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Abstract
This paper is concerned with localization properties of coherent states. Instead of

classical uncertainty relations we consider `generalized' localization quantities. This
is done by introducing measures on the reproducing kernel. In this context we may
prove the existence of optimally localized states. Moreover, we provide a numerical
scheme for deriving them.

1 Motivation
The goal of this paper is to introduce a new concept of localization. In classical lore,
one typically considers uncertainty relations. In this framework it is well known that a
nonzero state or wavefunction cannot be arbitrarily well localized simultaneously in space
and Fourier domain. This fact may be quanti�ed by the Heisenberg uncertainty relation,

∆x∆k ≥ 2π.

There are functions which are optimally localized in phase space in that they satisfy the
inequality with the lower bound. For a detailed analysis on uncertainty relations in the
context of Gabor and wavelet transforms we refer, e.g, to [11, 12, 5, 18].

However, for certain physical applications, e.g. radar imaging, it is very promizing
to ask for more �exible concepts. In principle, in radar imaging one has to evaluate the
output of the correlation receiver, see [1]. An important role in detecting objects is played
by the radar ambiguity function, which is ideally given by a delta function. In the nar-
rowband regime, which is of interest in radar imaging, the ambiguity function is given by
Π(φ, τ) = 〈Ψφ,τ , Ψφ0,τ0〉, where Ψ stands for the transmitted waveform. Since a delta pulse
is obviously not possible to realize, one currently uses pulses that minimize by means of
its band/doppler�width and its pulse/range�width the so-called narrowband (Heisenberg)
uncertainty principle, see [1, 7, 6, 4]. A minimization of the Heisenberg quantities leads
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to pulses with Gaussian envelope function. But this is di�cult to implement too and,
moreover, allows no �exibility in specifying more sophisticated localization attributes;
e.g., in order to obtain an accurate spatial resolution while allowing a certain frequency
uncertainty, the ambiguity function Π should have fast decay with respect to range and
a moderate decay with respect to doppler frequency, e.g.

|Π(φ, τ)| ≤ (1 + |τ |)−4(1 + log(1 + |φ|))−1. (1.1)

With the theory presented here in the paper at hand, we may now proceed as follows:
given the speci�c localization characteristic (1.1) in the range doppler plane, compute
the optimal waveform to be transmitted. To be more general, we consider measures of
uncertainty or delocalization in phase space (range doppler plane) and we shall prove the
existence of optimally localized states (waveforms).

In principle, general wavelet transforms

s 7→ Wgs, Wgs(x) = (U(x)g, s)H , x ∈ G

associated with the square integrable irreducible representation U of a locally compact
group G provides a one to one correspondence between the state Hilbert space H and
a reproducing kernel Hilbert space over the group. The reproducing kernel is up to a
normalization the wavelet transform of the wavelet itself

Π = Wgg.

This kernel can be interpreted as the Heisenberg box of the phase space. In this paper we
shall be concerned with localization properties of these reproducing kernels. In fact the
reproducing kernel of wavelet analysis cannot be arbitrarily well localized. For instance,
there is no wavelet such that the associated reproducing kernel is compactly supported.
Obviously here is no universal way of quantifying localization. Instead we propose to
quantify localization through the following and similar families of cost functionals

Φ[g] = sup
x∈G

w(x)−1|Wgg(x)| ,

where w is some positive weight, decaying �at ∞�. We will prove that this functional
and similar �localization� functionals are weakly lower semi-continuous. It therefore has
a minimizer over any weak* compact set. In other words: for any such measure of
localization there is at least one optimal state.

Localization of wavelet transforms has been considered before, see e.g. [17, 15, 9, 8]. In
[9, 8] the authors consider localizing wavelet coe�cients with respect to some preassigned
analyzing wavelet and a compact subset in the wavelet plane. In their approach the an-
alyzing wavelet was �xed. In this paper, however, we consider the nonlinear problem of
optimizing the localization of the reproducing kernel. Since the reproducing kernel de-
pends quadratically on the underlying wavelet, this problem is by nature highly nonlinear
and therefore an explicit expression of the optimal state seems to remain a pipe dream.
However, in the last section we discuss a numerical procedure to approximately compute
such optimally localized states.
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2 The basic formulas
Let us recall the basic formulas of continuous wavelet transform associated with a square
integrable group representation. We only recall the few facts that are necessary for this
paper. For more details we refer to, e.g., [10], [13]. Let G be a non-compact, locally
compact, and σ compact topological group and G 3 g 7→ U(g) a unitary, strongly contin-
uous, irreducible, square integrable representation in some Hilbert space H. The wavelet
transform of s ∈ H with respect to g ∈ H is point-wise de�ned for x ∈ G

Wgs(x) = (U(x)g, s)H .

The left and the right invariant Haar measures are denoted by dλ and dρ. They are
de�ned up to some positive factor. Over G we consider the two Hilbert spaces L2(G, dλ)
and L2(G, dρ). We suppose that dλ and dρ are scaled suitably so that the mapping
s(x) 7→ s(x−1) is an isometry between these two Hilbert spaces. A wavelet is called
admissible, if Wgg ∈ L2(G, dλ). Thanks to the formula

Wgs(x) = ¯Wsg(x−1),

admissibility is also equivalent to Wgg ∈ L2(G, dρ). We denote the set of all admissible
wavelets by A. For g, h ∈ A and s, u ∈ H the following equation holds

(Wgs,Whu)L2(G,dλ) = C(g, h) (s, u)H , (2.1)

where C is a densely de�ned, closed, positive quadratic form. Its form domain is precisely
A. We write cg,h = C(g, h) and cg = C(g, g). By the �rst representation theorem there is a
closed, linear operator T such that for all u ∈ D(T ) and v ∈ A we have C(v, u) = (v, Tu)H .
The space A is in general a non-closed subspace of H. However, since C is a closed
quadratic form it becomes a Hilbert space with respect to

(s, u)A = (s, u)H + C(s, r), ||s||2A = ||s||2H + cs.

Convergence in A will be understood with respect to this norm. From equation (2.1) it
follows that in particular Wg is for admissible, non-zero g a multiple of an isometry

||Wgs||2L2(G,dλ) = cg ||s||2H .

The adjoint of the wavelet analysis is a wavelet synthesis

W∗
g = Mg.

Formally it can be written as follows

Mhr(x) =

∫

G

r(x) U(x)h dλ(x).

We have for g, h ∈ A
MhWg = cg,h1.
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The combination WgMh can be written as non-commutative convolution operator. If we
de�ne on L2(G, dλ)× L2(G, dλ) the (left) convolution product as

Π ∗ r(x) =

∫

G

Π(y−1 ◦ x) r(y) dλ(y),

we have for g, h ∈ A
WgMh = Π∗, Π = Wgh.

In particular we will use the following formula over and over

Wh = Π ∗Wg, Π = c−1
g,hWhh.

3 General Localizations
Before formulating the general existence theorem we consider the particular case of lo-
calization measures through a weighted L∞ norm. Consider therefore a positive function
w : G → R+. We suppose that w is symmetric

w(x−1) = w(x).

and invariant under the G action in that for all y ∈ G we can �nd a c > 0 such that

w(y ◦ x) ≤ cw(x), w(x ◦ y) ≤ cw(x).

Then w ∈ L2(G, dλ) is equivalent with w ∈ L2(G, dρ). Moreover, we consider weights, for
which either of both (and hence both) of the following holds

w ∗ w ∈ L2(G, dλ), w ∗ w ∈ L2(G, dρ).

A natural measure for the localization of a function r over G with respect to w is the
following weighted norm

sup
G

w−1|r|.

For �xed h ∈ A let Σh ⊂ H denote the a�ne subspace of co-dimension 1 de�ned through
Σh = {g ∈ H : (g, Th)H = 1}. Note that Σh may contain non-admissible vectors. The
admissible wavelets in Σh are reconstruction wavelets for h :

MhWg = MgWh = 1.

We introduce the following functional on H.

Φ[s] = Φw[s] = sup
G

w−1|Wss|,

whenever the right hand side is �nite. In all other cases we set Φ[s] = ∞. We now can
formulate the �rst theorem.
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Theorem 1 Let h ∈ H, h 6= 0, be such that Φ[h] < ∞. Then there exists a wavelet
g ∈ Σh such that for all u ∈ Σh we have

Φ[g] ≤ Φ[u].

In other words, the localization functional Φ has a minimizer in each Σh, for all h,
which have some regularity as expressed through |Whh| ≤ w. Note that we have to
require, that Φ[h] < ∞. This ensures, that the set of functions having a w localization is
not empty. In turn, this is a requirement for w in which it should not be decaying too
fast (e.g. compactly supported weights are not possible).

Actually this kind of results can be generalized to a more abstract setting as follows:
Consider two Banach spaces B, K ⊂ L2(G, dλ + dρ) of functions over G with continuous
embeddings. B should be a lattice, || |s| ||B = ||s||B. We then can de�ne a localization
with respect to B simply as

Φ[g] = ||Wgg||B.

We include the value Φ = ∞ in the natural way. For B and K we further suppose that
the following holds:

Invariance of B B should be G bi-invariant: for all y ∈ G there is an b > 0 such that

||s(y ◦ ·)||B ≤ b||s||B, ||s(· ◦ y)||B ≤ b||s||B.

It should be stable under inversion

||s(x−1)||B ≤ d||s||B.

Then we have u(x) = s(y−1 ◦ x ◦ y) satis�es ||u||B ≤ e||s||B.

Semi-continuity of B norm Suppose further that the following inequality holds for
the norm in B : if sn ∈ B is any sequence of non-negative functions sn ≥ 0 then consider
s = lim infn→∞ sn. Then we require that

||s||B = || lim inf sn ||B ≤ lim inf
n→∞

|| sn ||B.

In classical Lp spaces this is a direct consequence of Fatou's lemma
∫

lim inf sndµ ≤ lim inf

∫
sndµ.

Compact embedding of K For the space K we suppose that the following compact
embedding property holds: let L ⊂ K be a K-bounded set. If now on each compact subset
of G the set of functions L is uniformly continuous then L is precompact in L2(G, dλ+dρ).

Convolution mapping The two spaces B and K are linked through the following
convolution property: for �xed r ∈ B the convolution product with r is a linear operator

∗r : B → K, u 7→ r ∗ u,

and it is bounded ||r ∗ u||K ≤ d||u||B, with d depending only on r.
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Nonempty We suppose that there is at least one h ∈ D(T ), h 6= 0 such that Φ[h] < ∞.
This h is admissible, h ∈ A, since B ⊂ L2(G, dλ+dρ). and thanks to the following lemma.

Lemma 1 Let h ∈ A, h 6= 0 be given. Then g ∈ H is actually in A if and only if

||g||2 = ||Whg||2L2(G,dλ) + ||Whg||2L2(G,dρ) < ∞.

The square root of the left hand side de�nes a norm which on A is equivalent to the norm
of A :

c−1
h ||Whg||2L2(G,dλ) + ||h||−2

H ||Whg||2L2(G,dρ) = ||g||2A.

Proof. Suppose g ∈ A. Thanks to the formula

||Whg||2L2(G,ρ) = ||Wgh||2L2(G,dλ) = cg ||h||2H
and the isometric property of the wavelet transform we may conclude. ¤

Under the above conditions, the following theorem holds.

Theorem 2 There is a g ∈ Σh ∩ A such that for all u ∈ Σh we have

Φ[g] ≤ Φ[u].

This function g then satis�es Whg ∈ K.

Typical examples for such spaces B are as follows. As space B we take the functions for
which we have

||r||w,∞ = ||w−1r||L∞(G)

We write also Bw,∞ for this space. For the space K we take the analogue space of functions
with weight u = w ∗ w. If now u ∈ L2(G, dλ + dρ) then we are in the setting of the �rst
theorem. We only have to convince ourselves that all properties of the stated spaces are
satis�es. The only non-trivial property is now the compact embedding.

Lemma 2 Let u > 0 be a symmetric weight function with u ∈ L2(G, dλ + dρ). Then any
set of functions which are uniformly continuous on compact sets of G is precompact in
L2(G, dλ).

Proof. Let sn be a sequence of functions in this set of functions. Since G is σ compact
we can �nd a sequence of compact sets Km ⊂ G with Km ⊂ Km+1 and

⋃
Km = G. Upon

choosing a subsequence we may require that
∫

G\Km

u2(dλ + dρ) ≤ 1/m.

On each Km we can therefore �nd a uniformly convergent subsequence. Therefore upon
choosing a suitable diagonal subsequence we may suppose that for m′ > m

∫

Km

|sm − sm′|2(dλ + dρ) ≤ 1/m.
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We therefore have

||sm − sm′||2L2(G,dλ+dρ) =

∫

G\Km

|sm − sm′|2(dλ + dρ)

+

∫

Km

|sm − sm′|2(dλ + dρ) ≤ 2/m

and thus sm is a Cauchy sequence. Its pointwise limit exists, and thanks to Fatou lemma
is in L2(G, dλ + dρ). ¤

A second family is given by

||r||w,2 = ||w−1/2r||L2(dλ+dρ).

We denote by and Bw,2 the associated Banach space. This means, we consider localization
quantities of the form ∫

G

w−1|Wgg|2dλ.

If w is such that
η(x) = sup

y∈G

√
w(y−1 ◦ x)w(y)

satis�es η ∈ L2(G, dλ+dρ), we may estimate for r = w1/2 u, s = w1/2 v, u, v ∈ L2(G, dλ+
dρ) that

|r ∗ s(x)| ≤
∫

w(y−1 ◦ x)w(y)u(y−1 ◦ x)v(y)dλ(y)|
≤ η(x) ||u||L2(G,dρ)||v||L2(G,dλ) ≤ η(x)||r||w,2||s||w,2

and thus we have Bw,2 ∗ Bw,2 ⊂ Bη,∞. Therefore the theorem applies if we choose for
the space K = Bη,∞. and we have the existence of an optimally localized reconstruction
wavelet.

We now prove the theorem. To start we analyze the mapping properties of Φ. We
denote by ∆ the domain of Φ.

∆ = {s ∈ H : Φ[s] < ∞} ⊂ A.

Lemma 3 The functional Φ is strongly H - lower semi-continuous on ∆. More precisely
for ∆ 3 un → u ∈ H in H, we have

Φ[u] ≤ lim inf
n→∞

Φ[un].

Proof. Since Wunun →Wuu point-wise and thus by hypothesis of semi-continuity of the
B-norm

Φ[ lim
n→∞

un] = || lim
n→∞

Wunun||B ≤ lim inf
n→∞

||Wunun|| = lim inf
n→∞

Φ[un]

¤

We even have
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Lemma 4 The functional Φ is H-weakly lower semi-continuous on ∆\ {0}. More pre-
cisely, for any H-weak convergent sequence ∆ 3 gn → g ∈ H, g 6= 0 with gn ∈ ∆ we have
Φ[g] ≤ lim inf Φ[gn].

Proof. Let
γ = lim inf

n→∞
Φ[gn].

Clearly γ ≥ 0. In the case that γ = ∞ the lemma holds true and we may suppose
0 ≤ γ < ∞. We may �nd a subsequence which denote by gn with Φ[gn] < ∞, and
Φ[gn] → γ. By hypothesis there is an h ∈ D(T ) with Φ[h] < ∞. By the invariance of B it
follows thanks to

(WU(y)hU(y)h)(x) = Whh(y−1 ◦ x ◦ y)

that the whole orbit of h has the same properties. Since the representation is irreducible
and T has dense range, we may suppose that cg,h = (g, Th)H 6= 0. For s ∈ A we have by
continuity of the convolution

||Whs||K = ||Π ∗Wss||K ≤ d ||Wss||B = d Φ[s], Π = c−1
s,hWhh.

By weak convergence we have cgn,h = (gn, Th)H → (g, Th)H 6= 0. Therefore, since gn ∈ A
tanks to Φ[gn] < ∞, we may conclude by setting s = gn in the formula above that {Whgn}
is a bounded set in K and hence it is bounded in WhH ( the image of H under Wh )
too. Since the representation of the wavelet transform is strongly continuous this family
of functions is uniformly continuous on any compact subset of G. Because of the compact
embedding property of K we can extract an H convergent subsequence gm(n) → g. Since
Φ is strongly lower continuous we have Φ[g] ≤ lim inf Φ[gn] = γ. ¤

Now the proof of the main theorem is easy.
Proof. Let Φ[gn] → γ = infg∈Σh

Φ[g]. Since as before Φ[gn] ≤ b ||gn||H we see that gn is
bounded in H. Thanks to the Banach-Alaoglou theorem we may extract an H - weakly
convergent subsequence gm(n) → g weakly. Since Φ is weekly lower semi-continuous we
may conclude that Φ[g] = γ. The set Σh is weekly closed and hence g ∈ Σh. ¤

We can even prove the following optimal localization result.

Theorem 3 There is g with ||g||H = 1, such that for all u ∈ H, with ||u||H = 1we have

Φ[g] ≤ Φ[u].

Proof. As before, we �nd a weekly convergent sequence gn → g weekly with Φ[g] =
inf ||s||=1 Φ[s]. Now as in the proof of lemma 4 we see that there is a strongly convergent
subsequence gm(n) → g and thus ||g|| = 1. ¤
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4 The numerical approximation of localized states
As we have shown in the previous section, for each weight function satisfying certain
conditions, there exists an optimally localized wavelet g. The term `optimality' is strongly
connected with the associated Banach space norm ‖ · ‖B.

Before providing a receipt of how to derive those optimally localized wavelets, we wish
to be more concrete and to give a few examples of typical Banach spaces and weight
functions to which our theory can be applied. To this end, let us consider the class of
α�modulation spaces which are usually de�ned by means of the �exible Gabor�wavelet
transform, see [3],

Wα
g (f)(x) = (f, U(σα(x))g)H .

Since this transform is based on square integrability modulo quotients, we limit the sub-
sequent consideration to the cases α = 0 and α = 1 (which �ts then quite nicely with our
framework, see below). For α = 0, the family {U(σ(x))g} is a Gabor system and W0

g f
coincides with the classical short time Fourier transform, while for α → 1 the family tends
to the situation encountered in the wavelet context, where W1

g is just a slight modi�ca-
tion of the continuous wavelet transform. The intermediate case α = 1/2 appears in the
literature as the Fourier-Bros-Iagolnitzer transform [2, 14]. In particular, one character-
izes α-modulation spaces as follows (for simplicity we consider the wavelet transform of
functions over R): for s ∈ R, for all 1 ≤ p, q ≤ ∞, and for α ∈ [0, 1)

M s+α(1/q−1/2),α
p,q (R) = {f ∈ S ′ : Wα

g (f) ∈ Lp,q,s}, ‖f‖
M

s+α(1/q−1/2),α
p,q

³ ‖Wα
g (f)‖Lp,q,s ,

where Lp,q,s(R2) is the space of functions F on R2 such that

‖F‖Lp,q,s :=

(∫

R

(∫

R
|F (t, ω)|pdt

)q/p

(1 + |ω|)sqdω

)1/q

< ∞.

For α = 0, the space M s,0
p,q (R) coincides with the modulation space M s

p,q(R). For α → 1
the space M s,1

p,q (R) coincides with the inhomogeneous Besov space Bs
p,q(R). These spaces

serve as a reservoir of smoothness spaces in which functions can be characterizes by means
of special analyzing atoms or a so�called frame. A desirable property of the analyzing
atom is localization with respect to underlying Banach spaces metric, i.e. in this context
an optimal localized g is associated with Banach space norm ‖ · ‖

M
s+α(1/q−1/2),α
p,q

which in
turn is here characterized by the weight

w(ω) = (1 + |ω|)s .

The numerical scheme developed below is limited to case p = q = 2 and applies thus
not to all situations.

Let us now consider a concrete case which is a little beyond the above mentioned
examples. Let L2,w−1 with symmetric weight function

w−1(x) = w−1(a, b) = (|a|+ |a|−1)4 · (1 + |b|(1 + |a|)−1)4
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be the space under consideration. Then, in accordance with Theorem 3, the optimization
problem can be casted as follows

Φ(g) = ‖Wgg‖2
L2,w−1 + α‖g‖2

H .

In order to discretize the problem somehow, we may represent g by means of some frame
{ψλ}λ∈Λ ⊂ H, i.e.

g =
∑

λ∈Λ

gλψλ.

Consequently, the goal is to reconstruct a sequence {gλ}λ∈Λ = g ∈ `2 for which Φ(g) ≤
Φ(s), for all s ∈ H.

Introducing for some x ∈ G the in�nite matrix A(x) = ((ψλ, U(x)ψη)H)λ,η∈Λ, the
wavelet transform reads as Wgg(x) = 〈g,A(x)g〉`2 =: F [g](x). Obviously, F [g](e) =
‖g‖2

H , and thus we may write

Φ(g) = ‖F [g]‖2
L2,w−1 + αF [g](e).

Since the optimization problem is no longer convex, we have to apply adequate strategies
for nonlinear problems. We suggest to make use of a Tikhonov-based iteration method for
nonlinear problems which was developed in [16]. The technology to be applied here will
always �nd a critical point of Φ, and under additional assumptions on F and the solution
one can assure that the critical point is a global minimizer.

The method borrowed from [16] goes now as follows: Firstly, in order to obtain a
problem which is hopefully easier to solve, we replace Φ by

Φs(g; a) := Φ(g) + C‖g − a‖2
`2
− ‖F [g]− F [a]‖2

L2,w−1 , (4.1)

where a is some auxiliary element in `2. So far its not clear whether Φs is positive or even
bounded from below. Following the lines in [16], i.e. choosing for α > 0 a ball around the
origin Kr and C adequately large (in dependence on F and Φ(a)), one can assure for all
g ∈ Kr, Φ(g) ≤ Φs(g; a).

The iteration process is now obtained by picking some initial g0 = a and therewith
some proper C > 0 and by deriving a sequence {gk}k∈N via

gk+1 = arg min
g

Φs(g;gk).

From this iteration we expect convergence at least towards a critical point of Φ. First, we
have to make sure that the sequence of functionals is properly de�ned:

Lemma 5 Let a be given and Kr, C be de�ned as in [16]. Then for all k ∈ N, Φs(g;gk)
are bounded from below, and, moreover, for the minimizers gk+1 holds gk+1 ∈ Kr.

Let now A be the shorthand for A(e). A simple calculation shows:

Lemma 6 The necessary condition for a minimum of (4.1) reads as

g =
1

C

{
gk − αAg − F ′[g]∗(F [gk]w

−1)
}

(4.2)
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Figure 1: Maximal Eigenvalues of the in�nite matrices A(a, b) for all the (a, b) ∈ G used
in the frame representation.

The hope is that the right hand side of (4.2) de�nes a contraction. A straightforward
computation shows,

‖g − g′‖`2 ≤
1

C

{
α|||A|||+ 2‖ |||A(·)||| ‖L2,w−1‖F [gk]‖L2,w−1

} ‖g − g′‖`2 .

To bound this quantity requires the Lipschitz-continuity of F ′[g], or in other words, the
�niteness of ‖ |||A(·)||| ‖L2,w−1 which is di�cult to prove, but can be veri�ed numerically:
we may consider the spectral radius ρ(A(a, b)) (for a particular frame, see below) as
a function of (a, b) ∈ G. Figure 1 shows a su�cient decay of ρ(A(a, b)) and assures
therewith that, for C large enough, the convergence of the �xed point iteration (4.2)
towards a unique minimizer gk+1 of Φs(g;gk) can be achieved. Moreover, we have with
the help of [16] that the sequence {gk} converges at least towards a critical point of Φ.
If we could impose more smoothness on F and on the solution g to be reconstructed, we
could also achieve uniqueness.

Next, we have to ensure that ‖gn+1‖2
H = 1 (the index n stands now for the �xed point

iteration) holds true through the whole �xed point iteration process, i.e. we have to
determine α in each iteration step:

(gn+1,Agn+1)`2 =
1

C2

{
α2F [Agn](e)−

2α<(Agn,A(gk − F ′[gn]∗(F [gk]w
−1)))`2

+F [gk − F ′[gn]∗(F [gk]w
−1)](e)

}
,

i.e. �nding α = αn+1 amounts to �nding the roots of a real parabola. With the shorthand
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 A ( 1 , 0 )  A ( 2.3 , −2.4 )

Figure 2: Structure of A(a, b) for two particular cases; left: (a, b) = (1, 0) and right
(a, b) = (2.3,−2.4).

M = <(Agn,A(gk − F ′[gn]∗(F [gk]w
−1)))`2 , we obtain

αn+1 =
M ± (M2 − F [Agn](e){F [gk − F ′[gn]∗(F [gk]w

−1)](e)− C2})1/2

F [Agn](e)
. (4.3)

Now we can summarize an algorithm for computing a critical sequence g for the mini-
mization problem inf‖g‖H=1 Φ[g]:

• pick some initial g0 (not too far o� the expected solution) and some C > 0 (large
enough)

• compute gk+1 = arg ming Φs(g;gk) via �xed point iteration (4.2):

� compute αn+1 = max{αn+1
1 , αn+1

2 } via (4.3)
� compute gn+1 via (4.2)
� gk+1 = limn→∞ gn+1

In what follows we aim to illustrate the computation of an optimally localized wavelet.
For sake of simply computing the operators A(x), we have chosen a (�nite dimensional)
Cauchy wavelet frame {ψλ} ⊂ L2(R) of order N (here N=3). Thus, A(x) can be derived
for each x ∈ G explicitly, see Figure 2. The resulting iteration process to reconstruct
at least a critical g is illustrated in Figure 3, and the �nal approximation with the time
representation in Figure 4.
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Figure 3: From top left to up right: Fourier representations of initial g0 (not normalized),
g4, g10, and g30 (blue/red - real and imaginary part; green - Cauchy wavelet).

−5 0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−6 −4 −2 0 2 4 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4: Left: Fourier representation of the approximated optimally localized coherent
state; right: associated time representation.

13



[2] J. Bros and D. Iagolnitzer. Support essentiel et structure analytique des distributions.
Seminaire Goulaouic-Lions-Schwartz, 18, 1975.

[3] S. Dahlke, M. Fornasier, H. Rauhut, G. Steidl, and G. Teschke. Generalized Coorbit
Spaces, Banach Frames and Relations to α�Modulation Spaces. Preprint, 2005.

[4] S. Dahlke, V. Lehmann, and G. Teschke. Applications of Wavelet Methods to the
Analysis of Meteorological Radar Data - An Overview. (invited paper) Arabian Jour-
nal of Science and Engineering, 28(1C):3�44, 2003.

[5] S. Dahlke and P. Maaÿ. The a�ne uncertainty principle in one and two dimensions.
Comp. Math. Appl., 30(3-6):293�305, 1995.

[6] S. Dahlke, P. Maass, and G. Teschke. Reconstruction of Wideband Re�ectivity
Densities by Wavelet Transforms. Advances in Computational Mathematics, 18(2�
4):189�209, 2003.

[7] S. Dahlke, P. Maass, and G. Teschke. Reconstruction of Re�ectivity Densities in a
Narrowband Regime. IEEE Transactions on Antennas and Propagation, 52(6):1603�
1606, 2004.

[8] I. Daubechies. Time-frequency localisation operators: A geometric phase space ap-
proach. IEEE Transactions on Information Theory, 34:605�612, 1988.

[9] I. Daubechies and Th. Paul. Time-frequency localisation operators�a geometric phase
space approach: II the use of dilations. Inverse Problems, 4:661�680, 1988.

[10] M. Du�o and C. C. Moore. On the regular representation of a nonunimodular locally
compact group. J. Funct. Anal., 21:209�243, 1976.

[11] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to squareintegrable
group representations i. Math. Phys., 27, 1985.

[12] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to squareintegrable
group representations ii. Ann. Inst. H. Poincaré, 45, 1986.

[13] M. Holschneider. Wavelets An Analysis Tool. Clarendon Press, Oxford, 1995.

[14] M. Holschneider and B. Nazaret. An interpolation family between Gabor and wavelet
transformations. Application to di�erential calculus and construction of anisotropic
Banach spaces. in: Advances in Partial Di�erential Equations, Albeverio, Demuth,
Schrohe, Schulze (eds.), Wiley:363�394, 2003.

[15] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis
and uncertainty, II. Bell Syst. Tech. J., 40:65�84, 1961.

[16] R. Ramlau and G. Teschke. Tikhonov Replacement Functionals for Iteratively Solving
Nonlinear Operator Equations. Inverse Problems, 21:1571�1592, 2005.

14



[17] D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis and
uncertainty, I. Bell Syst. Tech. J., 40:43�64, 1961.

[18] G. Teschke. Construction of Generalized Uncertainty Principles and Wavelets in
Bessel Potential Spaces. International Journal of Wavelets, Multiresolution and In-
formation Processing, 3(2), 2005.

15


