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Abstract

We shall be concerned with the construction of Tikhonov–based iteration schemes for
solving nonlinear operator equations. In particular, we are interested in algorithms for
the computation of a minimizer of the Tikhonov functional. To this end, we introduce
a replacement functional, that has much better properties than the classical Tikhonov
functional with nonlinear operator. Namely, the replacement functional is globally convex
and can be effectively minimized by a fixed point iteration. Based on the minimizers of
the replacement functional, we introduce an iterative algorithm that converges towards
a critical point of the Tikhonov functional, and under additional assumptions to the
nonlinear operator F , to a global minimizer. Combining our iterative strategy with an
appropriate parameter selection rule, we obtain convergence and convergence rates. The
performance of the resulting numerical scheme is demonstrated by solving the nonlinear
inverse SPECT (Single Photon Emission Computerized Tomography) problem.

1 Introduction

In this paper, we consider the computation of an approximation to a solution of a nonlinear
operator equation

F (x) = y , (1.1)

where F : X → Y is an ill-posed operator between Hilbert spaces X, Y . If only noisy data yδ

with
‖yδ − y‖ ≤ δ (1.2)

are available, problem (1.1) has to be stabilized by regularization methods. In recent years,
many of the well known methods for linear ill-posed problems have been generalized to non-
linear operator equations. Unfortunately, it turns out that convergence and convergence rates
can be shown only under severe restrictions to the operator for most methods. For example,
convergence for Landweber method can be shown only if the operator fulfills

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ η‖x− x̃‖ with η < 1/2 , (1.3)

∗Both authors are with the Department of Mathematics, University of Bremen, Germany. G. T. was partially
supported by Deutsche Forschungsgemeinschaft Grants TE 354/1-2, TE 354/3-1.
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whereas convergence rates are only available if, for a solution x† of (1.1), there exists a family
of bounded operators Rx with

F ′(x) = RxF
′(x†) and ‖I −Rx‖ ≤ K‖x− x†‖ .

For other prominent iterative methods like Gauss–Newton [1, 2], Levenberg–Marquardt [9],
conjugate gradient [10] and Newton–like methods [13, 6], convergence can be shown under sim-
ilar restrictions as (1.3). To obtain convergence rates, much stronger restrictions have to be
assumed.

An alternative to the above mentioned iterative methods is Tikhonov regularization, where
an approximation to the solution of (1.1) is obtained by minimizing the Tikhonov functional
Jα(x),

Jα(x) = ‖yδ − F (x)‖2 + α‖x− x̄‖2 , (1.4)

xδ
α = arg min

x
Jα(x) . (1.5)

The advantage of Tikhonov regularization is that convergence of the method, i.e. xδ
α → x† for

δ → 0 and an appropriate parameter choice α = α(δ) holds under weak assumptions to the
operator, see, e.g., [8], and convergence rates are obtained for Fréchet differentiable operators
with Lipschitz continuous derivative. However, the difficulties for Tikhonov regularization are
a proper choice of the regularization parameter [22, 17] and the computation of the minimizer
of the Tikhonov functional. As the functional is no longer convex for nonlinear operators F ,
Jα can even have local minimizers, and classical optimization routines might fail. Recently,
we have introduced iterative methods for the minimization of the Tikhonov functional that
reconstruct a global minimizer of the Tikhonov functional provided a smoothness assumption
x† − x̄ = F ′(x†)∗ω with small ‖ω‖ holds. We wish to remark that it might be difficult to show
such smoothness conditions for practical problems, and for exponentially ill-posed problems
Hölder-type smoothness conditions will not hold, see [12]. Thus it would be advantageous to
construct iterative methods that reconstruct a minimizer of the Tikhonov functional under
different assumptions. But this seems to remain a pipe dream: even here in this paper we
had to incorporate some smoothness conditions to prove global minimizing properties of the
reconstructed solution. However, all the here made assumptions on F are within the frame of
nonlinear technologies and they are not that strong than for most of the above quoted iterative
schemes.

In this paper, we will investigate a method that always finds a critical point of the Tikhonov
functional. Under additional assumptions on the operator and a smoothness condition on the
solution we can then assure that this critical point is a global minimizer of Jα.

The basic idea for our new iteration scheme goes as follows: consider the Tikhonov varia-
tional formulation of the inverse problem. Due to the nonlinearity, a direct reconstruction of
the global minimizer is not possible. Thats why we aim to solve instead of the pure Tikhonov
functional a sequence of so-called surrogate or replacement functionals. This idea is borrowed
from linear regularization methods with general and mixed smoothness constraints, see e.g.
[4, 5]. The intention in [4, 5] is to decouple the variational equations with respect to the basis
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coefficients of the solution caused by the linear operator. The cost of dealing with a decoupled
system of equations is an iteration process from which strong convergence properties can be
shown. The situation in the nonlinear case is completely different and due to the impact of the
Fréchet derivative one cannot expect to end up with similar schemes than in [4, 5]. However,
the basic advantage of using replacement functionals is that each of the functionals is under
certain conditions on the construction process globally convex. The minimization results then
in an easy fixed point iteration. Defining now an iteration process by iteratively minimizing a
sequence of replacement functionals, we can show that the sequence of minimizing elements of
each individual fixed point iteration converges in norm towards a critical point of the Tikhonov
functional of the nonlinear inverse problem. Imposing additional assumptions (on the quadratic
remainder of the Taylor series expression of our operator under consideration, and a smoothness
condition) we obtain a uniqueness result, i.e. we are able to show that the reconstructed critical
point is a global minimizer. Finally, applying a proper parameter choice rule, we are able to
adopt classical convergence/order optimality results for Tikhonov regularization methods.

The remaining paper is organized as follows: In Section 2, we state the scope of the problem.
In Section 3, we explain how the replacement functionals are constructed and we minimize them
in Section 4. The main result of the paper is presented in Section 5: strong convergence of the
iterates towards a global minimizer. We end this paper with Section 6 in which we demonstrate
the capabilities of the proposed scheme by solving the nonlinear SPECT problem.

2 The scope of the problem

We consider the problem of deriving a minimizer of the Tikhonov functional

Jα(x) = ‖yδ − F (x)‖2 + α‖x− x̄‖2 . (2.1)

Due to the nonlinearity of the operator F , the minimizer of the functional might not be unique,
or there might exist even local minimizers, such that a standard minimizing algorithm can fail
in reconstructing a global minimizer. In order to obtain an easier problem which hopefully has
a unique solution, we replace the functional Jα by

J̃α(x, a) := ‖yδ − F (x)‖2 + α‖x− x̄‖2 + C‖x− a‖2 − ‖F (x)− F (a)‖2 (2.2)

and proceed as follows:

1. Pick x0 and some proper constant C > 0

2. Derive a sequence {xk}k=0,1,... by the iteration:

xk+1 = arg min
x

J̃α(x, xk) k = 0, 1, 2, . . .

The overall goal of this paper is to show that the sequence {xk}k=0,1,... converges in norm topol-
ogy towards a global minimizer of the Tikhonov functional (2.1).
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In order to achieve this result we proceed in two steps: First, we aim to show norm conver-
gence of the iterates xk towards a critical point of the Tikhonov functional. In a second step,
we verify that the reconstructed critical point is equal to a global minimizer of the Tikhonov
functional. To make this program running, we have to restrict ourselves as follows:

• For the first step we limit the analysis to nonlinear operators F for which

xk
w→ x =⇒ F (xk) → F (x) and F ′(xk)

∗z → F ′(x)∗z for all z , (2.3)

‖F ′(x)− F ′(x̃)‖ ≤ L‖x− x̃‖ . (2.4)

It may happen that F already meets these conditions as an operator from X → Y . If
not, this can be achieved by assuming more regularity of the solution, i.e. we have to
change the domain of F a little. To this end, let us assume that there exists a function
space Xs, and a compact embedding operator is : Xs → X. Now we can consider

F̃ = F ◦ is : Xs −→ Y .

We obtain
‖F̃ ′(x)− F̃ ′(x̃)‖ ≤ L‖x− x̃‖X ≤ L‖x− x̃‖Xs . (2.5)

If now xk
w→ x in Xs, then xk→x in X and, moreover, (2.5) yields F̃ ′(xk) → F̃ ′(x) and

F̃ ′(xk)
∗ → F̃ ′(x)∗ in the operator norm. This argument applies to arbitrary nonlinear

continuous and Fréchet differentiable operators F : X → Y with continuous Lipschitz
derivative as long as a function space Xs with compact embedding is to X is available.

• To process the second step, we additionally impose that x† fulfills a smoothness condition,
F is twice differentiable, and that

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ ‖F (x)− F (x̃)‖ , (2.6)

which is a condition on the quadratic remainder of the Taylor series expansion of F .

3 On the proper definition of the replacement functional

By the definition of J̃α in (2.2) it is not clear whether the functional is positive definite or even
bounded from below. This will be clarified in this section, i.e. we will show that this is the case
provided the constant C is chosen properly.

For given α > 0 and x0 we define a ball Kr(x̄) with radius r around x̄, where the radius is
given by

r2 :=


‖yδ−F (x0)‖2+α‖x0−x̄‖2

α
for α < 1

‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 for α ≥ 1

. (3.1)

This obviously ensures, x0 ∈ Kr(x̄). Furthermore, we define the constant C by

C := max

4, 2

(
sup

x∈Kr(x̄)

‖F ′(x)‖

)2

, 2L
√
‖yδ − F (x0)‖2 + α‖x0 − x̄‖2

 , (3.2)
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where L is the Lipschitz constant of the Fréchet derivative of F . We assume that x0 was chosen
such that r < ∞ and C < ∞.

Lemma 1 Let r and C be chosen by (3.1), (3.2). Then

C‖x− x0‖2 − ‖F (x)− F (x0)‖2 ≥ 0 (3.3)

for all x ∈ Kr(x̄), and, thus, Jα(x) ≤ J̃α(x, x0).

Proof. By Taylors expansion we have

F (x + h) = F (x) +

1∫
0

F ′(x + τh)h dτ

and thus

‖F (x)− F (x + h)‖ ≤
1∫

0

‖F ′(x + τh)‖‖h‖dτ ≤ sup
x∈Kr(x̄)

‖F ′(x)‖‖h‖ .

Consequently, we get for all x ∈ Kr(x̄)

C‖x− x0‖2 − ‖F (x)− F (x0)‖2 ≥ C‖x− x0‖2 − ( sup
x∈Kr(x̄)

‖F ′(x)‖)2‖x− x0‖2

=
C

2
‖x− x0‖2 ≥ 0 ,

and the functional J̃α(x, x0) is positive for all x ∈ Kr(x̄). �

Next, we show that this carries over to all of the iterates:

Proposition 2 Let x0, α be given and r, C be defined by (3.1), (3.2). Then the functionals
J̃α(x, xk) are bounded from below for all k ∈ N and have thus minimizers. For the minimizer
xk+1 of J̃α(x, xk) holds xk+1 ∈ Kr(x̄).

Proof. The proof will be done by induction. For k = 1, we show in a first step that J̃α(x, x0)
is bounded from below. We have

‖yδ − F (x)‖2 = ‖yδ − F (x0)‖2 + ‖F (x0)− F (x)‖2 + 2〈yδ − F (x0), F (x0)− F (x)〉 . (3.4)

Thus,

J̃α(x, x0)− α‖x− x̄‖2 = ‖yδ − F (x0)‖2 + 2〈yδ − F (x0), F (x0)− F (x)〉+ C‖x− x0‖2

≥ ‖yδ − F (x0)‖2 − 2‖yδ − F (x0)‖‖F (x0)− F (x)‖+ C‖x− x0‖2 .

(3.5)

Again by Taylor expansion, we get

‖F (x0)− F (x)‖ ≤ ‖F ′(x0)‖‖x0 − x‖+
L

2
‖x0 − x‖2 . (3.6)
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Now let us assume that J̃α(x, x0) is not bounded from below. As F is continuous, there exists
a sequence {xl}l∈N with ‖xl‖ → ∞ and J̃α(xl, x0) → −∞. In particular, for l large enough,
follows from (3.6)

‖F (x0)− F (xl)‖ ≤ L‖x0 − xl‖2 ,

and combining this estimate with (3.5) yields

J̃α(xl, x0)− α‖xl − x̄‖2 ≥ ‖yδ − F (x0)‖2 − 2L‖yδ − F (x0)‖‖xl − x0‖2 + C‖xl − x0‖2 .

From the definition of C in (3.2) follows 2L‖yδ − F (x0)‖ ≤ C and thus

J̃α(xl, x0)− α‖xl − x̄‖2 ≥ ‖yδ − F (x0)‖2 ≥ 0,

in contradiction to our assumption J̃α(xl, x0) → −∞, and thus J̃α(x, x0) is bounded from
below. By the same argument, we find J̃α(xl, x0) ≥ α‖xl − x̄‖2 →∞ for any sequence xl with
‖xl‖ → ∞ and thus the functional is coercive and has a minimizer x1.

As in (3.5), we get by using (3.6)

J̃α(x1, x0)− α‖x1 − x̄‖2 ≥ ‖yδ − F (x0)‖2 + 2〈yδ − F (x0), F (x0)− F (x1)〉+ C‖x1 − x0‖2

≥ ‖yδ − F (x0)‖2 − 2‖yδ − F (x0)‖‖F ′(x0)‖‖x1 − x0‖
−L‖yδ − F (x0)‖‖x1 − x0‖2 + C‖x1 − x0‖2

By (3.2), we have C/2 ≥ L‖yδ − F (x0)‖, and thus

J̃α(x1, x0)−α‖x1−x̄‖2 ≥ ‖yδ−F (x0)‖2−2‖yδ−F (x0)‖‖F ′(x0)‖‖x1−x0‖+
C

2
‖x1−x0‖2 . (3.7)

As x0 ∈ Kr(x̄), it follows from (3.2) that ‖F ′(x0)‖ ≤
√

C/2 holds, and we get finally

J̃α(x1, x0)− α‖x1 − x̄‖2 ≥ ‖yδ − F (x0)‖2 − 2

√
C√
2
‖yδ − F (x0)‖‖x1 − x0‖+

C

2
‖x1 − x0‖2

=

(
‖yδ − F (x0)‖ −

√
C√
2
‖x1 − x0‖

)2

≥ 0 . (3.8)

In particular, it follows for α < 1

α‖x1 − x̄‖2
(3.8)

≤ J̃α(x1, x0) = min
x

J̃α(x, x0) ≤ J̃α(x0, x0)

= ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 ,

i.e.

‖x1 − x̄‖2 ≤ ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2

α
= r2 ,

and for α ≥ 1

‖x1 − x̄‖2 ≤ α‖x1 − x̄‖2
(3.8)

≤ J̃α(x1, x0) ≤ J̃α(x0, x0)

= ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 = r2 ,
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and thus x1 ∈ Kr(x̄).
By Lemma 1 it follows that C‖x1 − x0‖2 − ‖F (x1) − F (x0)‖2 ≥ 0 and Jα(x) ≤ J̃α(x, x0),

and we get

‖yδ − F (x1)‖2 ≤ Jα(x1) ≤ J̃α(x1, x0) ≤ J̃α(x0, x0) ≤ ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 ,

and combining this estimate with the definition of C in (3.2) yields

2L‖yδ − F (x1)‖ ≤ 2L
√
‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 ≤ C . (3.9)

Now let us assume that the following properties hold for all i = 1, · · · k − 1:

xi ∈ Kr(x̄) (3.10)

C‖xi − xi−1‖ − ‖F (xi)− F (xi−1)‖ ≥ 0 (3.11)

2L‖yδ − F (xi)‖ ≤ C , (3.12)

where xi denotes a minimizer of the functional J̃(x, xi−1). For i = 1, these properties have
already been shown. As for the case i = 1, we have to show that the functional J̃α(x, xk−1) has
a minimizer. First, we show that it is bounded from below: As in (3.5) we get

J̃α(x, xk−1)−α‖x− x̄‖2 ≥ ‖yδ−F (xk−1)‖2−2‖yδ−F (xk−1)‖‖F (xk−1)−F (x)‖+C‖x−xk−1‖2

(3.13)
By Taylor expansion, we get

‖F (xk−1)− F (x)‖ ≤ ‖F ′(xk−1)‖‖xk−1 − x‖+
L

2
‖xk−1 − x‖2 . (3.14)

Now let us assume that J̃α(x, xk−1) is not bounded from below. As F is continuous, there exists
a sequence {xl}l∈N with ‖xl‖ → ∞ and J̃α(xl, xk−1) → −∞. In particular, for l large enough,
follows from (3.14)

‖F (xk−1)− F (xl)‖ ≤ L‖xk−1 − xl‖2 ,

and combining this estimate with (3.13) yields

J̃α(xl, xk−1)−α‖xl − x̄‖2 ≥ ‖yδ −F (xk−1)‖2− 2L‖yδ −F (xk−1)‖‖xl − xk−1‖2 + C‖xl − xk−1‖2 .

From (3.12) follows 2L‖yδ − F (xk−1)‖ ≤ C and thus

J̃α(xl, xk−1)− α‖xl − x̄‖2 ≥ ‖yδ − F (xk−1)‖2 ≥ 0,

in contradiction to our assumption J̃α(xl, xk−1) → −∞, and thus J̃α(x, xk−1) is bounded from
below. By the same argument, we find J̃α(xl, xk−1) ≥ α‖xl − x̄‖2 → ∞, for any sequence xl

with ‖xl‖ → ∞ and thus the functional is coercive and has a minimizer xk.
As in (3.13), we get by using (3.14)

J̃α(xk, xk−1)− α‖xk − x̄‖2 ≥ ‖yδ − F (xk−1)‖2 + 2〈yδ − F (xk−1), F (xk−1)− F (xk)〉
+C‖xk − xk−1‖2

≥ ‖yδ − F (xk−1)‖2 − 2‖yδ − F (xk−1)‖‖F ′(xk−1)‖‖xk − xk−1‖
−L‖yδ − F (xk−1)‖‖xk − xk−1‖2 + C‖xk − xk−1‖2 .
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By (3.2) and assumption (3.12) we have C/2 ≥ L‖yδ − F (xk−1)‖, and thus

J̃α(xk, xk−1)− α‖xk − x̄‖2 ≥ ‖yδ − F (xk−1)‖2 − 2‖yδ − F (xk−1)‖‖F ′(xk−1)‖‖xk − xk−1‖

+
C

2
‖xk − xk−1‖2 .

As xk−1 ∈ Kr(x̄), it follows from (3.2) that ‖F ′(xk−1)‖ ≥
√

C/2 holds, and we get finally

J̃α(xk, xk−1)− α‖xl − x̄‖2 ≥ ‖yδ − F (xk−1)‖2 − 2

√
C√
2
‖yδ − F (xk−1)‖‖xk − xk−1‖

+
C

2
‖xk − xk−1‖2

=

(
‖yδ − F (xk−1)‖ −

√
C√
2
‖xk − xk−1‖

)2

≥ 0 . (3.15)

In particular, it follows for α < 1 by assumption (3.11)

α‖xk − x̄‖2
(3.15)

≤ J̃α(xk, xk−1) = min
x

J̃α(x, xk−1) ≤ J̃α(xk−1, xk−1)

= ‖yδ − F (xk−1)‖2 + α‖xk−1 − x̄‖2

≤ ‖yδ − F (xk−1)‖2 + α‖xk−1 − x̄‖2 + C‖xk−1 − xk−2‖2 − ‖F (xk−1)− F (xk−2)‖2

= J̃α(xk−1, xk−2) ≤ J̃α(xk−2, xk−2) ≤ · · · ≤ J̃α(x0, x0)

= ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2

i.e.

‖xk − x̄‖2 ≤ ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2

α
≤ r2 ,

and in the same way follows for α ≥ 1

‖xk − x̄‖2 ≤ α‖xk − x̄‖2
(3.15)

≤ J̃α(xk, xk−1) ≤ J̃α(xk−1, xk−1) ≤ · · · ≤ J̃α(x0, x0)

= ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 ≤ r2 ,

and thus xk ∈ Kr(x̄).
As in Lemma 1, it follows C‖xk − xk−1‖2 − ‖F (xk)− F (xk−1)‖2 ≥ 0 and Jα(x) ≤ J̃α(x, xk−1),
and we get

‖yδ − F (xk)‖2 ≤ Jα(xk) ≤ J̃α(xk, xk−1) ≤ J̃α(xk−1, xk−1) ≤ · · · ≤ J̃α(x0, x0)

= ‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 , (3.16)

and combining this estimate with the definition of C (3.2) yields

2L‖yδ − F (xk)‖ ≤ 2L
√
‖yδ − F (x0)‖2 + α‖x0 − x̄‖2 ≤ C , (3.17)

i.e. we have shown that the assumptions (3.10)-(3.12) hold also for i = k. �

8



Corollary 3 The sequences of functionals {Jα(xk)}k=0,1,2,... and {J̃α(xk+1, xk)}k=0,1,2,... are non-
increasing.

Proof. This follows now by Jα(xk+1) ≤ J̃α(xk+1, xk) ≤ J̃α(xk, xk) = Jα(xk) ≤ J̃α(xk, xk−1). �

4 On the minimization of the replacement functional

In this section, we elaborate necessary conditions for a minimizer of the functional J̃α(x, xk−1).
Moreover, we prove that J̃α(x, xk) is globally convex for each k = 0, 1, 2, . . . .

Lemma 4 The derivative J̃ ′α(x, a)h of J̃α(x, a) is given by

J̃ ′α(x, a)h = −2〈F ′(x)∗(yδ − F (a)) + (Ca + αx̄)− (C + α)x, h〉 . (4.1)

Proof. It is

J̃α(x + h, a) = ‖yδ − F (x + h)‖2 + α‖x− x̄ + h‖2 + C‖x− a + h‖2 − ‖F (x + h)− F (a)‖2 .

By Taylor’s expansion, F (x + h) = F (x) + F ′(x)h + O(‖h‖2), we get

J̃α(x + h, a) = ‖yδ − F (x)− F ′(x)h + O(‖h‖2)‖2 + α‖x− x̄ + h‖2 + C‖x− a + h‖2

−‖F (x)− F (a) + F ′(x)h + O(‖h‖2)‖2

= ‖yδ − F (x)‖2 + ‖F ′(x)h‖2 − 2〈yδ − F (x), F ′(x)h〉
+α(‖x− x̄‖2 + ‖h‖2 + 2〈x− x̄, h〉) + C(‖x− a‖2 + ‖h‖2 + 2〈x− a, h〉)
−(‖F (x)− F (a)‖2 + ‖F ′(x)h‖2 + 2〈F (x)− F (a), F ′(x)h〉) + O(‖h‖2) .

It follows

J̃α(x + h, a)− J̃α(x, a)

2
= −〈F ′(x)∗(yδ − F (x)), h〉+ α〈x− x̄, h〉+ C〈x− a, h〉

−〈F ′(x)∗(F (x)− F (a)), h〉+ O(‖h‖2)

= −〈F ′(x)∗(yδ − F (a))− α(x− x̄)− C(x− a), h〉+ O(‖h‖2)

= −〈F ′(x)∗(yδ − F (a))− (C + α)x + αx̄ + Ca, h〉+ O(‖h‖2) .

and thus the derivative is given by (4.1). �

The necessary condition for a minimum of (2.2) thus reads as

x =
1

C + α

(
F ′(x)∗(yδ − F (a)) + αx̄ + Ca

)
.︸ ︷︷ ︸

=:Φα(x,a)

(4.2)

To minimize (2.2), we will use a fixed point iteration for Φα(x, a). As J̃α(x, a) has by Proposition
2 a minimizer, (4.2) has at least one fixed point. It remains to show that Φα(x, a) is a contraction
operator:

9



Lemma 5 The operator Φα(x, a) is a contraction, i.e. ‖Φα(x, a)− Φα(x̃, a)‖ ≤ q‖x− x̃‖, if

q :=
L

C + α

√
Jα(a) < 1 .

Proof. We have Φα(x, a) − Φα(x̃, a) = 1
C+α

(F ′(x) − F ′(x̃))∗(yδ − F (a)), and by using the
Lipschitz–continuity of F ′ we get

‖Φα(x, a)− Φα(x̃, a)‖ =
1

C + α
‖F ′(x)− F ′(x̃)‖‖yδ − F (a)‖

≤ L

C + α
‖yδ − F (a)‖‖x− x̃‖ ≤ L

C + α

√
Jα(a)‖x− x̃‖ .

�

Proposition 6 In our algorithm, the operator Φα(x, xk) is for all k = 0, 1, 2, . . . and all α ≥ 0
a contraction.

Proof. By the definition of C in (3.2), Lemma 5 (setting a = x0), we deduce that Φα(x, x0) is
a contraction with

q =
L

C + α

√
Jα(x0) =

C

2(C + α)
≤ 1

2
< 1.

With the help of Corollary 3, we complete the proof

‖Φα(x, xk)− Φα(x̃, xk)‖ ≤
L

C + α

√
Jα(xk) ≤

L

C + α

√
Jα(xk−1) ≤ . . .

L

C + α

√
Jα(x0) .

�

Up to here, we do know that our fixed point iteration for (4.2) converges towards a critical
point of J̃α(x, xk).

Proposition 7 The necessary equation (4.2) for a minimum of the functional J̃α(x, xk) has a
unique fixed point, and the fixed point iteration converges towards the minimizer.

Proof. To prove this Proposition, we have to investigate the Taylor expansion of J̃α more
closely. By Taylor’s expansion for F and the Lipschitz–continuity of F ′ we get

F (x + h) = F (x) + F ′(x)h + R(x, h) (4.3)

with

‖R(x, h)‖ ≤ L

2
‖h‖2 . (4.4)

As in the proof of Lemma 4 we get

J̃α(x + h, xk) = J̃α(x, xk) + J̃ ′α(x, xk)h− 2〈yδ − F (x), R(x, h)〉 − 2〈F (x)− F (xk), R(x, h)〉
+(α + C)‖h‖2

= J̃α(x, xk) + J̃ ′α(x, xk)h− 2〈yδ − F (xk), R(x, h)〉+ (α + C)‖h‖2 , (4.5)
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and by using C ≥ 2L‖yδ − F (xk)‖ follows

−2〈yδ − F (xk), R(x, h)〉+ (α + C)‖h‖2 ≥ −2‖yδ − F (xk)‖‖R(x, h)‖+ (α + C)‖h‖2

≥ (−L‖yδ − F (xk)‖+ α + C)‖h‖2

≥ (C/2 + α)‖h‖2 . (4.6)

Now assume x̃ is a critical point of J̃α, i.e. J̃ ′α(x̃, xk)h = 0 for all h. Consequently, by (4.5),
(4.6) we have

J̃α(x̃ + h, xk) ≥ J̃α(x̃, xk) + (C/2 + α)‖h‖2 ,

and in particular
J̃α(x̃ + h, xk) > J̃α(x̃, xk) for all h 6= 0 . (4.7)

Thus, every critical point is a global minimizer of J̃α(x, xk), and, again by (4.7), there exists
only one global minimizer. �

By assuming more regularity on F it is possible to sharpen the above given statement:

Proposition 8 Let F be a twice continuously differentiable operator. Then the functional
J̃α(x, xk) is strictly convex.

Proof. With a slight abuse of notation we set J̃α(x) := J̃α(x, xk). By (4.5) we have

J̃α(x + h) = J̃α(x) + J̃ ′α(x)h + gα(x, h) , (4.8)

where gα(x, h) is defined by

gα(x, h) := −2〈yδ − F (xk), R(x, h)〉+ (α + C)‖h‖2 . (4.9)

For strict convexity, we have to show that

J̃α((1− λ)x1 + λx2) < (1− λ)J̃α(x1) + λJ̃α(x2)

holds for λ ∈ (0, 1) and arbitrary x1, x2. We have

J̃α((1− λ)x1 + λx2)) = J̃α(x1 + λ(x2 − x1)) = J̃α(x2 + (1− λ)(x1 − x2))

= (1− λ)J̃α(x1 + λ(x2 − x1)) + λJ̃α(x2 + (1− λ)(x1 − x2))

(4.10)

and with

J̃α(x1 + λ(x2 − x1)) = J̃α(x1) + λJ̃ ′α(x1)(x2 − x1) + gα(x1, λ(x2 − x1))

J̃α(x2 + (1− λ)(x1 − x2)) = J̃α(x2) + (1− λ)J̃ ′α(x2)(x1 − x2) + gα(x2, (1− λ)(x1 − x2))

we obtain

J̃α((1− λ)x1 + λx2)) = (1− λ)J̃α(x1) + λJ̃α(x2) + λ(1− λ)
[
J̃ ′α(x1)− J̃ ′α(x2)

]
(x2 − x1)

+(1− λ)gα(x1, λ(x2 − x1)) + λgα(x2, (1− λ)(x1 − x2)) .
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Thus J̃α is strict convex if for all λ ∈ (0, 1)

D(x1, x2, λ) := λ(1− λ)
[
J̃ ′α(x1)− J̃ ′α(x2)

]
(x2 − x1)

+(1− λ)gα(x1, λ(x2 − x1)) + λgα(x2, (1− λ)(x1 − x2)) < 0 .

We have

J̃ ′α(x1)− J̃ ′α(x2)

2
(x2 − x1) = −〈F ′(x1)

∗(yδ − F (xk)) + Cxk + αx̄− (C + α)x1, x2 − x1〉

+〈F ′(x2)
∗(yδ − F (xk)) + Cxk + αx̄− (C + α)x2, x2 − x1〉

= −(C + α)‖x2 − x1‖2

−〈(F ′(x1)− F ′(x2))
∗(yδ − F (xk)), x2 − x1〉 .

= −(C + α)‖x2 − x1‖2 − 〈yδ − F (xk), F
′(x1)− F ′(x2)(x2 − x1)〉.

As F is twice continuously Fréchet differentiable, it is

F ′(x1) = F ′(x2) +

1∫
0

F ′′(x2 + τ(x1 − x2))(x1 − x2, ·) dτ

and thus,[
J̃ ′α(x1)− J̃ ′α(x2)

]
(x2 − x1) = −2(C + α)‖x2 − x1‖2 +

2〈yδ − F (xk),

1∫
0

F ′′(x2 + τ(x1 − x2))(x1 − x2)
2dτ〉,

(4.11)

where we have used the shorthand F ′′(·)(h, h) = F ′′(·)(h)2. Again, as F is twice continuously
Fréchet-differentiable, the function R(x, h) in (4.9) is given by

R(x, h) =

1∫
0

(1− τ)F ′′(x + τh)h2 dτ ,

and thus we obtain

R(x1, λ(x2 − x1)) = λ2

1∫
0

(1− τ)F ′′(x1 + τλ(x2 − x1))(x2 − x1)
2 dτ

=

1∫
1−λ

(τ − (1− λ))F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ (4.12)

and in the same way

R(x2, (1− λ)(x1 − x2)) =

1−λ∫
0

(1− λ− τ)F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ . (4.13)
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Combining definition (4.9) and equations (4.11), (4.12) and (4.13) yields

D(x1, x2, λ) = −λ(1− λ)(C + α)‖x1 − x2‖2 + 2〈yδ − F (xk), f(x1, x2, λ)〉 , (4.14)

where

f(x1, x2, λ) := λ(1− λ)

1∫
0

F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−λ

1−λ∫
0

(1− λ− τ)F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ .

The functional f(x1, x2, λ) can now be recasted as follows

f(x1, x2, λ) = λ(1− λ)

1−λ∫
0

F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

+λ(1− λ)

1∫
1−λ

F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−(1− λ)

1∫
1−λ

(τ − (1− λ))F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

−λ

1−λ∫
0

(1− λ− τ)F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

= λ

1−λ∫
0

τF ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

+(1− λ)

1∫
1−λ

(1− τ)F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ.

In order to estimate ‖f(x1, x2, λ)‖ it is necessary to estimate the integrals separately. Due to
the Lipschitz–continuity of the first derivative, the second derivative can be globally estimated
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by ‖F ′′(x)‖ ≤ L, and it follows

λ

∥∥∥∥∥∥
1−λ∫
0

τF ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

∥∥∥∥∥∥ ≤ λ
(1− λ)2

2
L‖x1 − x2‖2 ,

(1− λ)

∥∥∥∥∥∥
1∫

1−λ

(1− τ)F ′′(x2 + τ(x1 − x2))(x1 − x2)
2 dτ

∥∥∥∥∥∥ ≤ (1− λ)
λ2

2
L‖x1 − x2‖2

and thus

‖f(x1, x2, λ)‖ ≤ λ(1− λ)

2
L‖x1 − x2‖2 . (4.15)

Combining (4.14) and (4.15) yields for λ ∈ (0, 1)

D(x1, x2, λ) ≤ −λ(1− λ)(C + α)‖x1 − x2‖2 + 2‖yδ − F (xk)‖‖f(x1, x2, λ)‖

≤ −λ(1− λ)(C + α)‖x1 − x2‖2 +
λ(1− λ)

2
2L‖yδ − F (xk)‖‖x1 − x2‖2

(3.17)

≤ −λ(1− λ)

(
C

2
+ α

)
‖x1 − x2‖2 ≤ −λ(1− λ)

C

2
‖x1 − x2‖2 < 0 ,

and thus the functional is strictly convex. �

5 Convergence properties of the proposed iteration

Within this section we aim to show that the sequence of iterates xk converges strongly towards a
minimizer of the Tikhonov functional. To achieve norm convergence, we prove some preliminary
Lemmas.

Lemma 9 The sequence of iterates {xk}k=0,1,2,... has a weakly convergent subsequence.

Proof. This is an immediate consequence of Proposition 2, in which it is shown that for
k = 0, 1, 2, . . . the iterates xk are contained in Kr(x̄), i.e. ‖xk+1 − x̄‖X ≤ r or equivalently
‖xk+1‖X ≤ r + ‖x̄‖X < ∞. Since the iterates are uniformly bounded, we deduce that there
exists at least one accumulation point x?

α with xk,l
w−→ x?

α, where xk,l denotes a subsequence of
xk. �

Lemma 10 The sequence {‖xk+1 − xk‖}k=0,1,2,... converges to zero.

Proof. With the help of Corollary 3, we observe that

0 ≤
N∑
k

{
C‖xk+1 − xk‖2 − ‖F (xk+1)− F (xk)‖2

}
≤

N∑
k

{
J̃α(xk+1, xk)− Jα(xk+1)

}
≤

N∑
k

{Jα(xk)− Jα(xk+1)}

= Jα(x0)− Jα(xN+1) ≤ Jα(x0) ,
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i.e. the finite sums are uniformly bounded (independent on N). By the Taylor expansion of F ,
we have

‖F (xk+1)− F (xk)‖ ≤
∫ 1

0

‖F ′(xk + τ(xk+1 − xk))‖‖xk+1 − xk‖ dτ ≤ C

2
‖xk+1 − xk‖ ,

and thus

0 ≤ C

2
‖xk+1 − xk‖2 ≤ C‖xk+1 − xk‖2 − ‖F (xk+1)− F (xk)‖2 −→ 0

as k →∞ and the assertion follows. �

Lemma 11 Every subsequence of xk has a convergent subsequence xk,l that converges strongly
towards a function x?

α, and x?
α satisfies the necessary condition for a minimizer of the Tikhonov

functional:
α(x?

α − x̄) = F ′(x?
α)∗(yδ − F (x?

α)) . (5.1)

Proof. According to (4.2), the minimizer xk+1 of J̃α(x, xk) fulfills

xk+1 =
1

C + α

(
Cxk + F ′(xk+1)

∗(yδ − F (xk)) + αx̄
)

.

Thus,

xk+1−xk = − α

α + C
xk+

1

C + α

(
F ′(xk)

∗(yδ − F (xk)) + αx̄ + (F ′(xk+1)− F ′(xk))
∗
(yδ − F (xk))

)
(5.2)

and, moreover, by Lemma 10, ‖xk+1 − xk‖ → 0, and thus

‖ (F ′(xk+1)− F ′(xk))
∗
(yδ − F (xk))‖ ≤ L‖xk − xk+1‖‖yδ − F (x0)‖ → 0 .

It follows by taking the limit k →∞ in (5.2),

0 = lim
k→∞

(
α(x̄− xk) + F ′(xk)

∗(yδ − F (xk))
)

. (5.3)

As the sequence xk is bounded, every subsequence has a weakly convergent subsequence. Let
xk,l be an arbitrary weakly convergent subsequence with weak limit x?

α (for simplicity, we will
denote this sequence by xk, too). Since

F ′(xk)
∗(yδ − F (xk)) = F ′(xk)

∗(yδ − F (x?
α)) + F ′(xk)

∗(F (x?
α)− F (xk)) ,

and because of ‖F ′(xk)
∗(F (x?

α)−F (xk))‖ ≤ 2C‖F (x?
α)−F (xk)‖ → 0 and by assumption (2.3),

i.e. F ′(xk)
∗(yδ − F (x?

α)) → F ′(x?
α)∗(yδ − F (x?

α)), we consequently obtain

lim
k→∞

F ′(xk)
∗(yδ − F (xk)) = F ′(x?

α)∗(yδ − F (x?
α)) . (5.4)

Combining (5.4) with (5.2) proves that xk,l converges, and as x?
α is the weak limit of the se-

quence, xk,l → x?
α. Equation (5.1) follows by taking the limit in (5.3). �
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In principle, the limits of different convergent subsequences of xk can be different. Let
xk,l×∗

α be a subsequence of xk, and denote by x̃k,l the predecessor of xk,l in xk, i.e. xk,l = xi

and x̃k,l = xi−1. Then we observe

J̃α(xk,l, x̃k,l) → Jα(x∗α)

Morover, as we have J̃α(xk+1,xk
) ≤ Jα(xk, xk−1) for all k, it turn out that the value of the

Tikhonov functional for every limit x∗α of a convergent subsequence stays the same:

Jα(x∗α) = const . (5.5)

We will now give a simple criterion that ensures convergence of the whole sequence xk.

Theorem 12 Assume that there exists at least one isolated limit x∗α of a subsequence xk,l of
xk. Then xk → x∗α holds.

Proof. By x∗α we will denote the isolated limit of the sequence xk,l. Let M denote the set of all
limits of subsequences of the sequence {xk}, and M1 := M \ {x∗α}. Setting r = dist(x∗α, M1)/2,
we define

Br := {xk : ‖xk − x∗α‖ ≤ r}
B̄r := {xk : xk 6∈ Kr} .

Now let us assume M1 6= ∅. Then both Br, B̄r contain infinitely many elements. In particular,
there exist infinitely many pairs of iterates xk, xk+1 with xk ∈ Kr and xk+1 ∈ B̄r, and we can
define a subseqence x̃k by picking all pairs xk ∈ Br and xk+1 ∈ B̄r out of the sequence {xk}k∈N,
i.e.

x̃2l = xk ∈ Br

(5.6)

x̃2l+1 = xk+1 ∈ B̄r

Because of Lemma 10 we observe ‖x2l − x2l+1‖ → 0, and with (5.6) follows that the elements
of x̃l come arbitrary close to ∂Br = {x : ‖x− x∗α‖ = r}, i.e.

lim
l→∞

‖x̃l − x∗α‖ = r . (5.7)

According to Lemma 11, every subsequence of xk has a convergent subseqence. Let x̃l,k be a
convergent subsequence of x̃l with limit x̃∗α. Because of (5.7) holds x̃∗α ∈ ∂Br. On the other
hand, as x∗α 6= x̃∗α, we have x̃∗α ∈ M1, which is a contradiction to dist(x∗α, M1) = 2r.

We conclude M1 = ∅, i.e. x∗α is the only limit of convergent subsequences of xk. As by
Lemma 11 every subsequence of xk has a subsequence that converges towards x∗α, the whole
sequence converges towards x∗α by the convergence principles. �

On the other hand, we conclude the sequence xk can only not converge if the Tikhonov func-
tional has a dense set of critical points, and the belonging functional values are constant.

By the following Proposition, the fixed point x?
α is also a minimizer for the functional

J̃α(x, x?
α).
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Proposition 13 The accumulation point x?
α is a minimizer for the functional J̃α(x, x?

α).

Proof. We aim to show that for all h ∈ X,

J̃α(x?
α + h, x?

α) ≥ J̃α(x?
α, x?

α) +
C

2
‖h‖2 .

This is obtained by making use of

J̃α(x?
α +h, x?

α) = J̃α(x?
α, x?

α)+2〈yδ−F (x?
α), F (x?

α)−F (x?
α +h)〉+2〈α(x?

α− x̄), h〉+(α+C)‖h‖2

and
α(x?

α − x̄) = F ′(x?
α)∗(yδ − F (x?

α)) .

With the Lipschitz–continuity of F ′ this results in

J̃α(x?
α + h, x?

α) ≥ J̃α(x?
α, x?

α)− 2‖yδ − F (x?
α)‖‖F (x?

α)− F (x?
α + h) + F ′(x?

α)h‖+ (α + C)‖h‖2

≥ J̃α(x?
α, x?

α)− 2
C

2L

L

2
‖h‖2 + (α + C)‖h‖2

= J̃α(x?
α, x?

α) +
C

2
‖h‖2 + α‖h‖2 ≥ J̃α(x?

α, x?
α) +

C

2
‖h‖2 .

�

Equation (5.1) states that our algorithm reconstructs at least a critical point of the Tikhonov
functional. In general, a critical point will not always be a minimizer of the Tikhonov functional.
However, we will give a condition that ensures this property. Namely, if we impose the condition
(2.6) and do assume that the solution x† fulfills a smoothness condition, then we can show that
every critical point of the Tikhonov functional is a global minimizer. We wish to remark that
(2.6) is a rather strong condition. However, conditions of this type have been used earlier, e.g.
for Landweber iteration [11, 16] and for Levenberg-Marquardt iteration [9].

Theorem 14 Let F be a twice Fréchet differentiable operator with (2.6). If a smoothness
condition

x† − x̄ = F ′(x†)∗ω , L‖ω‖ < 1/3 (5.8)

holds, and the regularization parameter is chosen with

α = δ/η and η ≤ ‖ω‖ (5.9)

then (5.1) has a unique solution. Thus the minimizer of the Tikhonov-functional is unique, too.

Proof. Let xδ
α denote a global minimizer of the Tikhonov functional, and x?

α be a critical point.
With F (x?

α) = F (xδ
α) + F ′(xδ

α)(x?
α − xδ

α) + R(xδ
α, x?

α − xδ
α) we obtain

‖yδ−F (x?
α)‖2 − ‖yδ − F (xδ

α)‖2 = ‖F (xδ
α)− F (x?

α)‖2 + 2〈yδ − F (xδ
α), F (xδ

α)− F (x?
α)〉

= ‖F (xδ
α)− F (x?

α)‖2 + 2〈F ′(xδ
α)∗(yδ − F (xδ

α)), xδ
α − x?

α〉 − 2〈yδ − F (xδ
α), R(xδ

α, x?
α − xδ

α)〉
(5.1)
= ‖F (xδ

α)− F (x?
α)‖2 + 2α〈xδ

α − x̄, xδ
α − x?

α〉 − 2〈yδ − F (xδ
α), R(xδ

α, x?
α − xδ

α)〉 .
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Because of
α‖x?

α − x̄‖2 − α‖xδ
α − x̄‖2 = α‖x?

α − xδ
α‖2 + 2α〈x?

α − xδ
α, xδ

α − x̄〉

it follows that

Jα(x?
α)− Jα(xδ

α) = ‖yδ − F (x?
α)‖2 − ‖yδ − F (xδ

α)‖2 + α‖x?
α − x̄‖2 − α‖xδ

α − x̄‖2

= ‖F (xδ
α)− F (x?

α)‖2 + α‖x?
α − xδ

α‖2 − 2〈yδ − F (xδ
α), R(xδ

α, x?
α − xδ

α)〉.
(5.10)

By the same argument, we get

Jα(xδ
α)− Jα(x?

α) = ‖F (xδ
α)− F (x?

α)‖2 + α‖x?
α − xδ

α‖2 − 2〈yδ − F (x?
α), R(x?

α, xδ
α − x?

α)〉 .(5.11)

Now, adding (5.10) and (5.11) yields

0 = 2‖F (xδ
α)− F (x?

α)‖2 + 2α‖x?
α − xδ

α‖2

−2〈yδ − F (xδ
α), R(xδ

α, x?
α − xδ

α)〉 − 2〈yδ − F (x?
α), R(x?

α, xδ
α − x?

α)〉 . (5.12)

For twice continuous differentiable operators, the quadratic remainder of the Taylor series
is given by

R(xδ
α, x?

α − xδ
α) =

1∫
0

(1− τ)F ′′(xδ
α + τ(x?

α − xδ
α))(x?

α − xδ
α, x?

α − xδ
α) dτ

R(x?
α, xδ

α − x?
α) =

1∫
0

(1− τ)F ′′(x?
α + τ(xδ

α − x?
α))(xδ

α − x?
α, xδ

α − x?
α) dτ .

Setting τ = 1− τ ′ and h = xδ
α − x?

α and we obtain

R(xδ
α, x?

α − xδ
α) =

1∫
0

τ ′F ′′(x?
α + τ ′h)(h, h) dτ ′

and thus

〈yδ − F (xδ
α), R(xδ

α, x?
α − xδ

α)〉 = 〈yδ − F (xδ
α),

1∫
0

τF ′′(x?
α + τh)(h, h) dτ〉

= 〈yδ − F (xδ
α),

1∫
0

(τ − 1)F ′′(x?
α + τh)(h, h) dτ〉+ 〈yδ − F (xδ

α),

1∫
0

F ′′(x?
α + τh)(h, h) dτ〉

= −〈yδ − F (xδ
α), R(x?

α, h)〉+ 〈yδ − F (xδ
α),

1∫
0

F ′′(x?
α + τh)(h, h) dτ〉 (5.13)
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Inserting (5.13) in (5.12) yields

0 = 2‖F (xδ
α)− F (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2〈F (x?
α)− F (xδ

α), R(x?
α, xδ

α − x?
α)〉

−2〈yδ − F (xδ
α),

1∫
0

F ′′(x?
α + τh)(h, h) dτ〉

≥ 2‖F (xδ
α)− F (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2‖F (x?
α)− F (xδ

α)‖‖R(x?
α, xδ

α − x?
α)‖

−2‖yδ − F (xδ
α)‖‖

1∫
0

F ′′(x?
α + τh)(h, h) dτ‖

By (2.6) we conclude ‖R(x?
α, xδ

α−x?
α)‖ ≤ ‖F (xδ

α)−F (x?
α)‖, and from the smoothness condition

(5.8), see [8] p.246, it follows

‖yδ − F (xδ
α)‖ ≤ δ + 2α‖ω‖

(5.9)

≤ 3α‖ω‖ .

Altogether we get

0 ≥ 2‖F (xδ
α)− F (x?

α)‖2 + 2α‖x?
α − xδ

α‖2 − 2‖F (x?
α)− F (xδ

α)‖‖R(x?
α, xδ

α − x?
α)‖

−2‖yδ − F (xδ
α)‖‖

1∫
0

F ′′(x?
α + τh)(h, h) dτ‖

≥ (2− 6L‖ω‖)α‖x?
α − xδ

α‖2 ≥ 0 ,

and thus we have shown (2− 6L‖ω‖)α‖x?
α−xδ

α‖2 = 0, and because of (5.8) holds x?
α = xδ

α. �

Conditions (2.6), (5.8) ensure the convergence of our algorithm towards the unique minimizer of
the Tikhonov functional. Using a proper parameter choice rule for the regularization parameter
gives convergence/convergence rates for Tikhonov regularization. We might recall a few well
known parameter rules.

(I) Let F be a weakly sequentially closed operator, and the regularization parameter α chosen
such that α(δ) → 0 and δ2/α → 0 as δ → 0. Then every sequence xδk

αk
with δk has a

convergent subsequence that converges toward an x̄- minimum norm solution x†. In
particular, if a smoothness condition (5.8) holds, and the regularization parameter is
chosen by α = δ/η, η ≤ ‖ω‖, then we obtain a convergence rate of O(

√
δ) [8].

(II) Let F be a Fréchet differentiable operator with (2.4). Moreover, assume that x† fulfills a
smoothness condition x†− x̄ = (F ′(x†)∗F ′(x†))νω for ν ∈ [1/2, 1] with L‖ω‖ < 1/3. If the
parameter is chosen by α ∼ δ2/(2ν+1), then we obtain a convergence rate of O(δ2ν/(2ν+1))
[8].

(III) (Morozov’s discrepancy principle) Let F be a twice continuous differentiable operator
with (2.4), and assume x† − x̄ = F ′(x†)∗ω with L‖ω‖ ≤ 0.241. Then there exists a
regularization parameter α ≤ δ/η, η ≤ ‖ω‖ with

δ ≤ ‖yδ − F (xδ
α)‖ ≤ cδ , (5.14)
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and for a belonging minimizer holds ‖xδ
α − x†‖ = O(

√
δ). A regularization parameter

fulfilling (5.14) can be found by testing ‖yδ − F (x
δ

α
k
)‖ for a sequence αk = α0q

k with

appropriate chosen a0 and q < 1, see [19].

Please note that if a solution fulfills smoothness condition from (II), then, for properly scaled
F ′(x†), also a smoothness condition (5.8) holds. Thus, if (2.6) holds, all rules are conform
with the requirements of our minimization algorithm. Combining all ingredients and picking a
proper parameter rule we may provide the following algorithm which uses our iteration routine
TIREFU (TIkhonov REplacement FUntional) for solving the nonlinear problem F (x) = y
with ‖y − yδ‖ ≤ δ. The exact way for computing a solution x?

α goes as follows (applying III):

• Define a sequence {αn} with αn
n→∞−→ 0, pick some r and set x0 = x̄ (initial value x0 for

the outer iteration)

• while ‖F (x?
α)− yδ‖ > r · δ

– α = αn

– pick an admissible C

– [x?
α] = TIREFU (F , yδ, C, α, x0):

xk+1 = arg min
x

J̃α(x, xk) (solved by a Fixed Point Iteration)

x?
α = lim

k→∞
xk

– x0 = x?
α

end

For this algorithm we may now formulate the following optimality result:

Theorem 15 Assume that (2.6) holds. Then Tikhonov regularization with one of the parame-
ter rules I-III, where the minimizers are computed by TIREFU , is an optimal regularization
method.

Since in any numerical realization we cannot treat infinite series (computing limits), we addi-
tionally have to incorporate a stopping rule. If Φα(x, a) denotes the operator defined in (4.2),
then the algorithm reads as follows:

• Define a sequence {αn} with αn
n→∞−→ 0, pick some r, tolerances τ1 and τ2, set x?

α = x̄

• while ‖F (x?
α)− yδ‖ > r · δ

– α = αn

– pick an admissible C

– [x?
α] = TIREFU (F , yδ, C, α, x0, τ1, τ2)

k = 0
while ‖xk+1 − xk‖ > τ1

l = 0, xk,0 = xk

Repeat
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l = l + 1
xk,l = Φα(xk,l−1, xk)

Until ‖xk,l − xk,l+1‖ ≤ τ2

xk+1 = xk,l

k = k + 1
end
x?

α = xk

– x0 = x?
α

end

As we have pointed out, the strongest limitation of TIREFU is condition (2.6). However, this
condition was only used once at the very end of our analysis, and we expect that it will be
possible to weaken the condition. As Landweber iteration and Levenberg-Marquardt iteration
work under a similar condition, we might compare TIREFU with these methods. Landweber
iteration is known to be a slow method, and as we use fixed point methods, we do expect that
TIREFU will be faster. Moreover, using our optimization routine with rule II, we obtain an
optimal method for ν ∈ [1/2, 1]. In contrast, to obtain convergence rates, Landweber requires
an additional conditions F ′(x) = RxF

′(x†), where Rx is a family of bounded operators with
‖I − Rx‖ ≤ K‖x − x†‖. This condition is even more restrictive than (2.6). In addition,
convergence rates are only available for 0 < ν ≤ 1/2. As for Levenberg-Marquardt, it is only
known that the iteration is a regularization method under a condition slightly more restrictive
as (2.6), and so far, nothing is known on convergence rates. Thus we might conclude that
TIREFU works under less restrictive conditions.

6 Application of the proposed scheme

In this section, we want to apply the machinery developed in the previous sections. The aim
is to demonstrate the capabilities and the performance of our algorithm in solving a chal-
lenging ill–posed problem in the context of medical imaging, which is Single Photon Emission
Computerized Tomography (SPECT).

In SPECT, the patient gets a radiopharmaceutial, which is distributed through the whole
body by the blood flow, and is finally enriched in some areas of interest. The task is to
recover the distribution of the radiopharmaceutical (or, in short of the activity function f) from
measurements of the radioactivity outside the body. In contrast to CT, where the measured
intensity depends only on the intensity of the incoming X-ray and the density µ of the tissue
along the path of the X-ray, the measurement for SPECT depend on the activity function f
(which describes the distribution of the radiopharmaceutical) and the density µ of the tissue.
The measured data y and the tuple (f, µ) are connected via the attenuated Radon Transform
(ATRT),

y = R(f, µ)(s, ω) =

∫
R

f(sω⊥ + tω)e−
R∞

t µ(sω⊥+rω)drdt , (6.1)

where s ∈ R and ω ∈ S1. Usually both f and µ are unknown functions, and R is a nonlinear
operator. In order to invert (6.1), two strategies can be used. Firstly, the density distribution
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Figure 1: Activity function f∗ (left) and attenuation function µ∗ (right)
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Figure 2: Generated data g(s, ω) = R(f∗, µ∗)(s, ω).
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Figure 3: Minimizer f
δ

α
of the Tikhonov functional for α = 3430 (l) and values of the Tikhonov

functional (r)

can be determined by the inversion of a additional CT scan (in most scanners, the CT data
is gathered simultaneously). With this approach, one has to solve two linear problems, as the
attenuated Radon transform is linear if µ is assumed to be known, and currently developed
inversion formulas can be used [15]. However, attaching an X-ray source to a SPECT scanner
makes them much more expensive. The scanning time for each patient might increase, which
leads again to higher costs for each scan. Thus the second strategy, where the ATRT is treated
as a nonlinear operator, seems to be promising. The drawbacks of this strategy are the non-
uniqueness of the operator (which usually leads to a wrong reconstruction for the density
function µ ) and much higher computational costs for the inversion of the nonlinear operator.
In the last decade, several ideas for solving the nonlinear problem (6.1) were discussed, see,
e.g., [3, 14, 24, 25, 21]. Dicken [7] showed that Tikhonov regularization for nonlinear operators
can be used for the reconstruction of the activity function. Methods for the computation of a
minimizer of the Tikhonov functional were proposed in [18, 19, 20] and applied to SPECT. Here,
we will only demonstrate that our method can be used for the computation of a minimizer. For
the test computations, we would like to use the so called MCAT phantom [23], see Figure 1.
The belonging sinogram data is shown in Figure 2.

In a first attempt, we want to compute the minimizer of the Tikhonov functional with
regularization parameter α = 3430. The data was contaminated with multiplicative Gaussian
noise with relative error δrel = 5% (here δrel = ‖yδ−y‖/‖y‖). The inner iteration was terminated
if the relative distance of two consecutive iterates was less than 1e−6, and the outer iteration was
terminated if the relative distance between two consecutive outer iterates was less that 1e− 5.
After only a few iterations, the value of the Tikhonov functional remains almost constant, see
Figure 3. The values of the additive term C‖xk,l − xk‖ − ‖F (xk,l) − F (xk)‖, xk = (fk, µk) is
shown in Figure 4. Clearly, the additive term converges fast to zero, and thus the values of the
replacement functional and the Tikhonov functional are almost the same. Moreover, it turns
out that we only need a few inner iterations to achieve the required accuracy, see Figure 4.
This actually indicates that the whole iteration itself is quite fast. In a final test computation,
we used Morozov’s discrepancy principle to determine an appropriate regularization parameter
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Figure 4: Plot of the additive term in the replacement functional (l) and number of inner
iterations for each outer iteration (r)

(see (5.14)). For a sequence αk = a0q
k, k = 0, 1, ..., a0 = 1000 and q = 0.5 we computed xδ

αk

by TIREFU , and picked the first minimizer x
δ

α
k

with (5.14) and c = 2. In our case, we had

to compute 10 minimizing functions. The residual of the minimizer with α = 1.95 was smaller
then 2δ for the first time, and the reconstruction was stopped. Figure 5 shows the results.
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