‖gl‖(`2)n →∞ and Js
α(gl, gk−1) → −∞. In particular,

for l large enough, follows from (4.2.17)

‖T (Kgk−1)− T (Kgl)‖Y ≤ B2L‖gk−1 − gl‖2
(`2)n ,

and combining this estimate with (4.2.17) yields

Js
α(gl, gk−1)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2BL‖yδ − T (Kgk−1)‖Y ‖gl − gk−1‖2
(`2)n

+C‖gl − gk−1‖2
(`2)n .

By (4.2.16), 2B2L‖yδ − T (Kgk−1)‖Y ≤ C and thus

Js
α(gl, gk−1)− 2α ·ΨL(gl) ≥ ‖yδ − T (Kgk−1)‖2 ≥ 0,

in contradiction to our assumption Js
α(gl, gk−1) → −∞, and thus Js

α(g, gk−1) is bounded
from below. By the same argument, we find Js

α(gl, gk−1) ≥ 2α · ΨL(gl) → ∞ for any
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sequence gl with ‖gl‖(`2)n → ∞ and thus the functional is coercive and has a minimizer
gk. As in (4.2.17), we obtain

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2B‖yδ − T (Kgk−1)‖Y ‖T ′(Kgk−1)‖‖gk − gk−1‖(`2)n

−B2L‖yδ − T (Kgk−1)‖Y ‖gk − gk−1‖2
(`2)n

+C‖gk − gk−1‖2
(`2)n .

By (4.2.7) and assumption (4.2.16) we have C/2 ≥ B2L‖yδ − T (Kgk−1)‖Y , and thus

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥ ‖yδ − T (Kgk−1)‖2

Y

−2B‖yδ − T (Kgk−1)‖Y ‖T ′(Kgk−1)‖‖gk − gk−1‖(`2)n

+
C

2
‖gk − gk−1‖2

(`2)n .

As gk−1 ∈ Kr, it follows from (4.2.7) that B‖T ′(Kgk−1)‖ ≤
√
C/2, and we consequently

have

Js
α(gk, gk−1)− 2α ·ΨL(gk) ≥

(
‖yδ − T (Kgk−1)‖Y −

√
C√
2
‖gk − gk−1‖(`2)n

)2

≥ 0.

In particular, it follows by (4.2.15),

2 min{αi}‖ΨL(gk)‖`1 ≤ 2α ·ΨL(gk) ≤ Js
α(gk, gk−1) = min

g
Js

α(g, gk−1) ≤ Js
α(gk−1, gk−1)

= Js
α(gk−1, gk−2) ≤ Js

α(gk−2, gk−2) ≤ · · · ≤ Js
α(g0, g0)

i.e. ‖ΨL(gk)‖`1 ≤ Jα(g0)/(2 min{αi}) = r, and thus, gk ∈ Kr. As in Lemma 11, it follows

C‖gk − gk−1‖2
(`2)n − ‖T (Kgk)− T (Kgk−1)‖2

Y ≥ 0

and
Jα(g) ≤ Js

α(g, gk−1),

and we obtain

‖yδ − T (Kgk)‖2
Y ≤ Jα(gk) ≤ Js

α(gk, gk−1) ≤ Js
α(gk−1, gk−1) ≤ · · · ≤ Js

α(g0, g0)

= ‖yδ − T (Kg0)‖2
Y + 2α ·ΨL(g0), (4.2.18)

and combining this estimate with the definition of C (4.2.7) yields

2B2L‖yδ − T (Kgk)‖Y ≤ 2B2L
√
‖yδ − T (Kg0)‖2

Y + 2α ·ΨL(g0) ≤ C, (4.2.19)

i.e. we have shown that the assumptions (4.2.14)-(4.2.16) hold also for i = k. �

As an immediate consequence out of the latter proof we have

Corollary 12 The sequences of functionals {Jα(gk)}k=0,1,2,... and {Js
α(gk+1, gk)}k=0,1,2,...

are non-increasing.
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4.2.3 Minimization yields Projected Fixed Point Iterations

In this section, we elaborate necessary conditions for a minimizer of the functional
Js

α(g,a).

Lemma 13 The necessary condition for a minimum of Js
α(g,a) is given by

0 ∈ −FjT
′(Kg)∗(yδ − T (Ka)) + Cgj − Caj + αjL

∗
j∂Ψj(Ljgj) , for all j = 1, . . . , n .

(4.2.20)

Proof. In the notion of subgradients (which is allowed, see later on for a convexity result),
we have for j = 1, . . . , n,

∂jJ
s
α(g,a) = −2FjT

′(Kg)∗(yδ − T (Ka)) + 2Cgj − 2Caj + 2αj∂Θj(gj) .

Consequently, through v ∈ ∂Θj(gj) ⇔ Ljv ∈ ∂Ψj(Ljgj), the necessary condition (4.2.20)
follows immediately. �

Before giving an equivalent condition, we will have a closer look to the relation between
the functionals Ψj and associated closed convex sets Cj. We may consider the Fenchel
or so–called dual functional of Ψj, which we will denote by Ψ∗

j . Since we have assumed
Ψj to be a positive and one homogeneous functional, there exists a convex set Cj such
that Ψ∗

j is equal to the indicator function χCj
over Cj. Moreover, in Hilbert space lore,

we have total duality between convex sets and positive and one homogeneous functionals,
i.e. Ψj = (χCj

)∗.

Lemma 14 Let Mj(g,a) := FjT
′(Kg)∗(yδ − T (Ka))/C + aj, then the necessary condi-

tions (4.2.20) can be casted as

gj =
αj

C
L∗

j

(
I − PCj

)(C
αj

LjMj(g,a)

)
, j = 1, . . . , n . (4.2.21)

where PCj
is the orthogonal projection onto the convex set Cj.

Proof. With the shorthand Mj(g,a) we may rewrite (4.2.20) for each j,

Lj

Mj(g,a)− gj
αj

C

∈ ∂Ψj(Ljgj) ,

and thus, by standard arguments in convex analysis,

C

αj

Ljgj ∈
C

αj

∂Ψ∗
j

(
Lj

Mj(g,a)− gj
αj

C

)
.

In order to have an expression by means of projections (or generalized shrinkage opera-
tions), we expand the latter formula as follows,

Lj
Mj(g,a)

αj

C

∈ Lj

Mj(g,a)− gj
αj

C

+
C

αj

∂Ψ∗
j

(
Lj

Mj(g,a)− gj
αj

C

)
=

(
I +

C

αj

∂Ψ∗
j

)(
Lj

Mj(g,a)− gj
αj

C

)
,
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which is equivalent to(
I +

C

αj

∂Ψ∗
j

)−1(
Lj
Mj(g,a)

αj

C

)
= Lj

Mj(g,a)− gj
αj

C

.

Again, by standard results in convex analysis, it is known that
(
I + C

αj
∂Ψ∗

)−1

is nothing

than the orthogonal projection onto the associated convex set Cj, and hence the assertion
follows,

gj =
αj

C
L∗

j(I − PCj
)

(
Lj
Mj(g,a)

αj

C

)
.

�

The latter lemma states that for minimizing (4.2.4) we need to solve a system of n fixed
point equations (4.2.21), which are nonlinearly coupled via the PCj

. To condense the
notation a little, we introduce nonlinear operators (and call them generalized shinkage
operators)

Sj := Sαj ,Lj ,Cj
=
αj

C
L∗

j(I − PCj
)Lj

C

αj

.

Thus, we may write
g = (S1(M1(g,a)), . . . ,Sn(Mn(g,a))) .

Let us now consider the associated fixed point map

Φ(g,a) = (S1(M1(g,a)), . . . ,Sn(Mn(g,a))) .

Lemma 15 For some generic a, the operator Φ(·,a) is a contraction if B2L/C
√
Jα(a) <

1, i.e.

‖Φ(g,a)− Φ(g̃,a)‖(`2)n ≤ q‖g − g̃‖(`2)n if q :=
B2L

C

√
Jα(a) < 1 .

Before proving this lemma, we need a result on projections onto convex sets.

Lemma 16 Let K be a closed and convex set, then the mapping I−PK is non–expansive.

This Lemma can be deduced by the following two standard properties of convex sets.

Lemma 17 Let K be a closed and convex set in some Hilbert space H, then for all u ∈ H
and all k ∈ K the inequality 〈u− PKu, k − PKu〉 ≤ 0 holds true.

Proof. For all λ ∈ [0, 1] one has

‖u− ((1− λ)PKu+ λk)‖2 ≥ ‖u− PKu‖2 .

Thus, for all λ ∈ [0, 1]

−2λ〈u− PKu, k − PKu〉+ λ2‖k − PKu‖2 ≥ 0,

and therewith we have 〈u− PKu, k − PKu〉 ≤ 0. �
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Lemma 18 Let K be a closed and convex set, then for all u, v ∈ H the inequality

‖u− v − (PKu− PKv)‖ ≤ ‖u− v‖

holds true.

Proof. We need to prove

−2〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ 0 .

By Lemma 17 we have 〈u− PKu, PKv − PKu〉 ≤ 0, or equivalently

−〈u, PKu〉+ 〈u, PKv〉+ ‖PKu‖2 − 〈PKu, PKv〉 ≤ 0 .

By symmetry we have

−〈v, PKv〉+ 〈v, PKu〉+ ‖PKv‖2 − 〈PKv, PKu〉 ≤ 0 .

Summing the two inequalities leads to

−〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ 0 ,

and thus

−2〈u− v, PKu− PKv〉+ ‖PKu− PKv‖2 ≤ −‖PKu− PKv‖2 ≤ 0 .

�

Thanks to Lemma 18, we still have assured Lemma 16, and with Lemma 16 at hand, we
are able to prove Lemma 15.

Proof. We have by Lemma 16 and the Lipschitz–continuity of T ′,

‖Φ(g,a)− Φ(g̃,a)‖2
(`2)n = (4.2.22)

=
n∑

j=1

‖Sj(g,a)− Sj(g,a)‖2
`2

=
n∑

j=1

αj

C

∥∥∥∥∥(I − PCj
)

(
Lj
Mj(g,a)

αjj

C

)
− (I − PCj

)

(
Lj
M(g̃,a)

αj

C

)∥∥∥∥∥
2

`2

≤
n∑

j=1

‖Mj(g,a)−Mj(g̃,a)‖2
`2

≤
n∑

j=1

Bj

C2
‖T ′(Kg)− T ′(Kg̃)‖2‖yδ − T (Ka)‖2

Y

≤
n∑

j=1

BjL
2

C2

(
n∑

i=1

B
1/2
i ‖gi − g̃i‖`2

)2

Jα(a) ≤ B4L2

C2
‖g − g̃‖2

(`2)nJα(a)

and the assertion follows. �
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Proposition 4.2.2 The fixed point map Φ(g, gk) is for all k = 0, 1, 2, . . . a contraction.

Proof. By the definition of C in (4.2.7) and Lemma 15 (setting a = g0), we deduce that
Φ(g, g0) is a contraction with

q =
B2L

C

√
Jα(g0) ≤

1

2
< 1.

With the help of Corollary 12, we complete the proof

‖Φ(g, gk)− Φ(g̃, gk)‖(`2)n ≤ B2L

C

√
Jα(gk)‖g − g̃‖(`2)n

≤ . . . ≤ B2L

C

√
Jα(g0)‖g − g̃‖(`2)n ≤ 1

2
‖g − g̃‖`2 .

�

Up to here, we do know whether our fixed point iteration converges towards a critical
point of Js

α(g, gk).

Proposition 4.2.3 The necessary equation (4.2.21) for a minimum of the functional
Js

α(g, gk) has a unique fixed point, and the fixed point iteration converges towards the
minimizer.

Proof. To verify this assertion, we have to investigate the Taylor expansion of Js
α more

closely. By Taylor’s expansion for T and the Lipschitz–continuity of T ′ we get

T (Kg +Kh) = T (Kg) + T ′(Kg)Kh +R(Kg, Kh) (4.2.23)

with

‖R(Kg, Kh)‖Y ≤
B2L

2
‖h‖2

(`2)n . (4.2.24)

Denoting with∇ the multi–valued (sub)gradient (still having in mind that the subgradient
is set–valued) and with gk the k–th iterate (gj indicates the j–th component of g),

Js
α(g + h, gk)− Js

α(g, gk) = ∇Js
α(g, gk) · h + C‖h‖2

(`2)n − 2〈yδ − T (Kgk), R(Kg, Kh)〉Y

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}

≥ ∇Js
α(g, gk) · h + C‖h‖2

(`2)n − 2‖yδ − T (Kgk)‖`2

B2L

2
‖h‖2

`2

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}

≥ ∇Js
α(g, gk) · h +

C

2
‖h‖2

(`2)n

+2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj}.
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Assuming g is a critical point, i.e. ∇Js
α(g, gk) · h = 0 for all h, we have

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

(`2)n + 2
n∑

j=1

αj{Θj(gj + hj)−Θ(gj)− ∂Θj(gj)hj} .

By the definition of subgradients (for each individual j): an element v ∈ `2 belongs to
∂Θj(gj) if and only if for all x ∈ `2,

Θj(gj) + 〈v,x− gj〉`2 ≤ Θj(x) ,

and, in particular for x = gj + hj, this yields for all v ∈ ∂Θj(gj) and all hj ∈ `2,

Θj(gj)+〈v,hj〉`2 ≤ Θj(gj +hj) or, equivalently, 0 ≤ Θj(gj +hj)−Θj(gj)−∂Θj(gj)hj .

Consequently,

Js
α(g + h, gk)− Js

α(g, gk) ≥
C

2
‖h‖2

(`2)n ,

and thus every critical point is a global minimizer of Js
α(g, gk), and, again by the latter

inequality, there exists only one global minimizer. �

By assuming more regularity on T , the latter statement can be improved:

Proposition 4.2.4 Let T be a twice continuously differentiable operator. Then the func-
tional Js

α(g, gk) is strictly convex.

Proof. Since the non–convex part of Js
α is the discrepancy ‖yδ − T (Kg)‖2

Y , it remains to
show that

Jd(g) := ‖yδ − T (Kg)‖2
Y + C‖g − gk‖2

`2
− ‖T (Kg)− T (Kgk)‖2

Y (4.2.25)

is strictly convex in g, i.e. we have to show that

Jd((1− λ)g1 + λg2) < (1− λ)Jd(g1) + λJd(g2)

holds for λ ∈ (0, 1) and arbitrary g1, g2 ∈ (`2)
n. At first, we express Jd by its Taylor

expansion,
Jd(g + h) = Jd(g) +∇Jd(g) · h + r(g,h) , (4.2.26)

where
r(g,h) := −2〈yδ − T (Kgk), R(Kg, Kh)〉Y + C‖h‖2

(`2)n . (4.2.27)

We have

Jd((1− λ)g1 + λg2)) = Jd(g1 + λ(g2 − g1)) = Jd(g2 + (1− λ)(g1 − g2))

= (1− λ)Jd(g1 + λ(g2 − g1)) + λJd(g2 + (1− λ)(g1 − g2))

(4.2.28)

and with

Jd(g1 + λ(g2 − g1)) = Jd(g1) + λ∇Jd(g1) · (g2 − g1) + r(g1, λ(g2 − g1))

Jd(g2 + (1− λ)(g1 − g2)) = Jd(g2) + (1− λ)∇Jd(g2) · (g1 − g2)

+r(g2, (1− λ)(g1 − g2))
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we obtain

Jd((1− λ)g1 + λg2)) = (1− λ)Jd(g1) + λJd(g2)

+λ(1− λ)
[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) .

Thus, Js
α is strictly convex if for all λ ∈ (0, 1),

D(g1, g2, λ) := λ(1− λ)
[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1)

+(1− λ)r(g1, λ(g2 − g1)) + λr(g2, (1− λ)(g1 − g2)) < 0 .

We have[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1) = −2C‖g2 − g1‖2

(`2)n

−2〈yδ − T (Kgk), (T
′(Kg1)− T ′(Kg2))K(g2 − g1)〉Y .

As T is twice continuously Fréchet differentiable, it is

T ′(Kg1) = T ′(Kg2) +

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2), ·) dτ

and thus,[
∇Jd(g1)−∇Jd(g2)

]
· (g2 − g1) =

−2C‖g2 − g1‖2
(`2)n + 2〈yδ − T (Kgk),

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2dτ〉,

(4.2.29)

where we have used the shorthand T ′′(·)(·, ·) = T ′′(·)(·)2. Again, as T is twice continuously
Fréchet-differentiable, the function R(Kg, Kh) in (4.2.27) is given by

R(Kg, Kh) =

1∫
0

(1− τ)T ′′(Kg + τKh)(Kh)2 dτ ,

and thus we obtain

R(Kg1, λK(g2 − g1)) = λ2

1∫
0

(1− τ)T ′′(Kg1 + τλK(g2 − g1))(K(g2 − g1))
2 dτ

=

1∫
1−λ

(τ − (1− λ))T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

(4.2.30)
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and in the same way

R(Kg2, (1− λ)K(g1 − g2)) =

1−λ∫
0

(1− λ− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2)
2 dτ .

(4.2.31)
Combining definition (4.2.27) and equations (4.2.29), (4.2.30) and (4.2.31) yields

D(g1, g2, λ) = −λ(1− λ)C‖g1 − g2‖2
(`2)n + 2〈yδ − T (Kgk), f(g1, g2, λ)〉Y , (4.2.32)

where

f(g1, g2, λ) := λ(1− λ)

1∫
0

T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

−λ
1−λ∫
0

(1− λ− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2)
2 dτ .

The functional f(g1, g2, λ) can now be recasted as follows

f(x1, x2, λ) = λ

1−λ∫
0

τT ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

+(1− λ)

1∫
1−λ

(1− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ.

In order to estimate ‖f(g1, g2, λ)‖Y it is necessary to estimate the integrals separately.
Due to the Lipschitz–continuity of the first derivative, the second derivative can be globally
estimated by L, and it follows,∥∥∥∥∥∥

1−λ∫
0

τT ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

∥∥∥∥∥∥
Y

≤ (1− λ)2

2
B2L‖g1 − g2‖2

(`2)n

∥∥∥∥∥∥
1∫

1−λ

(1− τ)T ′′(Kg2 + τK(g1 − g2))(K(g1 − g2))
2 dτ

∥∥∥∥∥∥
Y

≤ λ2

2
B2L‖g1 − g2‖2

(`2)n

and thus

‖f(g1, g2, λ)‖Y ≤
λ(1− λ)

2
B2L‖g1 − g2‖2

(`2)n . (4.2.33)
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Combining (4.2.32) and (4.2.33) yields for λ ∈ (0, 1)

D(g1, g2, λ) ≤ −λ(1− λ)C‖g1 − g2‖2
(`2)n + 2‖yδ − T (Kgk)‖Y ‖f(g1, g2, λ)‖Y

≤ −λ(1− λ)C‖g1 − g2‖2
(`2)n

+
λ(1− λ)

2
2B2L‖yδ − T (Kgk)‖Y ‖g1 − g2‖2

(`2)n

(4.2.19)

≤ −λ(1− λ)
C

2
‖g1 − g2‖2

(`2)n < 0 ,

and thus the functional is strictly convex. �

4.2.4 Convergence Analysis

Within this section we discuss convergence properties of the proposed scheme, i.e. we aim
to show that the sequence of iterates {gk} converges strongly towards a critical point of
Jα, at least.

Lemma 19 The sequence of iterates {gk}k=0,1,2,... has a weakly convergent subsequence.

Proof. This is an immediate consequence of Proposition 4.2.1, in which we have shown
that for k = 0, 1, 2, . . . the iterates gk are contained in Kr, and by requirement (4.2.3),
‖gk‖(`2)n ≤ r. Since the iterates are uniformly bounded, we deduce that there exists at

least one accumulation point g?
α with gk,l

w−→ g?
α, where gk,l denotes a subsequence of

gk. �

Lemma 20 For the iterates gk holds limk→∞ ‖gk+1 − gk‖(`2)n = 0.

Proof. With the help of Corollary 12, we observe that

0 ≤
N∑

k=0

{
C‖gk+1 − gk‖2

(`2)n − ‖T (Kgk+1)− T (Kgk)‖2
Y

}
≤

N∑
k=0

{
Js

α(gk+1, gk)− Jα(gk+1)
}
≤

N∑
k=0

{
Jα(gk)− Jα(gk+1)

}
= Jα(g0)− Jα(gN+1) ≤ Jα(g0) ,

i.e. the finite sums are uniformly bounded (independent on N). Now, by the Taylor
expansion of T , we have

‖T (Kgk+1)− T (Kgk)‖2
Y ≤

C

2
‖gk+1 − gk‖2

(`2)n ,

and thus

0 ≤ C

2
‖gk+1 − gk‖2

(`2)n ≤ C‖gk+1 − gk‖2
(`2)n − ‖T (Kgk+1)− T (Kgk)‖2

Y −→ 0
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as k →∞ and the assertion follows. �

Lemma 21 Every subsequence of gk has a convergent subsequence gk,l that converges
strongly towards a function g?

α, and g?
α satisfies the necessary condition for a minimizer

of Jα:
FjT

′(Kg?
α)∗(yδ − T (Kg?

α)) ∈ αj∂Θj((gj)
?
α) , j = 1, . . . , n . (4.2.34)

Proof. According to Lemma 13, the minimizer gk+1 of Js
α(g, gk) fulfills

0 ∈ FjT
′(Kgk+1)

∗(yδ − T (Kgk))− C(gj)k+1 + C(gj)k − αj∂Θj((gj)k+1).

Thus, for all j = 1, . . . , n,

(gj)k+1 − (gj)k ∈ 1

C

(
FjT

′(Kgk+1)
∗(yδ − T (Kgk+1))− αj∂jΘj((gj)k+1)

+FjT
′(Kgk+1)

∗(T (Kgk+1)− T (Kgk))
)

(4.2.35)

and, moreover, by Lemma 20,

‖FjT
′(Kgk+1)

∗(T (Kgk+1)− T (Kgk))‖Y ≤
CB

1/2
j

2B
‖gk+1 − gk‖(`2)n → 0 .

Passing to the limit k →∞ in (4.2.35),

0 ∈ lim
k→∞

(
FjT

′(Kgk+1)
∗(yδ − T (Kgk+1))− αj∂Θj((gj)k+1)

)
. (4.2.36)

Since gk is bounded, every subsequence has a weakly convergent subsequence. Let gk,l

denote such a weakly convergent subsequence with weak limit g?
α (for simplicity, we will

denote this sequence by gk, too). Since

FjT
′(Kgk+1)

∗(yδ − T (Kgk+1)) =

FjT
′(Kgk+1)

∗(yδ − T (Kg?
α)) + FjT

′(Kgk+1)
∗(T (Kg?

α)− T (Kgk+1)) ,

and because of

‖FjT
′(Kgk+1)

∗(T (Kg?
α − T (Kgk+1))‖`2 ≤

√
CBj√
2B

‖T (Kg?
α)− T (Kgk+1)‖ → 0

and by assumption (4.2.5), i.e.

FjT
′(Kgk+1)

∗(yδ − T (Kg?
α)) → FjT

′(Kg?
α)∗(yδ − T (Kg?

α)),

we consequently obtain

lim
k→∞

FjT
′(Kgk+1)

∗(yδ − T (Kgk+1)) = FjT
′(Kg?

α)∗(yδ − T (Kg?
α)) . (4.2.37)

Next, we have to consider limk→∞ ∂Θj((gj)k). By an elementwise considera-
tion we have, v ∈ ∂Θj((gj)k) if and only if for all x ∈ `2 the inequality
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Θj(x) ≥ ∂Θj((gj)k) + 〈v,x − (gj)k〉`2 holds true. The assumption that Θj is
lower semi-continuous and convex implies weak lower semi-continuity of all the Θj,
i.e. Θj((gj)

?
α) ≤ limk→∞ inf Θj((gj)k) ≤ limk→∞ Θj((gj)k). The same holds true for

the `2–inner product. Thus, we deduce that for all v ∈ limk→∞ Θj((gj)k) we have
v ∈ ∂Θj((gj)

?
α), i.e. limk→∞ ∂Θj((gj)k) ⊆ ∂Θj((gj)

?
α). Combining (4.2.37) with (4.2.35)

proves that gk,l converges, and as g?
α is the weak limit of the sequence, gk,l → g?

α.
Equations (4.2.34) follow by passing to the limit in (4.2.36). �

In principle, the limits of different convergent subsequences of gk may differ. Let
gk,l → g?

α be a subsequence of gk, and let g̃k,l the predecessor of gk,l in gk, i.e.
gk,l = gi and g̃k,l = gi−1. Then we observe, Js

α(gk,l, g̃k,l) → Jα(g?
α). Moreover,

as we have Js
α(gk+1, gk) ≤ Js

α(gk, gk−1) for all k, it turns out that the value of the
Tikhonov functional for every limit g?

α of a convergent subsequence remains the same,
i.e. Jα(g?

α) = const .

We may now summarize our findings and give a simple criterion that ensures strong
convergence of the whole sequence {gk}.

Theorem 22 Assume that there exists at least one isolated limit g?
α of a subsequence gk,l

of gk. Then gk → g?
α as k → ∞. The accumulation point g?

α is a minimizer for the
functional Js

α(g, g?
α).

Proof. As in the proof of Proposition 4.2.3 we obtain, Js
α(x?

α+h, x?
α) ≥ Js

α(x?
α, x

?
α)+ C

2
‖h‖2.

The remaining proof of norm convergence can be directly taken from [RT05b]. �

4.2.5 A Regularization result

After stating norm convergence results for the proposed multi–frame approach for solving
nonlinear operator equations, we now focus on how to optimally choose the parameter
vector α. As still considered in Section 2.2.4, the vector α plays the most important
role in computing stabilized solutions. Again we have to identify a functional relation
between α and the noise floor δ, i.e. α = α(δ) with α(δ) → 0 and ‖g?,α(δ) − g†‖ → 0
as α → 0. If we find a parameter rule achieving this, then the suggested iteration
scheme would regularize the ill–posed problem. Moreover, as long as we deal with
frames, i.e. even if the inverse problem would have a unique solution, the corre-
sponding vector of frame sequences to represent this solution will never have. Thus it is
only reasonable to show that we approach one solution g† when passing to the limit δ → 0.

The next theorem provides conditions on the functional relation α(δ) for which the con-
structed Landweber fixed point iteration with projections in each step is a regularization
scheme (up to uniqueness).
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Theorem 23 Let yδ ∈ Y with ‖yδ − y‖Y ≤ δ, αmin(δ) = minj{αj(δ)}, αmax(δ) =
maxj{αj(δ)}, and assume α(δ) = (α1(δ), . . . , αn(δ)) is chosen such that

α(δ)
δ→0−→ 0 , δ2/αmin(δ)

δ→0−→ 0 , αmax(δ)/αmin(δ)
δ→0−→ 1 .

Then every sequence {g?,α(δ)} of minimizers of the functional Jα(g) where δ → 0 and
α = α(δ) has a convergent subsequence. The limit of every convergent subsequence is a
solution of T (Kg) = y with minimal values of Ψ(Ljgj), j = 1, . . . , n.

Proof. As g?,α(δ) = (g
?,α(δ)
1 , . . . , g

?,α(δ)
n ) is a minimizer of Jα, we have

‖yδ − T (Kg?,α(δ))‖2
Y + 2α ·ΨL(g?,α(δ)) ≤ δ2 + 2α ·ΨL(g†) . (4.2.38)

Thus, by the made assumptions on α(δ), we achieve

lim
δ→0

T (Kg?,α(δ)) = y .

Again by (4.2.38),

‖ΨL(g?,α(δ))‖`1 ≤
δ2

2αmin(δ)
+
αmax(δ)

αmin(δ)
‖ΨL(g†)‖`1

implying,
lim sup

δ→0
‖g?,α(δ)‖(`2)n ≤ lim sup

δ→0
‖ΨL(g?,α(δ))‖`1 ≤ ‖ΨL(g†)‖`1 ,

i.e. ‖g?,α(δ)‖(`2)n are uniformly bounded. Consequently, the sequence has a weakly con-
vergent subsequence (again denoted by {g?,α(δ)}) with weak limit g◦,

g◦ = w − lim
δ→0

g?,α(δ) .

Since T is strongly continuous,

y = lim
δ→0

T (Kg?,α(δ)) = T (Kg◦) ,

i.e. g◦ is a solution of T (Kg) = y. Assume now g† is a solution of the inverse problem
with minimal values of Ψj(Lj · ). Then, since all the Ψj are weak semi–continuous, we
deduce

Ψj(Ljg
◦
j) ≤ lim sup

δ→0
Ψj(Ljg

?,α(δ)
j ) ≤ Ψj(Ljg

†
j) ≤ Ψj(Ljg

◦
j) for j = 1, . . . , n.

Hence g◦ is also a solution with minimal values of Ψj(Lj · ). �

Resulting regularization method:

We may now summarize our findings and suggest the following regularization method.
Assume that all the conditions we have imposed in the previous sections apply to our
problem and, moreover, assume we have a parameter rule at hand that fulfills the condi-
tions of Theorem 23. Then the algorithm goes as follows:
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• Define a sequence {αn} satifying the condition of Theorem 23, and pick r ≥ 1, g0

• while ‖yδ − T (Kg?,α)‖ > r · δ

– α = αn

– pick an admissible C

– [g?,α] = Iteration(T , yδ, C, α, g0):
gk+1 = arg min

g
Js

α(g, gk) (solved by a projected fixed point itera-

tion)
g?,α = lim

k→∞
gk

– x0 = x?
α

end

In practice (treatment of limits), we have to incorporate stopping rules that will slightly
modify this scheme:

• Define a sequence {αn} satifying the condition of Theorem 23, and pick r ≥ 1, g0,
and additionally two tolerances τ1, τ2

• while ‖yδ − T (Kg?,α)‖ > r · δ

– α = αn

– pick an admissible C

– [g?
α] = Iteration(T , F , yδ, C, α, τ1, τ2)

k = 0
while ‖gk+1 − gk‖`2 > τ1

l = 0, gk,0 = gk

while ‖gk,l − gk,l+1‖`2 > τ2
l = l + 1
gk,l = Φα,C(gk,l−1, gk)
end

gk+1 = gk,l

k = k + 1
end
g?

α = gk

end



Chapter 5

Applications II: Nonlinear Problems

This chapter shall illustrate the wide range of applicability where the iterative fixed point
schemes developed in Sections 4.1 and 4.2 can be applied.

5.1 Damped Landweber Fixed Point Iteration for

SPECT

In SPECT, the patient gets a radiopharmaceutial, which is distributed through the whole
body by the blood flow, and is finally enriched in some areas of interest. The task is to
recover the distribution of the radiopharmaceutical (or, in short of the activity function
f) from measurements of the radioactivity outside the body. In contrast to CT, where the
measured intensity depends only on the intensity of the incoming X-ray and the density
µ of the tissue along the path of the X-ray, the measurement for SPECT depend on the
activity function f (which describes the distribution of the radiopharmaceutical) and the
density µ of the tissue. The measured data y and the tuple (f, µ) are connected via the
attenuated Radon Transform (ATRT),

y = R(f, µ)(s, ω) =

∫
R
f(sω⊥ + tω)e−

R ∞
t µ(sω⊥+rω)drdt , (5.1.1)

where s ∈ R and ω ∈ S1. Usually both f and µ are unknown functions, and R is
a nonlinear operator. In order to invert (5.1.1), two strategies can be used. Firstly,
the density distribution can be determined by the inversion of a additional CT scan (in
most scanners, the CT data is gathered simultaneously). With this approach, one has to
solve two linear problems, as the attenuated Radon transform is linear if µ is assumed
to be known, and currently developed inversion formulas can be used [Nat01]. However,
attaching an X-ray source to a SPECT scanner makes them much more expensive. The
scanning time for each patient might increase, which leads again to higher costs for each
scan. Thus the second strategy, where the ATRT is treated as a nonlinear operator,
seems to be promising. The drawbacks of this strategy are the non-uniqueness of the
operator (which usually leads to a wrong reconstruction for the density function µ )
and much higher computational costs for the inversion of the nonlinear operator. In

111
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Figure 5.1: Activity function f∗ (left) and attenuation function µ∗ (right)
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Figure 5.2: Generated data g(s, ω) = R(f∗, µ∗)(s, ω).

the last decade, several ideas for solving the nonlinear problem (5.1.1) were discussed,
see, e.g., [CGLT79, MY93, WCCG96, WCNG97, RCNB00]. Dicken [Dic99] showed that
Tikhonov regularization for nonlinear operators can be used for the reconstruction of the
activity function. Methods for the computation of a minimizer of the Tikhonov functional
were proposed in [Ram02b, Ram03, Ram04] and applied to SPECT. Here, we will only
demonstrate that our method can be used for the computation of a minimizer. For the
test computations, we would like to use the so called MCAT phantom [TTP+90], see
Figure 5.1. The belonging sinogram data is shown in Figure 5.2.

In a first attempt, we want to compute the minimizer of the Tikhonov functional
with regularization parameter α = 3430. The data was contaminated with multiplicative
Gaussian noise with relative error δrel = 5% (here δrel = ‖yδ−y‖/‖y‖). The inner iteration
was terminated if the relative distance of two consecutive iterates was less than 1e − 6,
and the outer iteration was terminated if the relative distance between two consecutive
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Figure 5.3: Minimizer f
δ

α
of the Tikhonov functional for α = 3430 (l) and values of the

Tikhonov functional (r)

Figure 5.4: Plot of the additive term in the replacement functional (l) and number of
inner iterations for each outer iteration (r)

outer iterates was less that 1e− 5. After only a few iterations, the value of the Tikhonov
functional remains almost constant, see Figure 5.3. The values of the additive term
C‖xk,l − xk‖ − ‖F (xk,l) − F (xk)‖, xk = (fk, µk) is shown in Figure 5.4. Clearly, the
additive term converges fast to zero, and thus the values of the replacement functional
and the Tikhonov functional are almost the same. Moreover, it turns out that we only
need a few inner iterations to achieve the required accuracy, see Figure 5.4. This actually
indicates that the whole iteration itself is quite fast. In a final test computation, we used
Morozov’s discrepancy principle to determine an appropriate regularization parameter
(see (4.1.58)). For a sequence αk = a0q

k, k = 0, 1, ..., a0 = 1000 and q = 0.5 we computed
xδ

αk
by TIREFU , and picked the first minimizer x

δ

α
k

with (4.1.58) and c = 2. In our case,

we had to compute 10 minimizing functions. The residual of the minimizer with α = 1.95
was smaller then 2δ for the first time, and the reconstruction was stopped. Figure 5.5
shows the results.
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Figure 5.5: Left:Reconstruction according to Morozov’s discrepancy principle. Right:
Plot of the residual ‖yδ −R(f δ

αk
, µδ

αk
)‖. The dashed lines mark the region [δ, 2δ].

5.2 Computation of Optimally Localized Wavelets

Within this section we provide an analytical fundament which can be used to construct
optimally localized coherent states. It turns out that a way to approximate these states
is given by the iterative approach of Section 4.1.

5.2.1 Motivation and Basic Formulas

It is well known that a nonzero state cannot be arbitrarily well localized simultaneously
in space and Fourier domain. This fact may be quantified by the Heisenberg uncertainty
relation,

∆x∆k ≥ 2π.

There are functions which are optimally localized in phase space in that they satisfy the in-
equality with the lower bound. For a detailed analysis on uncertainty relations in the con-
text of Gabor and wavelet transforms we refer, e.g, to [GMP85, GMP86, DM95, Tes05a].
In this paper we want to discuss more general measures of uncertainty or delocalization
in phase space and we shall prove the existence of optimally localized states.

In principle, general wavelet transforms

s 7→ Wgs, Wgs(x) = (U(x)g, s)H , x ∈ G

associated with the square integrable irreducible representation U of a locally compact
group G provides a one to one correspondence between the state Hilbert space H and
a reproducing kernel Hilbert space over the group. The reproducing kernel is up to a
normalization the wavelet transform of the wavelet itself

Π = Wgg.

This kernel can be interpreted as the Heisenberg box of the phase space. In this paper we
shall be concerned with localization properties of these reproducing kernels. In fact the
reproducing kernel of wavelet analysis cannot be arbitrarily well localized. For instance,
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there is no wavelet such that the associated reproducing kernel is compactly supported.
Obviously here is no universal way of quantifying localization. Instead we propose to
quantify localization through the following and similar families of cost functionals

Φ[g] = sup
x∈G

w(x)−1|Wgg(x)| ,

where w is some positive weight, decaying “at ∞”. We will prove that this functional
and similar “localization” functionals are weakly lower semi-continuous. It therefore has
a minimizer over any weak* compact set. In other words: for any such measure of
localization there is at least one optimal state.

Localization of wavelet transforms has been considered before. In [?, Dau88] the
authors consider localizing wavelet coefficients with respect to some preassigned analyzing
wavelet and a compact subset in the wavelet plane. In their approach the analyzing
wavelet was fixed. In this paper, however, we consider the nonlinear problem of opti-
mizing the localization of the reproducing kernel. Since the reproducing kernel depends
quadratically on the underlying wavelet, this problem is by nature highly nonlinear and
therefore an explicit expression of the optimal state seems to remain a pipe dream.
However, in the last section we discuss a numerical procedure to approximately compute
such optimally localized states.

Let us now recall the basic formulas of continuous wavelet transform associated with
a square integrable group representation. We only recall the few facts that are necessary
for this paper. For more details we refer to, e.g., [DM76], [Hol95]. Let G be a non-
compact, locally compact group topological group and G 3 g 7→ U(g) a unitary, strongly
continuous, irreducible, square integrable representation in some Hilbert space H. The
wavelet transform of s ∈ H with respect to g ∈ H is point-wise defined for x ∈ G

Wgs(x) = (U(x)g, s)H .

The left and the right invariant Haar measures are denoted by dλ and dρ. They are
defined up to some positive factor. Over G we consider the two Hilbert spaces L2(G, dλ)
and L2(G, dρ). We suppose that dλ and dρ are scaled suitably so that the mapping
s(x) 7→ s(x−1) is an isometry between these two Hilbert spaces. A wavelet is called
admissible, if Wgg ∈ L2(G, dλ). Thanks to the formula

Wgs(x) = ¯Wsg(x−1),

admissibility is also equivalent to Wgg ∈ L2(G, dρ). We denote the set of all admissible
wavelets by A. For g, h ∈ A and s, u ∈ H the following equation holds

(Wgs,Whu)L2(G,dλ) = C(g, h) (s, u)H , (5.2.1)

where C is a densely defined, closed, positive quadratic form. Its form domain is precisely
A. We write cg,h = C(g, h) and cg = C(g, g). By the first representation theorem there is a
closed, linear operator T such that for all u ∈ D(T ) and v ∈ A we have C(v, u) = (v, Tu)H .
The space A is in general a non-closed subspace of H. However, since C is a closed
quadratic form it becomes a Hilbert space with respect to

(s, u)A = (s, u)H + C(s, r), ||s||2A = ||s||2H + cs.
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Convergence in A will be understood with respect to this norm. From equation (5.2.1) it
follows that in particular Wg is for admissible, non-zero g a multiple of an isometry

||Wgs||2L2(G,dλ) = cg ||s||2H .

The adjoint of the wavelet analysis is a wavelet synthesis

W∗
g = Mg.

Formally it can be written as follows

Mhr(x) =

∫
G

r(x)U(x)h dλ(x).

We have for g, h ∈ A
MhWg = cg,h1.

The combination WgMh can be written as non-commutative convolution operator. If we
define on L2(G, dλ)× L2(G, dλ) the (left) convolution product as

Π ∗ r(x) =

∫
G

Π(y−1 ◦ x) r(y) dλ(y),

we have for g, h ∈ A
WgMh = Π∗, Π = Wgh.

In particular we will use the following formula over and over

Wh = Π ∗Wg, Π = c−1
g,hWhh.

5.2.2 Optimally Localized States and a General Existence The-
orem

Before establishing the general existence theorem we consider the particular case of lo-
calization measures through a weighted L∞ norm. Consider therefore a positive function
w : G→ R+. We may suppose without loss of generality (see below) that w is symmetric

w(x−1) = w(x).

Then w ∈ L2(G, dλ) is equivalent with w ∈ L2(G, dρ). Moreover, we consider symmetric
weights, for which either of both (and hence both) of the following holds

w ∗ w ∈ L2(G, dλ), w ∗ w ∈ L2(G, dρ).

We call a weight satisfying these two conditions an admissible weight. A natural measure
for the localization of a function r over G with respect to w is the following weighted
norm

sup
G
w−1|r|.
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For fixed h ∈ A let Σh ⊂ H denote the affine subspace of co-dimension 1 defined through
Σh = {g ∈ H : (g, Th)H = 1}. Note that Σh may contain non-admissible vectors. The
admissible wavelets in Σh are reconstruction wavelets for h :

MhWg = MgWh = 1.

We introduce the following functional on H.

Φ[s] = Φw[s] = sup
G
w−1|Wss|,

whenever the right hand side is finite. In all other cases we set Φ[s] = ∞. We now can
formulate the main theorem.

Let w be a symmetric weight function such that w ∗w ∈ L2(G, dλ). Let h ∈ H, h 6= 0,
be such that Φ[h] < ∞. Then there exists a wavelet g ∈ Σh such that for all u ∈ Σh we
have

Φ[g] ≤ Φ[u].

In other words, the localization functional Φ has a minimizer in each Σh, for all h,
which have some regularity as expressed through |Whh| ≤ w. Note that we have to
require, that Φ[h] < ∞. This ensures, that the set of functions having a w localization
is not empty. In turn, this is a requirement for w in which it should not be decaying
too fast (e.g. compactly supported weights are not possible). The requirement that w is
symmetric is no limitation of generality. Indeed we have

w(x)−1|Wgg(x)| = w(x)−1|Wgg(x
−1)|.

Taking the sup over G can also be realized as sup over all x−1 with x ∈ G. Therefore

sup
x∈G

w(x)−1|Wgg(x)| = sup
x∈G

w(x−1)−1|Wgg(x)|

and thus
Φ[g] = sup

x∈G
w̃(x)−1|Wgg(x)|, w̃(x) = min{w(x), w(x−1)}.

First we characterize the admissible wavelets by a localization property

Lemma 24 Let h ∈ A, h 6= 0 be given. Then g ∈ H is actually in A if and only if

||g||2 = ||Whg||2L2(G,dλ) + ||Whg||2L2(G,dρ) <∞.

The square root of the left hand side defines a norm which on A is equivalent to the norm
of A :

c−1
h ||Whg||2L2(G,dλ) + ||h||−2

H ||Whg||2L2(G,dρ) = ||g||2A.

Proof. Suppose g ∈ A. Thanks to the formula

||Whg||2L2(G,ρ) = ||Wgh||2L2(G,dλ) = cg ||h||2H
and the isometric property of the wavelet transform we may conclude. �

The heart of the proof of the main theorem relies on the following compact embedding
lemma.
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Lemma 25 Let w > 0 be a symmetric weight function with w ∈ L2(G, dλ), and let h ∈ A,
h 6= 0, be fixed. The set ∆h,w = {s ∈ H : |Whs| ≤ w} is an A-compact subset of A.

Proof. In view of the preceding lemma ∆h,w ⊂ A. Let sn ∈ ∆h,w be an arbitrary sequence.
We will show, that we may extract an A convergent subsequence whose limit is in ∆h,w.

Since G is locally compact we can find a sequence of compact sets Km ⊂ G with
Km ⊂ Km+1 and

⋃
Km = G. Upon choosing a subsequence we may require that∫

G\Km

w2(dλ+ dρ) ≤ 1/m.

Since the representation U is strongly continuous and since ∆h,w is bounded in H it
follows, that the the restrictions to each Km of functions Whsn are uniformly continuous.
On each Km we can therefore find a uniformly convergent subsequence. Therefore upon
choosing a suitable diagonal subsequence we may suppose that for m′ > m∫

Km

|Wgsm −Wgsm′|2dλ+

∫
Km

|Wgsm −Wgsm′|2dρ ≤ 1/m.

We therefore have

||sm − sm′||2A =

∫
G\Km

|Wgsm −Wgsm′|2(dλ+ dρ)

+

∫
Km

|Wgsm −Wgsm′|2(dλ+ dρ) ≤ 2/m

and thus sm is a Cauchy sequence in A and hence in H. Since A is complete it has a limit
s in A. Actually s ∈ ∆h,w since Whsn(x) →Whs(x) point-wise and therefore going to the
limit in |Whsn| ≤ w we conclude that |Whs| ≤ w. �

We now prove the theorem.
Proof. Since Φ[h] <∞ we have h ∈ A and since h 6= 0 we have c−1

h h ∈ Σh. Therefore
with some finite γ

0 ≤ inf
g∈Σh

Φ[g] = γ <∞.

We can find a sequence gn ∈ Σh such that limn→∞ Φ[gn] = γ. Upon choosing a subsequence
we may assume that

|Wgngn| ≤ (γ + 1/n)w.

In particular it follows that gn ∈ A. Since by hypothesis C(gn, h) = (gn, Th)H = 1, for
each n we have

Whgn = Π ∗ Wgngn, Π = Whh.

Now, from |Wgngn| ≤ (γ + 1/n)w and |Whh| ≤ Φ[h]w it follows that |Whgn| ≤ (γ +
1/n) Φ[h]w ∗ w. By hypothesis w ∗ w ∈ L2(G, dλ + dρ) and therefore thanks to the
compactness argument of lemma 25 we may find an A convergent subsequence gm(n) with
limit

lim
n→∞

gm(n) = g convergence inA,
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and g ∈ ∆h,w∗w ⊂ A. Now convergence in A implies convergence in H and thus

(g, Th)H = lim
n→∞

(gm(n), Th)H = 1,

and therefore g ∈ Σh. �

The results obtained so far can be generalized to a more abstract setting. Consider two
Banach spaces B, K ⊂ L2(G, dλ + dρ) of functions over G with continuous embeddings.
B should be a lattice, || |s| ||B = ||s||B. We then can define a localization with respect to
B simply as

Φ[g] = ||Wgg||B.
We include the value Φ = ∞ in the natural way. For B and K we further suppose that
the following holds:

Invariance of B B should be G bi-invariant: for all y ∈ G there is an b > 0 such that

||s(y ◦ ·)||B ≤ b||s||B, ||s(· ◦ y)||B ≤ b||s||B.

It should be stable under inversion

||s(x−1)||B ≤ d||s||B.

Then we have u(x) = s(y−1 ◦ x ◦ y) satisfies ||u||B ≤ e||s||B.

Semi-continuity of B norm Suppose further that the following inequality holds for
the norm in B : if sn ∈ B is any sequence of non-negative functions sn ≥ 0 then consider
s = lim infn→∞ sn. Then we require that

||s||B = || lim inf sn ||B ≤ lim inf
n→∞

|| sn ||B.

In classical Lp spaces this is a direct consequence of Fatou’s lemma∫
lim inf sndµ ≤ lim inf

∫
sndµ.

Compact embedding of K For the space K we suppose that the following compact
embedding property holds: let L ⊂ K be a K-bounded set. If now on each compact subset
of G the set of functions L is uniformly continuous then L is precompact in L2(G, dλ+dρ).

Convolution mapping The two spaces B and K are linked through the following
convolution property: for fixed r ∈ B the convolution product with r is a linear operator

∗r : B → K, u 7→ r ∗ u,

and it is bounded ||r ∗ u||K ≤ d||u||B, with d depending only on r.
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Nonempty We suppose that there is at least one h ∈ D(T ), h 6= 0 such that Φ[h] <∞.
This h is clearly admissible, h ∈ A, since B ⊂ L2(G, dλ+ dρ).

Under these conditions, the following theorem holds.
There is a g ∈ Σh ∩ A such that for all u ∈ Σh we have

Φ[g] ≤ Φ[u].

This function g then satisfies Whg ∈ K. Typical examples for such spaces B are as
follows. For

||r||w,∞ = ||w−1r||L∞(G)

we obtain the results of the previous section, if we suppose

w ∗ w ∈ L2(G, dλ+ dρ).

A second useful family is given by

||r||w,2 = ||w−1/2r||L2(dλ+dρ).

We denote by Bw,∞and Bw,2 the associated Banach space. This means, we consider
localization quantities of the form ∫

G

w−1|Wgg|2dλ.

If w is such that

η(x) = sup
y∈G

√
w(x−1 ◦ y)w(x)

satisfies η ∈ L2(G, dλ+dρ), we may estimate for r = w1/2 u, s = w1/2 v, u, v ∈ L2(G, dλ+
dρ) that

|r ∗ s(x)| ≤
∫
w(y−1 ◦ x)w(y)u(y−1 ◦ x)v(y)dλ(y)|

≤ η(y) ||u||L2(G,dρ)||v||L2(G,dλ) ≤ η(y)||r||w,2||s||w,2

and thus we have Bw,2 ∗ Bw,2 ⊂ Bη,∞. Therefore the theorem applies and we have the
existence of an optimally localized reconstruction wavelet.

We now prove the theorem. To start we analyze the mapping properties of Φ. We
denote by ∆ the domain of Φ.

∆ = {s ∈ H : Φ[s] <∞} ⊂ A.

Lemma 26 The functional Φ is strongly H - lower semi-continuous on ∆. More precisely
for ∆ 3 un → u ∈ H in H, we have

Φ[u] ≤ lim inf
n→∞

Φ[un].
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Proof. Since Wunun →Wuu point-wise and thus by hypothesis of semi-continuity of the
B-norm

Φ[ lim
n→∞

un] = || lim
n→∞

Wunun||B ≤ lim inf
n→∞

||Wunun|| = lim inf
n→∞

Φ[un]

�

We even have

Lemma 27 The functional Φ is H-weakly lower semi-continuous on ∆\ {0}. More pre-
cisely, for any H-weak convergent sequence ∆ 3 gn → g ∈ H, g 6= 0 with gn ∈ ∆ we have
Φ[g] ≤ lim inf Φ[gn].

Proof. Let
γ = lim inf

n→∞
Φ[gn].

Clearly γ ≥ 0. In the case that γ = ∞ the lemma holds true and we may suppose
0 ≤ γ < ∞. We may find a subsequence which denote again by gn with Φ[gn] < ∞, and
Φ[gn] → γ. By hypothesis there is an h ∈ D(T ) with Φ[h] <∞. By the invariance of B it
follows thanks to

(WU(y)hU(y)h)(x) = Whh(y
−1 ◦ x ◦ y)

that the whole orbit of h has the same properties. Since the representation is irreducible
and T has dense range, we may suppose that cg,h = (g, Th)H 6= 0. For s ∈ A we have by
continuity of the convolution

||Whs||K = ||Π ∗Wss||K ≤ d ||Wss||B = dΦ[s], Π = c−1
s,hWhh.

By weak convergence we have cgn,h = (gn, Th)H → (g, Th)H 6= 0. Therefore, since gn ∈ A
tanks to Φ[gn] <∞, we may conclude by setting s = gn in the formula above that {Whgn}
is a bounded set in K and hence it is bounded in H too. Since the representation of the
wavelet transform is strongly continuous this family of functions is uniformly continuous
on any compact subset of G. Because of the compact embedding property of K we can
extract an H convergent subsequence gm(n) → g. Since Φ is strongly lower continuous we
have Φ[g] ≤ lim inf Φ[gn] = γ. �

Now the proof of the main theorem is easy.
Proof. Let Φ[gn] → γ = infg∈Σh

Φ[g]. Since as before Φ[gn] ≤ b ||gn||K we see that gn is
bounded in H. Thanks to the Banach-Alaoglou theorem we may extract an H - weakly
convergent subsequence gm(n) → g weakly. Since Φ is weekly lower semi-continuous we
may conclude that Φ[g] = γ. The set Σh is weekly closed and hence g ∈ Σh. �

We can even prove the following optimal localization result.
There is g with ||g||H = 1, such that for all u ∈ H, with ||u||H = 1we have

Φ[g] ≤ Φ[u].

Proof. As before, we find a weekly convergent sequence gn → g weekly with
Φ[g] = inf ||s||=1 Φ[s]. Now as in the proof of lemma 27 we see that there is a strongly
convergent subsequence gm(n) → g and thus ||g|| = 1. �
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5.2.3 Numerical Approximation of Localized States

Since there is no obvious strategy to derive the optimally localized vectors g explicitly,
we aim to approximate arg inf ||g||H=1 Φ[g] numerically. Here we limit ourselves to L2,w−1

localization. Then, in accordance with Theorem 5.2.2, the optimization problem can be
casted as follows

Φ(g) = ‖Wgg‖2
L2,w−1 + α‖g‖2

H .

In order to discretize the problem somehow, we may represent g by means of some frame
{ψλ}λ∈Λ ⊂ H, i.e.

g =
∑
λ∈Λ

gλψλ.

Consequently, the goal is to reconstruct a sequence {gλ}λ∈Λ = g ∈ `2 for which Φ(g) ≤
Φ(s), for all s ∈ H.

Introducing for some x ∈ G the infinite matrix A(x) = ((ψλ, U(x)ψη)H)λ,η∈Λ, the
wavelet transform reads as Wgg(x) = 〈g,A(x)g〉`2 =: F [g](x). Obviously, F [g](e) =
‖g‖2

H , and thus we may write

Φ(g) = ‖F [g]‖2
L2,w−1 + αF [g](e).

Since the optimization problem is no longer convex, we have to apply adequate strategies
for nonlinear problems. We suggest to make use of a Tikhonov-based iteration method
for nonlinear problems which was developed in [RT05b]. The technology to be applied
here will always find a critical point of Φ, and under additional assumptions on F and
the solution one can assure that the critical point is a global minimizer.

The method borrowed from [RT05b] goes now as follows: Firstly, in order to obtain a
problem which is hopefully easier to solve, we replace Φ by

Φs(g; a) := Φ(g) + C‖g − a‖2
`2
− ‖F [g]− F [a]‖2

L2,w−1 , (5.2.2)

where a is some auxiliary element in `2. So far its not clear whether Φs is positive or
even bounded from below. Following the lines in [RT05b], i.e. choosing for α > 0 a ball
around the origin Kr and C adequately large (in dependence on F and Φ(a)), one can
assure for all g ∈ Kr, Φ(g) ≤ Φs(g; a).

The iteration process is now obtained by picking some initial g0 = a and therewith
some proper C > 0 and by deriving a sequence {gk}k∈N via

gk+1 = arg min
g

Φs(g; gk).

From this iteration we expect convergence at least towards a critical point of Φ. First, we
have to make sure that the sequence of functionals is properly defined:

Lemma 28 Let a be given and Kr, C be defined as in [RT05b]. Then for all k ∈ N ,
Φs(g; gk) are bounded from below, and, moreover, for the minimizers gk+1 holds gk+1 ∈
Kr.

Let now A be the shorthand for A(e). A simple calculation shows:
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Figure 5.6: Maximal Eigenvalues of the infinite matrices A(a, b) for all the (a, b) ∈ G used
in the frame representation.

Lemma 29 The necessary condition for a minimum of (5.2.2) reads as

g =
1

C

{
gk − αAg − F ′[g]∗(F [gk]w−1)

}
(5.2.3)

The hope is that the right hand side of (5.2.3) defines a contraction. A straightforward
computation shows,

‖g − g′‖`2 ≤
1

C

{
α|||A|||+ 2‖ |||A(·)||| ‖L2,w−1‖F [gk]‖L2,w−1

}
‖g − g′‖`2 .

To bound this quantity requires the Lipschitz-continuity of F ′[g], or in other words, the
finiteness of ‖ |||A(·)||| ‖L2,w−1 which is difficult to prove, but can be verified numerically:
we may consider the spectral radius ρ(A(a, b)) (for a particular frame, see below) as a
function of (a, b) ∈ G. Figure 5.6 shows a sufficient decay of ρ(A(a, b)) and assures
therewith that, for C large enough, the convergence of the fixed point iteration (5.2.3)
towards a unique minimizer gk+1 of Φs(g; gk) can be achieved. Moreover, we have with
the help of [RT05b] that the sequence {gk} converges at least towards a critical point of
Φ. If we could impose more smoothness on F and on the solution g to be reconstructed,
we could also achieve uniqueness.

Next, we have to ensure that ‖gn+1‖2
H = 1 (the index n stands now for the fixed point

iteration) holds true through the whole fixed point iteration process, i.e. we have to
determine α in each iteration step:

(gn+1,Agn+1)`2 =
1

C2

{
α2F [Agn](e)− $2mm]

2α<(Agn,A(gk − F ′[gn]∗(F [gk]w−1)))`2$2mm] +F [gk − F ′[gn]∗(F [gk]w
−1)](e)

}
,
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Figure 5.7: Structure of A(a, b) for two particular cases; left: (a, b) = (1, 0) and right
(a, b) = (2.3,−2.4).

i.e. finding α = αn+1 amounts to finding the roots of a real parabola. With the shorthand
M = <(Agn,A(gk − F ′[gn]∗(F [gk]w−1)))`2 , we obtain

αn+1 =
M ± (M2 − F [Agn](e){F [gk − F ′[gn]∗(F [gk]w

−1)](e)− C2})1/2

F [Agn](e)
. (5.2.4)

Now we can summarize an algorithm for computing a critical sequence g for the mini-
mization problem inf‖g‖H=1 Φ[g]:

• pick some initial g0 (not too far off the expected solution) and some C > 0 (large
enough)

• compute gk+1 = arg ming Φs(g; gk) via fixed point iteration (5.2.3):

– compute αn+1 = max{αn+1
1 , αn+1

2 } via (5.2.4)

– compute gn+1 via (5.2.3)

– gk+1 = limn→∞ gn+1

In what follows we aim to illustrate the computation of an optimally localized wavelet.
For sake of simply computing the operators A(x), we have chosen a (finite dimensional)
Cauchy wavelet frame {ψλ} ⊂ L2(R) of order N (here N=3). Thus, A(x) can be derived
for each x ∈ G explicitly, see Figure 5.7. The symmetric weight function in our particular
case is given by

w−1(x) = w−1(a, b) = (|a|+ |a|−1)4 · (1 + |b|(1 + |a|)−1)4 ,

and the resulting iteration process to reconstruct at least a critical g is illustrated in
Figure 5.8, and the final approximation with the time representation in Figure 5.9.
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Figure 5.8: From top left to up right: Fourier representations of initial g0 (not normalized),
g4, g10, and g30 (blue/red - real and imaginary part; green - Cauchy wavelet).

Figure 5.9: Left: Fourier representation of the approximated optimally localized coherent
state; right: associated time representation.
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Figure 5.10: Thresholding Landweber fixed point iteration for the pixel basis and orthog-
onal Haar wavelet basis L = W and sparsity parameter α = 0.02. From top left to up
right: original image x; T (x) + δ = yδ; final reconstruction of the solution; values of
‖yδ − T (F ∗g)‖2

L2(Ω) (red) and |Wg|`1 (green) during the whole iteration process; spar-

sity history (red, green indicates the reference to original total number of coefficients);
error plot; Jα; Gaussian surrogate term; Jα (red) and Js

α = Jα+‘Gaussian surrogate term’
(blue).

5.3 Thresholding Landweber Fixed Point Iteration –

An Illustration

In this section, we apply the iterative machinery for solving nonlinear problems in a multi
frame setting. For illustration purposes we focus on a sequence of synthetic nonlinear
problems in the field of signal and image processing.

The first example is devoted to nonlinear image deformation. As the synthetic nonlinear
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Figure 5.11: Thresholding Landweber fixed point iteration for the pixel basis and or-
thogonal Haar wavelet basis L = W and sparsity parameter α = 0.1. From top left to
up right: original image x; T (x) + δ = yδ; final reconstruction of the solution; values of
‖yδ − T (F ∗g)‖2

L2(Ω) (red) and |Wg|`1 (green) during the whole iteration process; spar-

sity history (red, green indicates the reference to original total number of coefficients);
error plot; Jα; Gaussian surrogate term; Jα (red) and Js

α = Jα+‘Gaussian surrogate term’
(blue).

operator we consider
T (x) = cos(x) .

Assuming our image is given by some x ∈ L2(Ω), where Ω = [0, 1]2, then T is applied to
each value x(k, l), for all (k, l) ∈ Ω,

T (x(k, l)) = cos(x(k, l)).

As the frame under consideration we chose the pixel basis with frame operator F and
x = F ∗g for some g ∈ `2. Moreover, we aim to reconstruct an image while requiring
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sparsity. Sparsity can be achieved when setting p = 1. However, we still know that
sparsity cannot be well achieved when dealing with a pixel frame. Hence, it would be
more feasible to switch to a wavelet frame (basis) when penalizing the approximation, i.e.
we set L = W and W denoting the orthogonal wavelet transform. Consequently, we may
cast the problem as follows,

Jα(g) = ‖yδ − T (F ∗g)‖2
L2(Ω) + 2α|Wg|`1 .

In the notation of Section 4.2, the Landweber iteration is then based on solving the
following fixed point equation in each step,

gk+1 =
α

C
W ∗(I − PC)

(
C

α
WM(gk+1, gk)

)
= Sα,W,C

(
M(gk+1, gk)

)
,

i.e. for each Landweber iteration we have to perform a fixed point iteration with a
generalized shrinkage projection applied in each step

gk+1,l+1 = Sα,W,C
(
M(gk+1,l, gk)

)
.

We finally need to derive the generalized shrinkage operator Sα,L,C. Since p = 1,

Ψ(Wg) = |Wg|`1 =
∑
λ∈Λ

|(Wg)λ| ,

the related convex set is then nothing else than

C = {Wg ∈ `2 : sup
λ∈Λ

|(Wg)λ| ≤ 1} .

This yields the componentwise acting projection PC(Wg) = {PC((Wg)λ)}λ∈Λ with

PC((Wg)λ) =

{
(Wg)λ if |(Wg)λ| ≤ 1
sgn(Wg)λ if |(Wg)λ| > 1

,

where sgn(0) ∈ [−1, 1] and consequently,

(I − PC)((Wg)λ) =

{
0 if |(Wg)λ| ≤ 1
sgn(Wg)λ(|(Wg)λ| − 1) if |(Wg)λ| > 1

.

This is the well–known soft shrinkage operation with threshold 1, which we denote here
by S1. Thus,

gk+1,l+1 = Sα/C

(
M(gk+1,l, gk)

)
.

The numerical results for two different parameters α are shown in Figures 5.10 and 5.11.
In Figure 5.10 we have chosen α = 0.02, in Figure 5.11, α = 0.1. We may clearly observe
that we achieve much better sparsity in the second case whereas the approximation quality
is much higher in the first example, and that the number of iterations becomes less when
α increases.
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Figure 5.12: Thresholding Landweber fixed point iteration for a wavelet based dictionary
(F1 ∼ Haar system, F2 ∼ Daubechies wavelet basis of order ten) and sparsity parameters
α = (0.2, 0.5). From top left to up right: original data x; T (x) = y; T (x) + δ = yδ; final
Haar reconstruction; final Db10 reconstruction; final overall reconstruction; values of
‖yδ − T (F ∗g)‖2

L2(Ω) (red) and |g1|`1 + |g2|`1 (green) during the whole iteration process;

sparsity history (red, green indicates the reference to original total number of coefficients);
error plot; Jα; Gaussian surrogate term; Jα (red) and Js

α = Jα+‘Gaussian surrogate term’
(blue).

In the second illustration, we really compute a reconstruction when dealing with multi
frames. For computational reasons we consider a one dimensional synthetic data set, see
top left diagram in Figure 5.12. The nonlinearity comes into play by setting

y = T (x) = e−x .

Our frame dictionary consists now of two different bases: Daubechies wavelet bases of
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order one (Haar wavelet basis) and ten. We denote the corresponding frame operators by
F1 and F2, then

x = Kg = K(g1, g2) = F ∗
1 g1 + F ∗

2 g2 .

Moreover, we again aim to reconstruct a sparse solution of the inverse deformation prob-
lem. Since we still deal with a wavelet based dictionary it is customary to set L1 = L2 = I.
The variational problem to be minimized reads then as

Jα(g) = Jα(g1, g2) = ‖yδ − T (K(g1, g2))‖2
L2(Ω) + 2α1|g1|`1 + 2α2|g2|`1 .

Hence, the resulting system of fixed point equations (to be solved in the same manner as
before) is given by

(g1)k+1 = Sα1/C

(
M1(gk+1, gk)

)
(g2)k+1 = Sα2/C

(
M2(gk+1, gk)

)
.

The results are visualized in Figure 5.12. The main observation is that we may indeed
reconstruct with the proposed scheme an approximation of x. Moreover, we see that
the different components of x are at most complementary covered by the two different
frames: the Haar system essentially grabs the non–smooth part whereas the Db10 family
describes smoother components of x. Of course, we must admit that the information is not
completely split, i.e. there is still some redundant information in g1 and g2. However, the
reconstructed approximation of x requires even by using two bases much less coefficients
(approx. 160 coefficients) than the original data set (256 coefficients).

5.4 Acceleration of Support Vector Machines

As in Section 3.3, we briefly consider Support Vector Machines again. But contrary to
the way of applying the iterative strategy for linear problems which was essentially used
to approximate the set vectors itself, we suggest now to reduce Nx and to approximate
the xi’s in

Ψ1(α,x) =
Nx∑
i=1

αiΦ(xi)

simultaneously, i.e. we aim to minimize a quantity of the form

‖Ψ1(α,x)−Ψ(β, z)‖2 + 2γ0|β|1 + 2
Nx∑
i=1

γi|zi|1 → min
β,z

,

where

Ψ(β, z) =
Nx∑
i=1

βiΦ(Axi +W−1zi) ,

and Axi denotes the approximation sequences at the coarsest wavelet decomposition level,
and W−1zi the orthogonal complement (inverse of all the wavelet details). Following the
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lines in Section 4.2, a straightforward computation results in the following system of fixed
point iterations for computing the iterates

βk and zk = ((z1)k, . . . , (zNx)k) :

βk+1 = Sγ0/C (βk +DβΨ(βk+1, zk+1)
∗(Ψ1(α,x)−Ψ(βk, zk))/C)

(z1)k+1 = Sγ1/C ((zi)k +WDzi
Ψ(βk+1, zk+1)

∗(Ψ1(α,x)−Ψ(βk, zk))/C)

...

(zNx)k+1 = Sγ1/C

(
(zNx)k +WDzNx

Ψ(βk+1, zk+1)
∗(Ψ1(α,x)−Ψ(βk, zk))/C

)
.

In accordance with the convergence results in Section 3.3 we may assure by a proper
choice of C that we approach in any case a critical point, which is not the case for the
reduction procedure presented in Section 3.3. However, a numerical verification is not
done yet.
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Chapter 6

Perspectives on Adaptive Frame
Strategies

This chapter is devoted to the discussion of adaptive concepts for linear and nonlinear
problems. This is especially motivated by the high computational complexity when solv-
ing operator equations at least with multi frame dictionaries and non-diagonal operators.
In the very recent literature, e.g. [Ste03], a frame–based method for solving linear op-
erator equations is presented. This concept is sort of extension of known wavelet based
strategies, []: using a Riesz basis of wavelet type for the underlying Hilbert space, the
operator equation is transformed into an equivalent matrix vector system. This system is
solved iteratively, where the application of the infinite stiffness matrix is replaced by an
adaptive approximation. Assuming that the stiffness matrix is sufficiently compressible ,
i.e. it can be sufficiently well approximated by sparse matrices, it was proved that adap-
tive methods have optimal computational complexity in the sense that it converges with
the same rate as the best N -term approximation for the solution assuming it would be
explicitly available. The condition concerning compressibility requires that the wavelets
have sufficiently many vanishing moments, and that they sufficiently smooth. Except on
tensor domains, wavelets that satisfy this requirement are difficult to construct. At least,
when dealing with an over-complete dictionary we are beyond bases.

To this end, in many cases a frame based treatment seems to be much better suited
for solving operator equations. In [Ste03], the usage of one individual frame is suggested.
With this frame the operator equation is transformed into a matrix vector system, after
which this system is solved iteratively by an adaptive method.

In what follows we briefly review the basic idea of Richardson iterations presented in
[Ste03]. Next, we briefly sketch the relation to Landweber type iterations we have con-
structed in Chapter 2 and propose an adaptive iteration (for which do not give convergence
results). Finally, we end this chapter with a discussion on the nonlinear case.

133
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6.1 Brief Review on an Adaptive Frame Method

We review the ideas presented in [Ste03]. Given some linear operator L which is boundedly
invertible from some Hilbert space H into itself, we consider the problem of finding v such
that

Lv = z .

The basic concept requires some additional facts on frames. Assume we are given some
frame with frame operator F , such that

F : H → `2, f 7→ {fλ = 〈f, φλ〉}λ∈Λ (6.1.1)

F ∗ : `2 → H, c 7→
∑
λ∈Λ

cλφλ (6.1.2)

are bounded with norm less or equal
√
B. The composition F ∗F is a positive and self-

adjoint (i.e. boundedly invertible) operator. The canonical dual frame has frame bounds
B−1, A−1, and corresponding analysis and synthesis operators

F̃ = F (F ∗F )−1 , F̃ ∗ = (F ∗F )−1F ∗ . (6.1.3)

In particluar, one has the following orthogonal decomposition of `2

`2 = R(F )⊕N (F ∗) ,

and
Q := F (F ∗F )−1F ∗ : `2 → R(F ) ,

is the orthogonal projection onto R(F ).

Let us now transform the operator equation in a matrix vector system. At first, write
v = F ∗g for some g ∈ `2, where g satisfies

Mg = z , (6.1.4)

with
M := FLF ∗ and z := Fz .

From
F̃L−1F̃ ∗FLF ∗ = F̃F ∗

FLF ∗F̃L−1F̃ ∗ = FF̃ ∗

}
= Q = I on R(F ) ,

we conclude that M |R(F ) : R(F ) → R(F ) is bounbedly invertible, with ‖M‖ ≤ B‖L‖
and ‖M |−1

R(F )‖ ≤ A−1‖L−1‖, where N (M) = N (F ∗).

Now we can write the iterative scheme to solve in infinite dimensional system Mg = z.
In case L is symmetric and positive, M = M ∗ ≥ 0. With λmax := λmax(M) = ‖M‖
and λ+

min := λmin(M |R(F )) = ‖M |−1
R(F )‖−1, for 0 < η < 2/λmax, we consider the damped

Richardson iteration
gk+1 = gk − η(Mgk − z) . (6.1.5)
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We infer that
‖Q(g − gk+1‖ ≤ ρ‖Q(g − gk)‖ ,

where ρ := ‖(I − ηM)|R(F )‖ = max{ηλmax − 1, 1− ηλ+
min}.

In case of L being non-symmetric or indefinite can be treated by considering the normal
equation

M ∗Mg = M ∗z . (6.1.6)

The bulk of [Ste03] is now the study of an inexact version of (6.1.5) in which the application
of the infinite matrix M is approximated (we neglect here the problem that errors made in
R(F ∗) are not reduced in subsequent iterations). Obviously, since in actual computations
neither we can handle an infinite vector z, nor we can apply the infinite matrix M ,
iteration (6.1.5) is not a practical algorithm. To this end, assume we have the following
procedures at our disposal (for a detailed description we refer the reader to [Ste03]):

• RHS(ε,g) → gε: determines for g ∈ `2 a finitely supported gε ∈ `2 such that

‖g − gε‖`2 ≤ ε (6.1.7)

• APPLY (ε,N,v) → wε: determines for M = N ∈ L(`2) and for a finitely sup-
ported v ∈ `2 a finitely supported wε such that

‖Nv −wε‖`2 ≤ ε (6.1.8)

• COARSE(ε,v) → vε: determines for a finitely supported v ∈ `2 a finitely sup-
ported vε ∈ `2 with at most N significant coefficients, such that

‖v − vε‖`2 ≤ ε. (6.1.9)

Based on these routines, we may consider the following inexact version of the damped
Richardson iteration:

SOLV E (ε,M , z) → gε:

Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ
i := 0, g0 := 0, ε0 := ‖M |−1

R(F )‖‖z‖
while εi > ε do

i := i+ 1
εi := 3ρKεi−1/θ
zi := APPLY (θεi/(6ηK), g)
f i,0 := gi−1

for j = 1, . . . , K do

f i,j := f i,j−1 − η(APPLY (θεi/(6ηK),M ,f i,j−1)− zi)

end

gi := COARSE((1− θ)ε,f i,K)
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end

gε := gi

The following theorem gives the approximation result (for extensions of this theorem and
a proof we refer the reader again to [Ste03]).

Theorem 6.1.1 Let g ∈ `2 be some solution of Mg = z. Then the vectors gi and f i,K)
produced in SOLV E(ε,M , z) satisfy

‖Q(g − gi)‖ ≤ εi ,

and thus,
‖Q(g − gε)‖ ≤ ε .

6.2 Adaptivity for Solving Variational Problems

We focus on linear problems. In view of quadratic Tikhonov functionals we may of course
consider a slightly modified operator

M := FA∗AF ∗ + αI

and may directly apply SOLV E(ε,M , z) to this operator to obtain an adaptive way of
deriving the solution.

However, in contrast to apply the inexact Richardson iteration to the normal equation
(what quite natural in the quadratic situation), we may also investigate the relation
between the Landweber iteration developed in Section 2.2. We restrict the analysis to the
single frame approach (but we note that achieving optimal complexity is especially for the
multi frame case of special interest). The hope is also to deduce an adaptive scheme for
the linear operator setting with some non-quadratic penalty. To this end, let us consider
the variational problem from Section 2.2

Φ(g) := ‖f −KAg‖2 + α|g|pp .

For p = 2, setting M = K∗
AKA and assuming ‖A‖ < 1, the resulting iteration reads as

gi+1 =
1

B + α
(K∗

Af + (B · I −M)gi) .

By Theorem 2.2.1 (but is also clear since the mapping is contractive) we immediately
deduce that for arbitrarily chosen g0 the sequence gi converges in norm to a solution of
the normal equation

(M + αI)g = K∗
Af , (6.2.1)

or explicitely

g =
1

B + α

(
∞∑
i=0

[
BI −M

B + α

]i
)
K∗

Af ,
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which can be recasted as

g =
1

B + α

(
∞∑
i=0

[
I − M + αI

B + α

]i
)
K∗

Af ,

i.e. the damped Landweber iteration is sort of damped Richardson iteration with
relaxation parameter (B + α)−1 and operator M + α. Thus, for p = 2, we may directly
apply the adaptive concept of the latter section.

For 1 ≤ p < 2, we have

gi+1 = Sp,α/2B

(
gi −

1

B
(Mgi −K∗

Af)

)
. (6.2.2)

Iteration (6.2.2) is nothing than a damped Richardson iteration with relaxation parameter
B−1 and operator M and where the generalized shrinkage operator with threshold α/2B
is applied in each step. In principle, formula (6.2.2) would suggest the following adaptive
concept (where we omit detailed constants since we do not give any convergence proof
here):

Let z = K∗
Af , then

shrinkSOLV E (ε,M , z) → gε:

i := 0, g0 := 0, ε0 := c1
while εi > ε do

i := i+ 1
εi := c2(εi−1)
zi := APPLY (c3(εi), g)
hi,0 := gi−1

for j = 1, . . . , K do

hi,j := Sp, α
2B

(
hi,j−1 −

1

B
(APPLY (c4(εi),M ,hi,j−1)− zi)

)
end

gi := COARSE(c5(εi),hi,K)

end

gε := gi

Remark 6.2.1 In the nonlinear case, the situation is completely different since we have
to treat two nested iterations in a nonlinear framework. For the single frame situation we
considered the functional

Jα(g) = ‖yδ − T (F ∗g)‖2
L2(Ω) + 2αΨ(Lg) ,
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where we have seen that a method to approach a solution is the Landweber iteration which
is based on solving the following fixed point equation in each step,

gk+1 = Sα,L,C
(
M(gk+1, gk)

)
.

Involving the fixed point iteration by some index l, we obtain

gk+1,l+1 = Sα,L,C

(
gk −

1

C

(
FT ′(Fgk+1,l)

∗T (Fgk)− FT ′(Fgk+1,l)
∗yδ
))

.

Since we always have to evaluate the nonlinear operators T ′(·) (inner iteration) and T (·)
(outer iteration), the technology of APPLY is not adequate (since its based on compress-
ible matrices). The development of some reasonable adaptive strategy for the full nonlinear
problem while using multi frames is because of the resulting computational complexity very
important – but it remains for the moment a pipe dream.
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