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Abstract. In this paper, we present a novel algorithm for reducing the runtime compu-
tational complexity of a Support Vector Machine classifier. This is achieved by approxi-
mating the Support Vector Machine decision function by an over-complete Haar wavelet
transformation. This provides a set of classifiers of increasing complexity that can be
used in a cascaded fashion yielding excellent runtime performance. This over-complete
transformation finds the optimal approximation of the Support Vectors by a set of rect-
angles with constant gray-level values (enabling an Integral Image based evaluation). A
major feature of our training algorithm is that it is fast, simple and does not require com-
plicated tuning by an expert in contrast to the Viola & Jones classifier. The paradigm
of our method is that, instead of trying to estimate a classifier that is jointly accurate
and fast (such as the Viola & Jones detector), we first build a classifier that is proven to
have optimal generalization capabilities; the focus then becomes runtime efficiency while
maintaining the classifier’s optimal accuracy. We apply our algorithm to the problem of
face detection in images but it can also be used for other image based classifications. We
show that our algorithm provides, for a comparable accuracy, a 15 fold speed-up over
the Reduced Support Vector Machine and a 530 fold speed-up over the Support Vector
Machine, enabling face detection at 25 fps on a standard PC.

1. Introduction

Image based classification tasks are time consuming. For instance, detecting a specific object
in an image, such as a face, is computationally expensive, as all the pixels of the image are
potential object centres. Hence all the pixels must be classified.

Therefore, recently, more efficient methods have emerged based on a cascaded evaluation
of hierarchical filters: image patches easy to discriminate are classified by a simple and fast
filter, while patches that resemble the object of interest are classified by more involved and
slower filters. In the area of face detection, cascaded based classification algorithms were in-
troduced by Kerenet al.[7], by Romdhaniet al. [9] and by Viola and Jones [14]. The detector
from Kerenet al. [7] assumes that the negative examples (i.e. the non-faces) are modeled by a
Boltzmann distribution and that they are smooth. This assumption could increase the number
of false positive in presence of a cluttered background. Romdhaniet al. [9] use a Cascaded
Reduced Set Vectors expansion of a Support Vector Machine (SVM) [13]. The speed bottle-
neck of [9] is that at least one convolution of a20 × 20 filter has to be carried out on the full
image, resulting in a computationally expensive evaluation of the kernel with an image patch.
Viola & Jones [14] use Haar-like oriented edge filters having a block like structure enabling a
very fast evaluation by use of an Integral Image. These filters are weak, in the sense that their
discrimination power is low. They are selected, among a finite set, by the Ada-boost algorithm
that yields the ones with the best discrimination. A drawback of their approach is that it is not
clear that the cascade achieves optimal generalization performances. Practically, the training
proceeds by trial and error, and often, the number of filters per stage must be manually selected
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so that the false positive rate decreases smoothly. Another drawback of the method is that the
set of available filters is limited and manually selected. Additionally, the training of the classi-
fier is very slow, as every filter (and there are about105 of them) is evaluated on the whole set
of training examples and this is done every time a filter is added to a stage of the cascade.

In this paper, we present a novel efficient classification algorithm based on following fea-
tures:

1. Use of an SVM classifier that is known to have optimal generalization capabilities.
2. To achieve high run-time efficiency we use a reduced set of Support Vector (RVM in [9]).
3. The high run-time efficiency is also obtained by a coarse-to-fine approximation of the

classifier enabling a cascaded evaluation. For non-symmetric data (i.e. only few positives
to many negatives) we achieve an early rejection of easy to discriminate vectors. The
granularity of the accuracy of the approximation is set by the following parameters, which
are automatically selected at detection time based on the image patch to be classified:
(i) the number of Reduced Set Vector (RSV) used and (ii) the accuracy of the wavelet
representation of these RSV’s. This constitutes the major novelty of this paper. The trade-
off between accuracy and speed is very continuous.

4. As the RSV’s are approximated by a Haar wavelet transform, the Integral Image method
is used for their evaluation, similarly to [14].

5. We use the over-complete wavelet theory to obtain the global optimum approximation of
RSV’s. As shown in Section 2.1.3, the over-complete wavelet theory provides an upper
bound on the distance between the decision function of the RVM and of the proposed W-
RSV. The proposed learning stage is fast, straightforward, automatic and does not require
the manual selection of ad-hoc parameters, as opposed to the Viola and Jones method
[14]. For example, the training time, on the data set mentioned in Section 3, was two hours
which is a vast improvement over the Viola detector.

The novelty to [8] is 3. (ii) and 5.: The Simulated Annealing optimization using morpho-
logical filters is replaced by the over-complete wavelet transformation. The problems with the
Simulated Annealing method is that it did not provide the global optimum of the RVM approx-
imation in all cases and it was difficult to adjust the approximation accuracy. It should be noted
that, in this work, we apply an over-complete wavelet transformation of the Reduced Support
Vector Machine itself, and not of the input space as a pre-processing like [6, 1].

Section 2 details our novel training algorithm that constructs a Wavelet Approximated Re-
duced Set Vectors expansion having a block-like structure. It is shown in Section 3 that the new
expansion yields a comparable accuracy to the SVM while providing a significant speed-up.

2 Over-complete Wavelet Approximated Support Vector Machine

Support Vector Machines (SVM), used as classifiers, are now well-known for their good gen-
eralisation capabilities. Their decision function has the following form:y(x) =

∑
k αi ·

k(x,xk) + b, wherek(·) is the kernel used. In order to improve the runtime performance
[11] proposed to approximate the SVM by a Reduced Support Vector Machine (RVM), used
with a cascaded evaluation in [9]. The RVM aims to approximate the Support Vectors,xk by
asmallerset of Reduces Set Vectors (RSV’s),zk. During evaluation, most of the time is spent

in kernel evaluations. In the case of the Gaussian kernel,k(x, zk) = exp
(
−‖x−zk‖2

2 σ2

)
, chosen

here, the computational load is spent in evaluating the norm of the difference between a patch
and a RSV. This norm can be expanded as follows:‖x− zk‖2 = x′x− 2x′zk + z′kzk. As zk

is independent of the input image, it can be pre-computed. The sum of squares of the pixels of
a patch of the input image,x′x is efficiently computed using the Integral Image ([4, 14]) of the
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squared pixel values of the input image. As a result, the computational load of this expression
is determined by the term2x′zk.

The novelty of this paper is the approximation the RSV’s,zk, by a set of Wavelet Approx-
imated Reduced Set Vectors (W-RSV),uk that have a block-like structure, as seen in Figure 1.
Then the term2x′uk can be evaluated very efficiently by use of the Integral Image. Ifuk is
an image patch with rectangles of constant (and optionally different) grey levels then the dot
product is evaluated in constant time by the addition of four pixels of the Integral Image of the
input image per rectangle and one multiplication per grey level value.

2.1 Learning Haar-like Reduced Set Vectors using OCWT

In contrast to other approaches ([6, 1]), we do not use a wavelet transformation of the input
images as a pre-processing at runtime. The novelty is that we apply the over-complete wavelet
transformation at the learning stage. Our approach proposes a wavelet transformation of the
Reduced Support Vector Machine itself as a means to speedup the runtime performance.

2.1.1 Wavelet-Shrinkage for Haar-like structured Reduced Set VectorsIn order to make
full usage of the concept of Integral Images, it would be desirable to approximate the computed
RSV’s,z, by block-wise structured images that are not too far off while keeping the number of
rectangular regions with constant grey value much smaller than inz. Mathematically speaking,
we are searching for an approximation of a given imagez by a piecewise block structured im-
ageu which is as sparse as possible. This optimization problem can be casted in the following
variational form

min
û

{
‖z− û‖2L2

+ 2α|û|B1
1(L1)

}
, (1)

whereB1
1(L1) denotes a particluar Besov semi–norm; for an overview we refer the reader

to [12, 10] and for a detailed discussion of the problem to [2]. The Besov (semi) norm of a
given function can be expressed by means of its wavelet coefficients and, moreover, in two
dimensions the Besov penalty is nothing else than a`1 constraint on the wavelet coefficients
(promoting sparsity as required).

The minimization of (1) is easily obtained: Let{ψλ}λ∈Λ be the wavelet basis, whereΛ is
the double index over all grid points and all scalings. Then we may expressz andû as follows:
z =

∑
λ∈Λ zλψλ , û =

∑
λ∈Λ ûλψλ, wherezλ = 〈z, ψλ〉 and ûλ = 〈û, ψλ〉 (here〈·, ·〉

stands for the inner product in the underlying Hilbert space). We may completely represent (1)
by means of the associated wavelet coefficients,

u = arg min
û

∑

λ∈Λ

{
(zλ − ûλ)2 + 2α|ûλ|

}
. (2)

Since the wavelet basis is linearly independent, we can minimize summand–wise and obtain
the following explicit expression for the optimumuλ, see, e.g. [5],

uλ = Sα(zλ) = sgn(zλ)max{|zλ| − α, 0} , (3)

whereSα is the soft–shrinkage operation with thresholdα. Consequently, the optimumu is
simply obtained by soft–shrinking the wavelet coefficients ofz, i.e.u =

∑
λ∈Λ Sα(zλ)ψλ.

2.1.2 Over-complete Wavelet TransformationTypically, a wavelet representation of an im-
age is computed by fast discrete wavelet schemes. However, non–redundant representations
and filtering very often creates artifacts in terms of undesirable oscillations or non–optimally
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represented details, which manifest themselves as ringing and edge blurring. For our purpose,
it is essential to pick a representation that optimally meets the local image structure and is not
restricted to a fixed grid (see Figure 1). The most promising method for adequately solving
this kind of problem has its origin in translation invariance (the method of cycle spinning, see,
e.g. [3]), i.e. representing the image by all possible shifted versions of the underlying (Haar)
wavelet basis. But contrary to the idea of introducing redundancy by averaging over all possi-
ble representations ofz, we aim to pick only that one which is optimally suited for our given
image.

In order to give a rough sketch of this technique, assume that we are given an RSVz with
2M × 2M pixel. Following the cycle–spinning approach, see again [3], we have to compute
22(M+1−j0) different representations ofz with respect to the22(M+1−j0) translates,s of the
underlying wavelet basis. The scalej0 denotes the coarsest resolution level ofz. The family
{zs}s generated this way serves now as our reservoir of possible wavelet representations of
one singlez. The best shifts∗ is that one for which we have a minimal discrepancy to the
SVM hyper-plane per operations for the kernel-evaluation. We evaluate all possible local shifts
(in our cases = 64), hence the global optimum shift is guaranteed (see Section 2.1.4).

Fig. 1. Examples for Haar-like approximations of an RSV (left) using morphological filter (H-RSV [8],
middle) and using an over-complete wavelet transformation (W-RSV,right). The OCWT representation
meets optimally the local image structure. The ratio of the decreasing of the hyper-plane distance to the
used operations (see Section 2.1.4) is more efficient for the W-RSV (0.73) than for the H-RSV (0.51).

2.1.3 Hyper-plane Approximation by Wavelet ShrinkageOnce we approximate the Support
Vectors of the SVM by the W-RSV’s, the question arises whether the hyper-plane approxima-
tion Ψ ′′Nz

=
∑Nz

i=1 βiΦ(ui) is close toΨNx =
∑Nx

i=1 αiΦ(xi) (WhereΦ : X → F, x 7→ Φ(x)
is the map into the best discriminating hyper-spaceF . Using a kernel function we can compute
the dot product inF : k(x,x′) = 〈Φ(x), Φ(x′)〉 [13]). That the RVM (Ψ ′Nz

=
∑Nz

i=1 βiΦ(zi))
minimises‖Ψ ′Nz

− ΨNx‖ is shown in [11].
We can demonstrate that the discrepancy between the W-RVM and the RVM is upper-

bounded by theL2 distance (which is minimised by (3) in the`1 sense) of the sparse approxi-
mationui of zi (The derivation is omitted here for space reasons):

‖Ψ ′′Nz
− Ψ ′Nz

‖ ≤ σ−1
Nz∑

i=1

|βi| ‖zi − ui‖. (4)

2.1.4 Algorithm for Generation of the W-RSV’s First, the RSV’s,zi are computed by min-
imising‖Ψ ′Nz

−ΨNx‖2 (see [9]). Then, the W-RSV’s,ul
i, of the RSV’s,zi (i = 1, . . . , Nz) are

computed using local best shift approximations at the levell = 1. The approximation at one
level automatically selects the best shift and the number of wavelet basis used for this shift for
all theul

i, i = 1, . . . , Nz. Once one level is computed, the residual of the previous level is ap-
proximated using the same procedure. The usage of the different approximation levels enables
a smooth trade-off between accuracy and speed (see Section 2.2).
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The approximationul
i of the RSV,zi, at the levell, is obtained by minimising the distance

δl
i to the SVM hyper-plane with respect toβl

i andul
i:

δl
i = ‖Ψ l

i−1 − βl
iΦ(ul

i)‖2, where Ψ l
i−1 = Ψ l−1

Nz
−

i−1∑

k=1

βl
kΦ(ul

k), (5)

whereΨ l
i−1 is the residual vector (in the feature spaceF ) between the SVM and the classifier

obtained usingNz RSV’s for the levels 1 tol−1, and usingi−1 RSV’s for the levell. For the
first level, this residual is the SVM itself:Ψ0

Nz
=

∑Nx

i=1 αiΦ(xi). The formal algorithm that
provides the set ofβl

i andul
i for i = 1, . . . , Nz andl = 1, . . . , Nl follows:

1. SetΨ0
Nz

=
∑Nx

i=1 αiΦ(xi) and∀i=1,...,Nz : r1
i = zi, wherezi are the Reduced Set Vectors.

2. Start at the first approximation levell = 1.
3. Start with the first Reduced Set Vectori = 1.
4. Evaluate∀s : ũs = (W s)−1Sα

(
W srl

i

)
where W s is the wavelet decomposition and

(W s)−1 the reconstruction with a shifted wavelet basis by the two dimensional shifts ∈{
1, 2, . . . , 2J

}× {
1, 2, . . . , 2J

}
. For a20× 20 patch size a shiftJ = 3 is sufficient.Sα is

the Shrinkage function with the sparsity parameterα (see Section 2.1.1 and 2.2).
5. Evaluate∀s : ∆s

δ = δl
i−1 − δl

i where δl
0 = δl−1

Nz
and the number of operations∆s

ω =
4 ∗# [ũs]+ v(ũs) where#[ũs] is the number of piecewise constant rectangles andv(ũs)
the number of grey values of̃us.

6. Select the best shifts∗, for which the ratio∆s
δ

∆s
ω

is maximum.

7. Setul
i = ũs∗ and save the rectangle structure for each approximation level oful

i sepa-
rately. Then, the residual is updated:rl+1

i = rl
i − ul

i.
8. If i ≤ Nz, incrementi and proceed to step 4. Ifi > Nz and l ≤ Nl, incrementl and

proceed to step 3; else, stop.

Fig. 2. Example of the approximation of a RSV (left), zi, by its W-RSVul
i at different approximation

levels (top row, left to right: l = 1, 2, 10, 19). The bottom row, (left to right)shows the sum of the
W-RSV’s over the approximation levels:

∑n
l=1 ul

i with n = 1, 2, 10, 19.

Using this algorithm, we obtain for each RSV,zi, Nl levels of W-RSV’s,ul
i (see Figure 2

top row). The approximation levell+1 of the W-RSV is not computed by a finer approximation
of the original RSV,zi (e.g. by increasing sparsity parameterα). Instead the algorithm achieves
the approximationul+1

i from the residualrl+1
i = zi−

∑l
h=1 uh

i . Thus
∑Nl

l=1 ul
i converge tozi

if Nl →∞ (see Figure 2 right column). We call it a local best shift method because the shifts∗
is generally different for each approximation level. It is also noticed, that the rectangle structure
of ul

i is evaluated and stored during the training and applied at the classification process for

eachl separately because#
[∑l

h=1 uh
i

]
>

∑l
h=1 #

[
uh

i

]
. As seen in Figure 2 (bottom row)

we obtain more rectangles, because the rectangles overlay by adding the approximations levels.
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2.2 Detection Process

The classification function of the input patchx of the W-RVM, denoted byyl
i(x), usingl levels

andi RSV’s at the levell is as follows:

yl
i(x) = sgn




l−1∑

h=1

Nh
z∑

j=1

βl,i
h,jk(x,uh

j ) +
i∑

j=1

βl,i
l,jk(x,ul

j) + bl
i


 , (6)

where,Nh
z , for h = 1, . . . , l − 1, denotes the number of RSV’s used for the approximation

of level h (see hereafter how to setNh
z ), bl

i are the thresholds obtained automatically from an
R.O.C. for a given accuracy. These thresholds are set to yield a given False Rejection Rate
(FRR) so that the accuracy of the W-RVM is the same as the one of the full SVM (see [9] for
details). The trade-off between FRR and FAR is the only parameter of our algorithm to be set
by the user.

To achieve high run-time efficiency, we use a cascade of coarse-to-fine approximations of
the SVM classifier. The aim is too reject as early as possible image parts that do not present
the object of interest. This is performed by the following algorithm:

1. Start at the first approximation levell = 1.
2. Start with the first W-RSV,ul

1 at the levell.
3. Evaluateyl

i(x) for the input patchx using (6).
4. If yl

i < 0 then the patch is classified as not being the object of interest. The evaluation
stops.

5. If i < N l
z, i is incremented and the algorithm proceeds to step 3; else ifl < Nl, l is incre-

mented and the algorithm proceeds to step 2; otherwise the full SVM is used to classify
the patch.

When computing a RSV approximation of an SVM, it is not clear how many RSV’sNz

should be computed (see [9]). This number of vectors may vary depending on the level of
the approximation. This is why in Equation (6) the number of vectors used for the levelh
is denoted byNh

z . The rationale of this dependency is that, at some point in the evaluation
algorithm, it might be more efficient to incrementl (and reseti), rather than to incrementi.
The best value ofN l

z is computed in an offline process using a validation dataset:N l
z is set

to the smallesti for which
∆ω(yl

i+1)

r(yl
i+1)

>
∆ω(yl+1

1 )

r(yl+1
1 )

, wherer(yl
i) is the number of rejections of

the negative examples obtained withi RSV’s for the levell, and∆ω(yl
i+1) is the number of

operations required to evaluateyl
i+1 (see Section 2.1).

By a similar evaluation the last used approximation level,Nl can be achieved. For this
Nl = l it is more efficient to classify the last few remaining patches by the SVM, instead
of incrementingl. How many levels this are depends also on the sparsity parameterα of the
OCWT. The smaller isα, the closerul

i is fromzi and the less approximation levels are required.
However, the number of levels does not play a decisive role as the higherNl, the sooner the
evaluation process selects the next level, i.e. the lessN l

z. Therefore our proposed approach is
not very sensitive to the parameter for setting the approximation accuracy, opposite to former
methods using only one approximation level.

3 Experimental Results

We applied our novel over-complete wavelet approximated SVM to the task of face detection.
The training set includes 3500,20 × 20, face patches and 20000 non-face patches and, the
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validation set, 1000 face patches, and 100,000 non-face patches. The SVM computed on the
training set yielded about 8000 Support Vectors that we approximated byNz = 90 W-RSV’s
atNl = 5 approximation levels by the method detailed in the previous section.

The first graph on Figure 3 plots the residual distance of the RVM (dashed line) and of the
W-RVM (plain line) to the SVM (in terms of the distanceΨNx

− Ψ ′′Nz
) as a function of the

number of vectors used,Nz. It can be seen that for a given accuracy more Wavelet Approxi-
mated Set Vectors are needed to approximate the SVM than for the RVM. However, as shown
on the second plot, for a given computational load, the W-RVM rejects much more non-face
patches than the RVM. This explains the improved run-time performances of the W-RVM. Ad-
ditionally, it can be seen that the curve is more smooth for the W-RVM, hence a better trade-off
between accuracy and speed can be obtained by the W-RVM.
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Fig. 3. Left: ΨNx − Ψ ′′Nz
distance as function of the number of vectors for the RVM (dashed line), and

the W-RVM (solid line). Right: Percentage of rejected non-face patches as a function of the number of
operations required.

Figure 4 shows the R.O.C.’s, computed on the validation set, of the SVM, the RVM and
the W-RVM. It can be seen that the accuracies of the three classifiers are similar without (left
plot) and almost equal with the final SVM classification for the remaining patches (right plot),
see step 5. of the evaluation algorithm. Table 1 compares the accuracy and the average time
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Fig. 4. R.O.C.’s for the SVM, the RVM and the W-RVM (left) without and (right) with the final SVM
classification for the remaining patches. The FAR is related to non-face patches.

required to evaluate the patches of the validation set. The speed-up over the former approach
[8] is about a factor 2.5 (3.85µs). The novel W-RVM algorithms provides a significant speed-
up (530-fold over the SVM and more than 15-fold over the RVM), for no substantial loss of
accuracy.

We also proved the performance and detection accuracy under real life conditions in the
”Institut für Techno- und Wirtschaftsmathematik” (ITWM) in Kaiserslautern. To demonstrate
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method FRR FAR time per patch
SVM 1.4%0.002% 787.34µs
RVM 1.5%0.001% 22.51µs

W-RVM 1.4%0.002% 1.48µs

Table 1.Comparison of accuracy and speed improvement of the W-RVM to the RVM and SVM.

the fast and accurate detection algorithm, we implemented an application using a small we-
bcam. Accurate face detection one obtained at 25 fps (on a Intel Pentium M Centrino 1600
CPU, at a resolution of 320x240, stepsize 1 pixel, 5 scales).

4 Conclusion

In this paper, we presented a novel efficient method for SVM classifications on image based
vectors. We used an over-complete wavelet transformation of the Reduced Set Vectors. It was
demonstrated on the task of face detection.

As opposed to the RVM, the sparseness of operations required for classification is not only
controlled by the number of Reduced Set Vectors but also by the number of wavelets basis func-
tions used to approximate a Reduced Set Vector. Hence, negative examples can be rejected with
much fewer number of operations, making the run-time algorithm very efficient. Moreover, as
the Haar wavelets are used, the SVM kernel may be evaluated extremely efficiently using In-
tegral Images. The main advantage of this algorithm compared to other algorithm based on
boosting, such as the Viola& Jones detector [14], is the fact that the training is much faster
and does not require manual intervention.
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