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Abstract
During the last three decades, radar wind profiling (RWP) hasevolved into a key technology for atmospheric
science and operational meteorology. In this tutorial status report, RWP is divided into three distinct areas:
single-signal RWP, two-signal RWP, and multi-signal RWP. While single-signal RWP, or standard RWP, is
a mature technology in many respects, there is still much room for improvement, particularly in the inter-
pretation of signals that are severely contaminated by radio interference or by clutter from aircraft, birds,
hydrometeors, etc. Two-signal RWP, the best known examplesof which are the spaced-antenna (SA) and
frequency-domain interferometry (FDI) techniques, have been used to overcome some of the limitations in-
herent in standard RWP. Multi-signal RWP is, to a large extent, still unexplored territory. This paper attempts
to provide a coherent conceptual framework of advanced RWP and to identify areas of future research and
development.

Zusammenfassung
Im Laufe der letzten drei Jahrzehnte hat sich Radar-Windprofiling (RWP) zu einer Schlüsseltechnologie in
der Atmosphärenforschung und der operationellen Meteorologie entwickelt. Im Rahmen einer einführen-
den Bestandsaufnahme wird RWP in drei Kategorien eingeteilt: Einzel-Signal-RWP, Zwei-Signal-RWP und
Multi-Signal-RWP. Obwohl Einzel-Signal-RWP, d.h. Standard-RWP, in vielerlei Hinsicht eine ausgereifte
Technologie ist, gibt es dennoch Verbesserungsmöglichkeiten, insbesondere hinsichtlich der Auswertung
von Messungen, die durch Radio-Einstreuung oder Störechosvon Flugzeugen, Vögeln, Hydrometeoren usw.
stark beeinträchtigt sind. Zwei-Signal-RWP, als deren Hauptvertreter die Technik der versetzten Antennen
und die Frequenzbereich-Interferometrie gelten können, haben sich als hilfreich zur Überwindung einiger
Limitierungen der Standard-RWP erwiesen. Multi-Signal-RWP hingegen ist im wesentlichen noch unbekan-
ntes Territorium. Dieser Beitrag versucht, einen einheitlichen begrifflichen Rahmen der fortgeschrittenen
RWP-Technologie zu liefern. Zudem werden mögliche Bereiche zukünftiger Forschung und Entwicklung
aufgezeigt.

1 Introduction

The era of radar wind profiling (RWP) began with the
pioneering paper by WOODMAN and GUILLÉN (1974),
who were the first to demonstrate that the extremely
weak VHF radio-wave echoes from clear-air refractive-
index perturbations in the troposphere and stratosphere
are indeed measurable and that the temporal changes of
these echoes can be used to retrieve wind velocities.

Within one decade, the first RWP network, called
the Colorado wind-profiling network (STRAUCH et al.,
1984), was implemented and provided quasi-operational
wind data. The network consisted of four VHF profilers
operating at 50 MHz (wavelength 6 m) and one UHF
profiler operating at 915 MHz (wavelength 33 cm). Ac-
cording to STRAUCH et al. (1984, p. 37), one objec-
tive of that program was “to develop tropospheric wind-
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profiling radars that will provide vertical profiles of the
horizontal wind throughout the troposphere, operate in
nearly all weather conditions, provide wind data auto-
matically and continuously with unattended operation,
be suitable for widespread use in networks, provide data
for mesoscale and synoptic scale applications.” The de-
sign goal was “to provide vertical profiles of the hori-
zontal wind with accuracy of orthogonal components to
better than 1 m s−1; height resolution of 100 m below
600 mb, 300 m to 300 mb, and 1 km to 100 mb; tem-
poral resolution of 15 min for profiles to 600 mb, 30
min for profiles to 300 mb, and 60 min for profiles to
100 mb.” The design goals for operational RWPs have
barely changed during the last twenty years, which in
hindsight may be seen as an indication that the problems
encountered in RWP are more serious and complicated
than originally anticipated.

The Colorado network was the precursor of the
National Oceanic and Atmospheric Administration’s
(NOAA) National Profiler Network (BARTH et al.,
1994), which has been operating continuously since
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1992, and by the end of 2004 consisted of 35 RWP sites
across the United States. Similar RWP networks are now
operating in Europe and Japan.

Today, there are hundreds of research and operational
RWPs worldwide, measuring wind velocities in the at-
mospheric boundary layer, the free troposphere, and in
the lower stratosphere. Overviews of the technical and
scientific aspects of RWP have been provided, among
others, by Gage (1990), RÖTTGERand LARSEN (1990),
DOVIAK and ZRNIĆ (1993), and MUSCHINSKI (2004).
Based on the overall success of RWPs, many consider
RWP a mature technology. A closer look at the underly-
ing physical and mathematical principles, however, re-
veals that there is still room for substantial improvement
and further development. Major progress can be antici-
pated in two directions. First, traditional RWP, or single-
signal RWP, can be made more efficient by taking ad-
vantage of new methods in mathematical signal analysis.
Second, two-signal and multi-signal RWP techniques,
which have been studied by researchers for many years
but have not yet entered the operational arena, offer a
wide range of options to overcome limitations that are
inherent to single-signal RWP.

The purpose of this paper is to give a tutorial
overview of single-signal, two-signal, and multi-signal
radar wind profiling. Emphasis is placed on the physi-
cal and mathematical concepts. Examples of RWP mea-
surements are presented in order to give an impression
of the wide variety of problems that arise from non-
atmospheric signal contributions, i.e., clutter and noise.

The paper is organized as follows. Section 2 gives
an overview of the physical nature of a single RWP sig-
nal. The RWP signal is divided into a clear-air compo-
nent, a clutter component, and a noise component. Ba-
sic single-signal statistics are introduced and explained,
among them the so-called Doppler spectrum and its
first three moments. A number of the difficulties to re-
trieve clear-air statistics from contaminated RWP sig-
nals are explained. Limitations inherent to single-signal
RWP are discussed. Section 3 reviews two-signal RWP
techniques, mainly the spaced-antenna technique and
the frequency-domain interferometry technique. Section
4 gives an introduction to multi-signal RWP, which
is mathematically much more demanding than single-
signal and two-signal RWP. A wide variety of forward
problems can be formulated, and the associated inverse
problems will remain a fertile research area in the fore-
seeable future. A summary and a brief outlook are given
in Section 5.

2 Single-signal radar wind profiling

This section describes physical, technological, and
mathematical aspects of single-signal RWP. Section 2.1
illustrates the nature of RWP signals on the basis of a

measurement example. Section 2.2 describes and dis-
cusses the various sources of clutter and noise, which
often dominate the clear-air echo and make it diffi-
cult, sometimes impossible, to retrieve wind informa-
tion from a measured RWP signal. Based on the mea-
surement example of Section 2.1, Section 2.3 introduces
the Doppler spectrum and explains why RWPs can mea-
sure wind velocities at signal-to-noise ratios as low as
−35 dB or even lower. Section 2.4 summarizes the the-
ory that relates the intensity of the clear-air echo to the
spatial spectrum of the refractive-index perturbations in
the RWP’s sampling volume. The relationship between
Doppler shift and wind velocity has been analyzed only
recently on the basis of first-principle theory, as sum-
marized in Section 2.5. Of considerable practical impor-
tance for single-signal RWP are new mathematical time-
frequency decomposition techniques. Section 2.6 illus-
trates the efficacy of these techniques by means of an
RWP signal that is severely contaminated by an aircraft
echo.

2.1 A measurement example

Figure 1 shows the time series of the real and imaginary
parts of a single signal measured with the east beam of
the 482-MHz profiler operated by the Deutscher Wetter-
dienst (DWD, German Weather Service) at its Meteorol-
ogisches Observatorium Lindenberg (MOL). The data
were taken on Dec. 1, 1999, with the east beam (15o off
zenith) at a height of 3035 m MSL. The elevation of the
MOL site is 103 m MSL.
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Figure 1: Time series of the in-phase (a) and quadrature (b) compo-

nent of a signal measured on 1 December 1999 with the 482-MHz

RWP at the Meteorologisches Observatorium Lindenberg, Germany.

Each of the two time series contains 2048 samples. Each sample is

the coherent sum of 144 echoes from subsequent pulses.

The real (in-phase) part and the imaginary (quadra-
ture) part of the complex time series each contain 2048
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samples. Each sample is the coherent average of the
echoes from 144 subsequent pulses. That is, the data are
the result of 294,912 subsequent pulses and their respec-
tive echoes. The interpulse (or interecho) period was 61
µs, such that the coherent-integration time was 8.8 ms,
and the length of the entire time series (the “dwell time”)
was 18.0 s. (Note that some authors use the term “dwell
time” as the time during which the radar “dwells” in
the same beam-pointing direction; that definition may
or may not coincide with our definition.)

The coherent-integration time must be short com-
pared to the time scales at which the signal’s phase and
amplitude change significantly due to the mean and tur-
bulent motion of the atmospheric refractive-index per-
turbations in the RWP’s resolution volume. For RWP
operating in the lower UHF regime, where the radar
wavelength is of order 1 m, a coherent-integration time
of order 10 ms are usually a good choice.

Figure 2 shows the first second of the 18-s-long sig-
nal time series presented in Figure 1. The signal fluctu-
ations at time scales of order 50 ms are due to echoes
from atmospheric refractive-index perturbations while
the fluctuations at one-second time scales, which domi-
nate Figure 1, are caused by clutter from slowly moving
objects on the ground.
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Figure 2: The first second of the signal time series shown in Figure 1

2.2 Definitions: Clutter, noise, and clear-air
signal

In Figure 2, the clear-air component can be clearly rec-
ognized as the nearly sinusoidal oscillations superposed
on the slowly changing clutter component. Uncorrelated
noise has been substantially suppressed because of the
coherent averaging. If the single echoes were shown
instead of the coherently added echoes, then Figure 2
would have been noise-dominated, as we will show in

the next subsection. (For the data shown in Figure 2 the
coherent adding, or averaging, had been done with hard-
ware, and because of hardware limitations the single-
echo samples could not be saved; therefore, the single-
echo samples cannot be shown here.) The clutter, how-
ever, which dominates Figure 1 and in this case is much
stronger than the atmospheric echo, cannot be reduced
by coherent averaging.

At this point, it is helpful to define the terms clut-
ter, noise, and signal more clearly. Unfortunately, the
term “signal” is used in the literature with two different
meanings. In the context of “signal processing,” “sig-
nal” stands for “measured receiver output,” which is the
sum of clutter, noise, and atmospheric echo. Often, how-
ever, “signal” is used synonymously with “atmospheric
echo.” In the following, we avoid this ambiguity by us-
ing the terms “total signal”S(t), “clear-air signal”I(t),
clutterC(t), and noiseN(t):

S(t) = I(t)+C(t)+N(t), (2.1)

where all terms are complex-valued “base-band” cur-
rents measured at the receiver output. Our definition
of I(t) is identical to the one in DOVIAK and ZRNIĆ

(1984), DOVIAK and ZRNIĆ (1993, eq. 11.115 on p.
456), and MUSCHINSKI (2004).

Clutter is the totality of undesired echoes. In the
case of RWP, clutter includes echoes from airborne ob-
jects such as aircraft, birds, bats, insects, atmospheric
plankton, airborne debris, hydrometeors, and moving or
nonmoving objects on the ground like buildings, power
lines, trees, cars, or wind turbines. Whether or not clutter
is easily distinguishable from clear-air signals depends
on the distribution of the echoing objects in space and
time, and on their radial velocities. Insect echoes, for ex-
ample, are difficult to distinguish from clear-air echoes
because insects constitute a “distributed target” (there
are often many insects in the same sampling volume),
and often they are passively advected with the local
wind velocity. The same is true for small rain droplets
or small snowflakes. From a purely practical point of
view, particularly if one is interested only in wind mea-
surements, there is no need to distinguish between the
clear-air component and the clutter component if one
can safely assume that the sources of airborne clutter are
passively advected with the wind.

We define noise as the sum of all contributions to
S(t) that are not the result of an echoing mechanism.
From this definition it follows that noise is independent
of the strength, the shape, or the transmit time of the
transmitted pulses. Noise includes thermal noise in the
RWP system, electromagnetic radiation from the sun or
other astronomical objects (cosmic noise), and radio sig-
nals transmitted from satellites, mobile phones, electri-
cal machinery, etc. (radio interference). It is usually as-
sumed that system noise and cosmic noise are well ap-
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proximated by a flat “noise floor” (white noise) in the
spectrum.

Because clear-air signal, clutter, and noise are uncor-
related from each other, such that〈I∗C〉 = 0, 〈I∗N〉 =
0, and〈C∗N〉 = 0 (the angle brackets mean “expecta-
tion value of”), the “total Doppler spectrum,” i.e., the
frequency spectrum ofS(t), is simply the sum of the
frequency spectra ofI (t), C(t), andN(t), respectively:

φS(ω) = φ(ω)+ φC (ω)+ φN (ω) , (2.2)

whereφ(ω) is the spectrum of the clear-air signal,φC(ω)
is the clutter spectrum, andφN(ω) is the noise spectrum.
We have suppressed the subscript “I ” in φ(ω) in order to
keep the notation in the analytical Sections 2.5 and 3.1
simple.

2.3 Measurement example: Periodogram,
Doppler spectrum, and signal-to-noise
ratio

Figure 3 shows the periodogram of the signal time series
presented in Figure 1. The periodogram was computed
by means of a Fast Fourier Transform (FFT) algorithm.
As is customary in the RWP community, we present the
periodogram as a function of frequencyf = ω/2π and
not of cycle frequencyω. Three features can be clearly
distinguished from each other: a peak centered atf =
−18 Hz, a second peak atf = 0, and noise spread over
the entire resolvable frequency interval. The resolvable
frequencies range from− fNy to + fNy, where

fNy =
1

2Tc
(2.3)

is the Nyquist frequency andTc the coherent-integration
time. In our case,Tc = 8.8 ms, which leads tofNy = 56.9
Hz, in agreement with the frequency range depicted in
Figure 3. The frequency increment in a periodogram is

∆ f =
1
Td

, (2.4)

whereTd is the dwell time, in our exampleTd = 18 s,
such that∆ f = 0.056 Hz. That is, in Figure 3 a frequency
interval of width 10 Hz (like the width of the peak cen-
tered at−18 Hz) is represented by 180 points in the pe-
riodogram.

A clear distinction has to be made between the pe-
riodogram, which can becalculatedfrom a finite time
series, and the power spectrum, which can only beesti-
matedfrom a finite time series. Definitions of the power
spectrum and the cross-spectrum of complex-valued,
random variables can be found, e.g., in MUSCHINSKI

(2004). Sometimes, the power spectrum is referred to as
the auto-spectrum (as opposed to the cross-spectrum),
the variance spectrum (because integration over all fre-
quencies gives the variance), or simply as the spectrum.
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Figure 3: Periodogram of the RWP signal shown in Fig. 2.1.
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Figure 4: Doppler spectrum, estimated from the periodogram in Fig-

ure 3 after averaging in the frequency domain over 20 adjacent spec-

tral points.

The most obvious difference between a periodogram
and a spectrum is that in a periodogram the individ-
ual spectral points show a random behaviour, some-
times referred to as “speckle,” while a spectrum is usu-
ally smooth. Figure 4 shows the periodogram in Fig-
ure 3 after averaging over 20 adjacent spectral points,
that is, over frequency intervals of 1.1 Hz. Obviously,
smoothing reduces the speckle, such that a smoothed
periodogram is a better approximation of the spectrum
than the “raw” periodogram. It is important to note that
the periodogram calculated from a finite data set is abi-
asedestimator of the power spectrum (e.g., DOVIAK and
ZRNIĆ, 1993, p. 99).

The noise spectral density,φN, has been estimated
with the HILDEBRAND and SEKHON (1974) algorithm
and is depicted by the horizontal lines in Figures 3 and 4.



D
R

A
FT

Meteorol. Z.,14, 2005 A. Muschinski et al.: Advanced Radar Wind Profiling 613

The algorithm does not require anya priori knowledge
about which parts of the periodogram are pure white
noise and which are not, as long as there are a sufficient
number of periodogram points that represent pure white
noise.

The peak at−18 Hz (correponding to an oscillation
period of 56 ms, as visible in the time series in Figure 1)
is the atmospheric signal while the peak at zero Doppler
shift is ground clutter. The spectral densities in Figures
3 and 4 are given relative to the mean noise spectral den-
sity φN, such that the actual noise spectral density (as a
function of frequency) fluctuates around 0 dB. The peak
spectral densities of the clear-air signal and the clutter
are 23 dB and 30 dB, respectively, above the noise floor
in this measurement example.

Let us estimate the signal-to-noise ratio (SNR) of the
clear-air signal:

SNR=
〈|I |2〉
〈|N|2〉 , (2.5)

whereI is the non-averaged clear-air component andN
is the non-averaged noise. The width of the clear-air
peak is about 10 Hz, while the Nyquist interval of the
non-averaged echoes is 1/(61µs) = 16.4 kHz, or 2×144
times the Nyquist frequency of the coherently averaged
samples, which we showed is 56.9 Hz. That is, the noise
is spread over a frequency interval that is about 1600
times as wide as the bandwidth of the atmospheric sig-
nal. We found that the variance contained in the “wind
peak” (the peak centered at−18 Hz) is higher by 8.7 dB
than the variance contained in the noise of the 144-pulse
averages. Because the noise energy of single pulses is
144 times larger than the noise energy in the 144-pulse
averages, the SNR is by a factor of 144, or by 21.6 dB,
lower than 8.7 dB. That is, the SNR in our measurement
example is−12.9 dB.

As stated above, in our measurement example the
peak spectral density of the clear-air signal is 23 dB
above the noise floor, such that the clear-air peak were
still 3 dB above the noise floor if the SNR were by 20 dB
lower. In other words, the RWP could provide meaning-
ful wind estimates for SNRs as low as−32.9 dB. More-
over, if the bandwidth of the clear-air signal were only
1 Hz (instead of order 10 Hz, as in our example), which
is not uncommon under low-turbulence conditions and
for shorter dwell times, then the Lindenberg 482-MHz
RWP could provide meaningful wind data even if the
SNR were as small as−42.9 dB.

The main reason why RWPs can provide meaningful
data at extremely low SNRs is that the bandwidth of the
clear-air signal is typically by three or more orders of
magnitude smaller than the very wide Nyquist interval
associated with the very short interpulse period.

Ground clutter has a peak spectral density that often
exceeds the clear-air peak spectral density. In that case,

ground clutter can be separated from the atmospheric
signal only if, as in Figures 3 and 4, their spectra do not
overlap.

2.4 Radio-wave propagation theory:
Backscattered power from turbulent
refractive-index perturbations in the
optically clear air

RWP signals can be fully understood only on the basis of
the theory of radio-wave propagation through the turbu-
lent atmosphere. This theory, pioneered by TATARSKII

(1961), is a synthesis of Maxwell’s electromagnetic the-
ory and classical turbulence theory (KOLMOGOROV,
1941; BATCHELOR, 1953).

For single scatter, that is, under the assumption that
the first-order Born approximation is valid, the instan-
taneous clear-air signalI (t) is unambiguously deter-
mined by the field of the instantaneous refractive-index
perturbations,n(x′, t), in the RWP’s resolution volume
through an equation of the form

I (t) =

∫∫∫

G
(

x′
)

n
(

x′, t
)

d3x′ (2.6)

(e.g., TATARSKII , 1961; DOVIAK and ZRNIĆ, 1984),
whereG(x′) is a complex-valued instrument function,
or “sampling function” that does not vary with time.
DOVIAK and ZRNIĆ (1984) put forward a closed-form
model for G(x′) which is a good approximation for a
wide range of RWP applications.

While DOVIAK and ZRNIĆ (1984), and recently
MUSCHINSKI (2004), discuss the power

Pr =
R
2
〈|I |2〉 (2.7)

of the backscattered pulse measured at the receiver out-
put (hereR is the receiver resistance) by means of Eq.
(2.6), the traditional approach by TATARSKII (1961) is
slightly different. TATARSKII (1961, chapter 4) consid-
ered the electric field vector associated with a plane
wave travelling through a small test volumeV and
used Maxwell’s equations to find the field vector of the
wave scattered into a particular directionm (TATARSKII ,
1961, p. 63, eq. 4.8). Then he derived the mean intensity
of the scattered wave and derived an equation for the
scattering cross-section incrementdσ for the wave scat-
tered from the scattering volumeV into a solid-angle
incrementdΩ in the directionm:

dσ = 2πk4
0V sin2 χΦnn(k0−k0m)dΩ (2.8)

(TATARSKII , 1961, p. 68, eq. 4.19), wherek0 = 2π/λ is
the wave number of both the incident wave and the scat-
tered wave,χ is the angle between the elctromagnetic
field vector of the incident wave and the propagation di-
rectionm of the scattered wave,k0 is the wave vector
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of the incident wave,m is the wave vector of the scat-
tered wave, andΦnn(k) is the three-dimensional, spec-
tral density of refractive-index variance at the wave vec-
tor k. For backscatter, we haveχ = 90o (the field vector
is perpendicular to the propagation path) andk0−k0m =
2k0. The magnitude of the “Bragg wave vector” 2k0 is
usually referred to as the Bragg wave number,

kB = 2k0 =
4π
λ

. (2.9)

If the refractive-index perturbations are statistically
isotropic at a particular wave numberk, and if k lies
within the inertial subrange of the refractive-index tur-
bulence, both of which are common, although not
unchallenged assumptions for atmospheric refractive-
index perturbations at wavelengths of 1 m or shorter
(e.g., MUSCHINSKI and WODE, 1998; LUCE et al.,
2001a; MUSCHINSKI and LENSCHOW, 2001; BALSLEY

et al., 2003), thenΦnn(k) depends only on the mag-
nitude k of the wave vector and is proportional to the
refractive-index structure parameterC2

n:

Φnn(k) =
Γ(8/3)sin(π/3)

4π2 C2
nk−11/3 = 0.0330C2

nk−11/3

(2.10)
(TATARSKII , 1961, p. 48, eq. 3.24).

It has become common practice to quantify the ratio
between incident and backscattered intensity in terms of
the volume reflectivity

η =
1
V

dσb

dΩ/4π
, (2.11)

wheredσb is the cross-section increment for backscatter,
i.e.,χ = 90o andk0−k0m = 2k0. Inserting (2.8) leads to

η = 8π2k4
0Φnn(2k0) . (2.12)

If the volumeV is filled with refractive-index turbulence
that is isotropic at the Bragg wave number and homoge-
neous across the volumeV, and if 2k0 lies in the inertial
subrange, then (2.10) is valid and one obtains

η = 0.379C2
nλ−1/3. (2.13)

This relationship follows immediately from Tatarskii’s
analysis, as just shown, but is usually credited to OT-
TERSTEN(1969) who, to the best of our knowledge, was
the first to present the relationship betweenη andC2

n in
the form of Eq. (2.13).

The advantage of the DOVIAK and ZRNIĆ (1984)
approach is that it avoids the concept of a local scat-
tering cross section, which may cause problems if the
refractive-index correlation lengths are not small com-
pared to the Fresnel length. This was recently pointed
out by TATARSKII (2003), who now strongly questions

his earlier approach. MUSCHINSKI (2004), however,
found that both approaches, that is, the Fraunhofer ap-
proximation (TATARSKII , 1961) and the Fresnel approx-
imation (DOVIAK and ZRNIĆ, 1984), lead to the same
result, namely to Eq. (2.13), if the refractive-index per-
turbations are Bragg-isotropic, which in many cases is a
valid assumption, in particular for UHF RWPs operating
in the atmospheric boundary layer.

2.5 Combining radio-wave propagation
theory with basic fluid dynamics: The
relationship between Doppler shift and
radial wind velocity

The main purpose of a radar wind profiler is to mea-
sure vertical profiles of the three components,u, v, and
w, of the wind vector. The standard procedure is the so-
called Doppler beam swinging (DBS) technique, where
the radial wind velocity,vr , is measured in at least three
non-coplanar beam directions, andu, v, andw are re-
trieved from thevr measurements by means of elemen-
tary trigonometric relationships. For a given beam direc-
tion, vr is obtained through

ωD = −kBvr , (2.14)

where

ωD =

∫

φ(ω)ω dω
∫

φ(ω) dω
(2.15)

is the Doppler shift. In the measurement example dis-
cussed in Section 2, the radar wavelength was 62 cm
and the Doppler shift was−18 Hz, such thatvr = +5.6
ms−1. A negative Doppler shift and a positivevr means
that the air moves away from the radar.

For more than two decades, thevr -ωD relationship,
(2.14), has been the key equation for operational RWP.
Eq. (2.14) can be derived easily based on the assumption
that the scattering volume is populated by point scatter-
ers that are advected with the wind velocity. In the case
of scatter from turbulence, however, which is the usual
case for RWP applications, there are no point scatter-
ers. Instead, the scattering volume is filled with a con-
tinuous refractive-index field that is random in time and
space and is usually characterized by horizontal corre-
lation lengths that are large compared to the size of the
scattering volume and by correlation times that are long
compared to the dwell time.

Although it is obvious that the point-scatterers as-
sumption is invalid for most RWP applications, for
more than two decades, the RWP community has taken
the validity of (2.14) for granted. Doubts that (2.14)
might be incomplete or erroneous have come from dif-
ferent sources. HOCKING et al. (1986) showed that
Bragg-anisotropy, which is common for echoes ob-
served with VHF radars at near-zenith directions and
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is known as “VHF aspect sensitivity,” leads to erro-
neous radial wind velocities, and they suggested a cor-
rection formula. NASTROM and VANZANDT (1994)
found that long-term averages of vertical velocities
observed with vertically pointing VHF radars usu-
ally show a downward bias of a few centimeters per
second, and they explained this bias with a negative
covariance between vertical-velocity fluctuations and
radar-reflectivity fluctuations resulting from upward-
propagating gravity waves. MUSCHINSKI (1996) of-
fered an alternative explanation: Bragg-anisotropic fea-
tures associated with Kelvin-Helmholtz billows in the
shear regions of upper-level jet streams lead to a down-
ward bias in the lower shear region and an upward bias
in the upper shear region. Recently, the upward bias hy-
pothesized by MUSCHINSKI (1996) was observed by
YAMAMOTO et al. (2003).

To the best of our knowledge, MUSCHINSKI (1998)
was the first to use the basic equation for single scat-
ter, (2.6), to investigate the validity of the traditionalvr -
ωD relationship (2.14) for the case of scatter from turbu-
lent refractive-index perturbations advected by a turbu-
lent wind field. He found that in general,ωD is the sum
of three parts: first, the mean-wind contribution,−kBvr ,
which is the only term that appears in the traditional
vr -ωD relationship (2.14); second, a term that is propor-
tional to the Bragg-component of the spatial quadrature
spectrum of radial-wind and refractive-index perturba-
tions, a term that TATARSKII and MUSCHINSKI (2001)
later called the “correlation velocity;” and a third term
that is proportional to the covariance ofvr perturbations
andη perturbations, or, in other words, proportional to
the radial flux of clear-air radar reflectivity.

Recently, MUSCHINSKI (2004) expanded and gen-
eralized the earlier analysis (MUSCHINSKI, 1998) and
found for themth moment of the Doppler spectrum,
M(m)

11 , the equation

M(m)
11 =

1
im

∫∫∫ ∫∫∫

G11
(

x′,x′′
)

R(m)
nn
(

x′,x′′
)

d3x′d3x′′,

(2.16)
where

R(m)
nn
(

x′,x′′
)

=

〈

n
(

x′
) ∂m

∂tmn
(

x′′
)

〉

(2.17)

is the two-point, cross-covariance function of the refrac-
tive index and of themth local time derivative of the
refractive index, and where

G11
(

x′,x′′
)

= G∗
1(x

′)G1(x′′) (2.18)

is a new instrument function.
MUSCHINSKI (2004) studied R(1)

nn (x′,x′′) and

R(2)
nn (x′,x′′) based on simplifying assumptions like

the random Taylor hypothesis. Much further work,
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Figure 5: Time series of the in-phase (a) and quadrature (b) com-

ponent of an RWP signal with severe aircraft echo contamination.

however, needs to be done to systematically investigate
the functionsR(m)

nn (x′,x′′), which would be the basis of
a full understanding of the higher moments of RWP
Doppler spectra.

2.6 Non-stationary clutter and
time-frequency decomposition

Aircraft, birds, and moving objects on the ground may
severely contaminate RWP signals. Often their echo in-
tensity exceeds the clear-air echo intensity by several or-
ders of magnitude, and their radial velocities may vary
from centimeters per second to tens (birds, cars) or even
hundreds of meters per second. An important feature of
this type of clutter is that its Doppler frequency may
change significantly during the dwell time. As we will
see, these so-called transient or non-stationary signals
can be resolved sufficiently well neither in time domain
nor in frequency domain.

An example of a signal that is severely contaminated
by an aircraft echo is given in Figure 5. Thetransient
airplane clutter betweent = 9 s andt = 16 s is much
stronger than the clear-air echoes, which are not resolved
in the figure. This contamination shows a typical varia-
tion in amplitude with distinct maxima and minima. This
amplitude variation is a direct result of the antenna radi-
ation pattern of the RWP. A calculated pattern for the
Lindenberg 482-MHz RWP is shown in Figure 6. As-
sume that a hard target with constant radar reflectivity
is moving through the RWP antenna beam. It will nec-
essarily experience a varying illumination which in turn
will lead to a varying echo amplitude. The observed am-
plitude modulation will therefore depend on the real ra-
diation pattern of the antenna, the flight trajectory, and
the speed of this target. A simple theoretical model for
an airplane return was given by BOISSEet al. (1999).
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Figure 7: Frequency spectrum of the signal shown in Figure 5.

The frequency spectrum of the contaminated signal
is depicted in Figure 5. Because of the transient na-
ture of the aircraft echo, the clutter signal occupies a
fairly wide frequency range, and it is nearly impossi-
ble to identify the clear-air component in the spectrum.
The noise level at 0 dB computed with the algorithm
by HILDEBRAND and SEKHON (1974) does not make
much sense here, since noise is completely dominated
by the airplane echo. It is obvious that neither the time
series nor the spectrum is an adequate representation to
characterize the properties of this signal.

Generally, time representation (sampled data) and
frequency representation (Fourier transformed signal)
are two alternative ways of looking at the same piece
of information. The time representation offers the high-
est resolution in time, but there is no frequency resolu-

tion. That means two signal components can still be dis-
tinguished even if their energy is concentrated within a
very short, but non-overlapping period of time, no matter
what frequency information the two components carry.
On the other hand, if two components overlap in time,
they cannot be distinguished, even if their energy is con-
centrated at different frequencies. Also, it is difficult to
read the desired frequency information from a pure time-
domain representation.

Frequency representation possesses the highest pos-
sible frequency resolution, but there is no time resolu-
tion. For transient signals such as airplane echoes, nei-
ther representation is optimal, as we will see in the fol-
lowing example.

We construct a simple test signal consisting of two
components: A (stationary) harmonic waves1(t) and a
(non-stationary) damped linear chirps2(t) are added to
yield the two-component signals(t):

s(t) = s1(t)+s2(t)

= exp(2πi f0t)

+100exp

(

− t2

2σ2

)

exp

(

2πi · 1
2

at2
)

,

(2.19)

where we choose the constant frequencyf0 = 3 Hz,
the angular accelerationa = 0.6 Hzs−1 and the damp-
ing factor σ = 5 s. The signals and its Fourier
spectrum are shown in Figures 8 and 9, respectively.
Since s2 exceedss1 by two orders of magnitude,s1
is no longer visible in the time series plot. In the fre-
quency spectrum,s1 is observed as a small kink at
f0 = 3 Hz. The instantaneous frequency of an analytic
signal s(t) = A(t)exp[iΦ(t)] is defined asfinst(t) =
1
2π

d
dt [Φ] (HLAWATSCH and BOUDREAUX-BARTELS,

1992; BOASHASH, 1992; FLANDRIN , 1999). For the
non-stationary components2, we obtain finst(t) =
d
dt (

1
2at2) = at. Because the instantaneous frequency

changes in time, the signal energy is spread over the
whole axis in both time and frequency domain. In nei-
ther time, nor frequency representation,s1 ands2 can be
separated easily.

A better way to facilitate the understanding of
such signals is provided by so-called time-frequency
(TF) representations. The most prominent TF repre-
sentations are linear, like the short-time or windowed
Fourier transform (WFT) or wavelet transforms.1. Other
TF representations are quadratic, such as the spec-
trogram, the scalogram or the Wigner-Ville distribu-
tion (COHEN, 1989; HLAWATSCH and BOUDREAUX-
BARTELS, 1992; FLANDRIN , 1999).

Time-frequency representations are yet another way
of looking at a signal; they are a compromise between

1Wavelet transforms are usually referred to as a time-scale represen-
tation, where scale is the reciprocal of frequency.
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Figure 8: In-phase (a) and quadrature (b) component of test signal
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Figure 9: Frequency spectrum of the test signals.

time and frequency representation. If properly cho-
sen, linear TF representations contain exactly the same
amount of information, and the original signal can be
stably reconstructed. Here we will concentrate on the
WFT having these properties. Other successful attempts
using wavelet methods for filtering RWP signals have
already been made (JORDAN et al., 1997; BOISSEet al.,
1999; LEHMANN and TESCHKE, 2001; JUSTEN et al.,
2004).

The WFT maps an univariate signals(t) to a bi-
variate functionFs(t, f ). Time resolution can be traded
for frequency resolution but both resolutions cannot be
made arbitrarily high at the same time. The WFT us-
ing a Gaussian window function offers optimal time-
frequency resolutions (GABOR, 1946; MALLAT , 1999).
Thus, we will use this type of window.

Figure 10 shows a spectrogram of the signals in
(2.19). A spectrogram is defined as the squared abso-
lute value of the WFTFs(t, f ). This gives — similarly to

Time [s]

F
re

qu
en

cy
 [H

z]

−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 10: Spectrogram of the test signals.

the Fourier spectrum — a measure of signal energy. The
stationary parts1 appears as a horizontal line atf0 = 3
Hz. The non-stationary parts2 is visible as an inclined
line with slopea = 0.6 Hzs−1. Note that the overlap of
s1 ands2 is rather small. Thus, both parts can now be
easily separated.

The airplane echo shown in the beginning of this Sec-
tion has a structure similar to the transient signals2.
Thus, we exemplarily show how it is possible to remove
s2, while at the same time keeping the stationary parts1.
Figure 11 schematically explains our method. For fixed
f̄ , one ”row” Fs(·, f̄ ) shows a large peak at a time where
the instantaneous frequencyfinst(t) = at of the transient
components2 meets f̄ . However, the stationary parts1
does not produce such a peak since it does not change
frequency in time. When̄f happens to match the fre-
quencyf0 of s1, the overall level ofFs(·, f̄ ) will be larger,
but there will be no peak. Hence, by removing the peaks
in every row of the WFT and setting the corresponding
coefficients to zero, we completely remove the transient
part. The stationary part is left almost unaffected. Only
small parts ofs1 are removed, namely, wheres1 ands2
overlap. Note that for clarity, Figure 11 only shows the
real part of the spectrogram. The actual filtering is car-
ried out on the complex WFT.

A filtered signal can now be reconstructed from the
filtered WFT. Figures 12 and 13 show the filtered signal
and its Fourier spectrum. The filtered signal clearly re-
sembles the sinusoidal waves1 up to a certain neighbor-
hood oft = f0/a= 5 s, where some parts have been acci-
dentally removed. In the Fourier spectrum, we see a peak
at f0 = 3 Hz. Nothing is left from the non-stationary
components2.

We will now apply these ideas to the contaminated
signal given in Figure 5. Figure 14 shows a spectrogram
of this signal. Due to their stationary nature, ground clut-
ter and clear-air signal appear ashorizontallines at 0 Hz
and−4 Hz, respectively. A strong airplane echo emerges
asdiagonallines fromt = 6 s tot = 18 s. The more pro-
nounced falling diagonal is the actual airplane echo. Its
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slope is directly related to thechangeof radial velocity
of the airplane (BOISSE et al., 1999), which is signif-
icant in the measurement period. The crossing of dif-
ferent radar antenna side lobes results in an oscillatory
amplitude behaviour. The falling diagonal is aliased at
t = 9 s andt = 16 s.

The raising diagonal, which is an attenuated and mir-
rored version of the falling one, is an echo phantom
(the so-called “mirror image”) resulting from imperfect
quadrature ofI and Q in the receiver (DOVIAK and
ZRNIĆ, 1993).

In Figures 15 to 17, the filtered spectrogram, the fil-
tered signal and the filtered Fourier spectrum are pre-
sented. The strong airplane echo fromt = 9 s tot = 16
s (compare Figure 5) has vanished. The clear-air sig-
nal, which could only be observed as a small oscilla-
tion at−4 Hz in the unfiltered spectrum, now dominates
the Fourier spectrum. A smaller ground-clutter peak has
also been revealed.

It is especially remarkable that the method performs
so well even though the signal-to-clutter ratio (com-
puted from the original and filtered spectrum) is−32
dB, which is a result of the TF representation’s ability
to separate transient and stationary components. This is
closely related to its time-frequency resolution, which is
optimal for the WFT using a Gaussian window. Thus,
this method is particularly suitable for intermittent clut-
ter filtering.

Note that in contrast to intermittent clutter, both
ground clutter and the clear-air signal are stationary.
Therefore, it does not seem to make sense to address the
problem of ground clutter filtering with time-frequency
methods. Fourier methods seem to be more appropriate
here.

3 Two-signal radar wind profiling

In the previous section, we described several aspects
of a single signal measured with an RWP. Modern
RWP, however, offers the possibility to sample the same
scattering volume with different sampling functions at
the same time. In this section, we consider the addi-
tional information that can be extracted from thecross-
covariance functionand thecross-spectrumof two sig-
nals,

I1 (t) =

∫∫∫

G1
(

x′
)

n
(

x′, t
)

dx′ (3.1)

and

I2 (t) =
∫∫∫

G2
(

x′′
)

n
(

x′′, t
)

dx′′, (3.2)

where G1(x′) and G2(x′′) are two different sampling
functions that overlap in space in some well-defined and
well-designed fashion. Before we discuss properties of

and design criteria for the sampling functions in more
detail, we consider the cross-covariance function

C12(t,τ) = 〈I∗1 (t) I2(t + τ)〉 . (3.3)

Here, the angular brackets stand for the ensemble aver-
age.

3.1 Cross-covariance function and
cross-spectrum of two RWP signals

In general,C12(t,τ) is a function of both timet and time
lag τ. For many RWP applications, however, it is a valid
assumption thatI1(t) and I1(t) are statistically station-
ary during the dwell time, such thatC12 is a function
only of τ. Then we have

C12(τ) =
∫∫∫ ∫∫∫

G12
(

x′,x′′
)

R(0)
nn
(

x′,x′′,τ
)

d3x′d3x′′,

(3.4)
where

G12
(

x′,x′′
)

= G∗
1

(

x′
)

G2
(

x′′
)

(3.5)

is the combined sampling function and

R(0)
nn
(

x′,x′′,τ
)

=
〈

n
(

x′, t
)

n
(

x′′, t + τ
)〉

(3.6)

is the spatial autocovariance function of the refractive
index.

In full analogy to the definition of the Doppler
spectrum in the single-signal case, we now define the
Doppler cross-spectrum for the two-signal case:

φ12(ω) =
1
2π

∫

C12(τ)exp(−iωτ)dτ. (3.7)

As in the single-signal case, the lowest spectral moments
are of particular interest. Themth cross-spectral moment
is

M(m)
12 =

∫

φ12(ω)ωmdω. (3.8)

According to the moments theorem — a derivation for
complex-valued signals can be found in Appendix A of
MUSCHINSKI (2004) —, themth moment is (apart from
the phase factorim) equal to themth τ-derivatives of
C12(τ) at zero time lag:

M(m)
12 =

1
im

∂m

∂τmC12(τ)
∣

∣

∣

∣

τ=0
. (3.9)

It is straightforward (MUSCHINSKI, 2004) to express
the spectral moments in terms ofG12(x′,x′′) and

R(m)
nn (x′,x′′):

M(m)
12 =

1
im

∫∫∫ ∫∫∫

G12
(

x′,x′′
)

R(m)
nn
(

x′,x′′
)

dx′dx′′,

(3.10)
whereR(m)

nn (x′,x′′) is the spatial cross-covariance func-
tion of the refractive index and themth local time deriva-
tive of the refractive index, as introduced in Section 2.5.
Note that all spectral moments are unambiguously de-
scribed by apurely spatialrefractive-index statistic.
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Figure 11: Filtering process. Transient signal components induce peaks in rows of the spectrogram (second from left). They are removed

by a thresholding process (second from right), where the threshold is automatically selected from each row. The filteredspectrogram (right)

or rather the filtered WFT is reconstructed to a filtered time series.
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Figure 12: Filtered signal, reconstructed from the filtered WFT (see

Figure 11).
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Figure 13: Fourier spectrum of the original signals(black) and spec-

trum of the corresponding filtered signal (red).

3.2 Two-signal RWP techniques

The general equation (3.10) can now be applied to var-
ious families of instrument functionsG12(x′,x′′). These
families are associated with different “two-signal RWP
techniques”. The differentG12(x′,x′′) families are dis-
tinguished by how the two sampling functionsG1(x′)
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Figure 14: Spectrogram of the signal shown in Figure 5.

andG2(x′′) differ from each other. The two techniques
that so far have been used most often are the frequency-
domain interferometry (FDI) and the spaced-antenna
(SA) technique, which we describe first. Later, we dis-
cuss the outlook for using other possibilities to take ad-
vantage of two-signal RWP.

FDI was first implemented by KUDEKI and STITT

(1987) at the Jicamarca VHF radar. The idea is to sample
the same scattering volume simultaneously and phase-
coherently with two (slighty) different Bragg wave-
lengths. This requires operating the radar with two dif-
ferent carrier frequencies,f1 and f2. FDI enables one
to retrieve two parameters that cannot be measured with
single-signal RWP: the radial location of a (single) lo-
calized scatterer (or scattering layer) within the pulse
volume and the radial extent, or thickness, of the scat-
terer or scattering layer. While the phase of the (com-
plex) signal covarianceC12(τ = 0) provides the loca-
tion, the magnitude ofC12(τ = 0) gives the thickness.

FDI has been successfully used to observe the struc-
ture and evolution of features whose height extent is
small compared to the radar’s pulse length. CHILSON

et al. (1997) were the first to use FDI to track upper-
tropospheric Kelvin-Helmholtz billows with a height
resolution of about twenty meters, although the pulse
length, which defines the range resolution for single-
signal RWP, was as large as 300 m. MUSCHINSKI et al.
(1999) were the first to apply FDI for the observation of
the slow downward motion of long-lived layers in the
free troposphere. In general, the local temporal rate of
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change of layer height is dominated by the horizontal
advection of a tilted layer. But in a time-height win-
dow where the horizontal wind speed was very small,
MUSCHINSKI et al. (1999) retrieved the same downward
velocity of 2 cm s−1 from three independent sources:
the temporal change of FDI-retrieved layer height, the
single-signal Doppler shifts, and the vertical motion di-
agnosed with a regional weather forecasting model. The
magnitude and sign of that small vertical velocity was
consistent with the subsidence associated with the high-
pressure area that characterized the lower troposphere
above the radar site at the observation time. Both the
CHILSON et al. (1997) study and the MUSCHINSKI et al.
(1999) study were carried out in the Harz Mountains
in Northern Germany, using the SOUSY VHF radar
operated by the Max-Planck Institut für Aeronomie in
Katlenburg-Lindau. (SOUSY stands for “Sounding Sys-
tem”.)

The SA technique takes advantage of the possibility
to observe the backscattered echo simultaneously with
different receiving antennas (e.g., DOVIAK et al., 1996).
For typical SA applications, the beam axes of the trans-
mitting antenna and of the various receiving antennas
are all vertical. Two signalsI1 and I2 measured with
receiving antennas R1 and R2 are highly correlated if
the (horizontal) spacing between R1 and R2 is small. In
the limit of zero spacing, R1 and R2 are identical, such
thatI1 = I2, and the problem reduces to the single-signal
case. The correlation decreases rapidly with increasing
spacing. There is an optimum spacing, for which the en-
ergy in the imaginary part ofφ12(ω), i.e., in the quadra-
ture spectrum, reaches a maximum. While the normal-
ized first moment of the co-spectrum (i.e., the real part
of φ12(ω)), provides the vertical velocity, the first nor-
malized moment of the quadrature spectrum gives the
“baseline wind,” i.e., the component of the wind veloc-
ity vector along the direction of the horizontal spacing
vector between R1 and R2. According to the moments
theorem, the first moment of the quadrature spectrum
is (apart from the factori) identical to the slope of the
imaginary part ofC12(τ) at τ = 0. It is not clear why
practically all researchers using the SA technique re-
trieve the baseline winds fromC12(τ) (e.g., LATAITIS

et al., 1995) and not fromφ12(ω).
The SA technique has various advantages and dis-

advantages as compared to the widely used DBS tech-
nique. The two main advantages of the SA technique
are the possibility to retrieve all three wind components
from the same scattering volume, which makes SA less
sensitive to errors induced by small-scale, horizontal in-
homogeneity of the vertical wind (such inhomogeneity
is known to severely affect DBS wind measurements;
see, e.g., WEBER et al., 1992), and the lack of the need
to use off-zenith beam directions. Disadvantages include
the need to receive multiple signals simultaneously, the

smaller signal-to-noise ratio, and the higher vulnerabil-
ity to fading ground clutter. No consensus has yet been
reached in the RWP community as to whether the DBS
or the SA technique is to be preferred for operational
purposes.

Other, more exotic two-signal RWP techniques are
conceivable: sampling the same scattering volume with
two different pulse lengths and/or receiver bandwidths;
sampling the same volume simultaneously with two
slightly different beam directions; or sampling the same
volume simultaneously with two different beamwidths.
It seems that none of these possibilities has been thor-
oughly explored so far.

4 Multi-signal radar wind profiling

As a generalization of single-signal or two-signal wind
profiling, meteorological information can be extracted
from the covariance matrix or the cross-spectral mo-
ment matrix of multiple signalsSj , j = 1, . . . ,J, which
characterize the same scattering volume during the same
time. It is important that theJ signals are sampled phase-
coherently and with a sampling period that is short com-
pared to the correlation time of the clear-air component.
There are various radar parameters with respect to which
these signals may be different from each other but still
represent structure and dynamics in the same volume of
air. These parameters include the carrier frequency, the
location of the receiving antenna, the center of the range
gate, and the pulse length.

4.1 Optimization of the sampling function

For a monostatic radar, the sampling functionG(x) in
the far field is given by

G(x) = A(x)exp[−iβ |−r0 +x|] (4.1)

(DOVIAK and ZRNIĆ, 1984; MUSCHINSKI, 2004),
where A(x) is a three-dimensional amplitude weight-
ing function that defines the sampling volume,β is the
Bragg wavenumber,r0 is the vector pointing from the
center of the sampling volume to the antenna center, and
x is the location relative to the center of the sampling
volume.

Now, assume that a set ofJ phase-coherent signals

I j(t) =
∫∫∫

G j
(

x′
)

n
(

x′, t
)

d3x′, (4.2)

is available, where we assume that in general theG j (x′)
differ from each other only with respect to the Bragg
wavenumberβ j , the three-dimensional envelope of the
pulse, and the range:

G j
(

x′
)

= A j
(

x′
)

exp
[

−iβ j
∣

∣−r j +x′
∣

∣

]

. (4.3)
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Figure 15: Spectrogram after removal of the aircraft clutter.
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Figure 16: Signal, reconstructed from the filtered WFT (spectro-

gram shown in Figure 15).

For complex-valued weight coefficientsw j ( j = 1, . . . ,J)
we may consider the “synthesized” signal

I (t) =
J

∑
j=1

w j I j (t) , (4.4)

which can be written in the same form as the integral for
I j (t) ,

I (t) =

∫∫∫

G
(

x′
)

n
(

x′, t
)

d3x′, (4.5)

where

G
(

x′
)

=
J

∑
j=1

w jG j
(

x′
)

.

Here we assume that the refractive-index perturbations
at a fixed locationx are statistically stationary with re-
spect to time. Note thatI (t) is of the same form as in the
standard case, except that now the instrument function
G(x′) can be some arbitrary function in the linear span
of G1, . . . ,GJ because there area priori no constraints
with respect to the weighting vectorw j . Moreover, there
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Figure 17: Fourier spectrum of the original RWP signal (black)

shown in Figure 5 and spectrum of the corresponding filtered sig-

nal (red) from Figure 16.
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Figure 18: (a) Time-height cross section of “RIM brightness” re-

trieved from the first UHF RIM measurements. The data were col-

lected on April 10, 2001, near Platteville, Colorado (CHILSON et al.,

2003). (b) Doppler velocities retrieved from the same raw data.

is nothing that would keep one from choosingw j differ-
ently for different locationsx. Then we have

I (x,t) =
J

∑
j=1

w j (x)

∫∫∫

G j
(

x′
)

n
(

x′, t
)

d3x′. (4.6)

That is, based on the finite set ofJ signals I j that
characterize a given scattering volume, we are now in
the position to synthesize an infinite set of new signals
I (x, t) by means of (4.6). Becausew j (x) can be freely
chosen, there is no constraint for the spatial variability
of I (x, t) within the same scattering volume. Thegen-
eral problemis how to find thew j (x) that allows us to
retrieve meteorological information withmaximum ac-
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curacy.
In order to attack this problem, we assume that

the weight vectorw(x) = (w1(x) , . . . ,wJ (x)) is com-
plex valued; i.e.w j(x) = Wj(x)exp(iϕ j(x)), such that
Wj(x) ∈ R with ∑J

j=1Wj(x) = 1 point-wise for allx.
The main constraint for the weighting vector follows
from the assumption that atx′ = x, the components
w j(x)G j (x) shall constructively interfere. Here,x is the
location “to be imaged.” This leads (modulo a factor 2π)
to

exp(iϕ j(x))exp[−iβ j |− r j +x|] = 1,

or equivalently ϕ j (x) = β j |− r j +x| (4.7)

for j = 1, . . . ,J. This results in the condition

eH(x)w(x) = 1, (4.8)

where eH(x) := (e∗(x))T = (exp[iβ1| − r1 +
x|], . . . ,exp[iβJ| − rJ + x|]) is sometimes referred
to as the steering vector. The remaining task is to
determine, for any givenx, the optimum vectorw(x).
This is achieved by a “side-lobe minimization.” This
requires that for a givenx, the signal variance

M0 (x) ≡
〈

|I (x)|2
〉

(4.9)

is to be minimized through variation of thew(x). M0(x)
can be expressed as follows

M0(x) = wH(x)Ψw(x). (4.10)

The entries of the signal covariance matrixΨ are given
by

(Ψ) jk = 〈I∗j Ik〉. (4.11)

Combining the minimization of (4.9) and condition
(4.8), we obtain the following optimization problem

wH(x)Ψw(x) → min
w(x)

, eH(x)w(x) = 1. (4.12)

Since the problem is convex, there exists a minimizer
which is given by

w(x) =
λ
2

Ψ−1e(x) (4.13)

for some Lagrangian parameterλ. For computational de-
tails we refer the reader to the abundant literature, e.g.,
JUNGNICKEL (1999). In order to fulfill the constraint
eH(x)w(x) = 1, the parameterλ must satisfy

λ =
2

eH(x)Ψ−1e(x)
(4.14)

and thus, combining (4.13) and (4.14), the optimal
weight vector (and therewith the optimalG) is of the
form

w(x) =
Ψ−1e(x)

eH(x)Ψ−1e(x)
. (4.15)

This is often referred to as the Capon-method.

4.2 Range imaging and coherent radar
imaging as examples of multi-signal
RWP

Motivated by the success of frequency-domain interfer-
ometry (FDI) in resolving thin scattering layers, and
based on reasoning similar to what we have described
in Section 4.1, PALMER et al. (1999) introduced range
imaging (RIM), the multi-signal counterpart of FDI,
which is a two-signal RWP technique. The underlying
assumption of FDI is that there is only one scattering
layer in a given resolution volume. RIM does not require
that assumption to be fulfilled.

The first RIM observations were obtained with the
SOUSY VHF radar during a five-day-long demonstra-
tion experiment in May 1999 (CHILSON et al., 2001;
PALMER et al., 2001; MUSCHINSKI et al., 2001). In-
dependently, on the Japanese MU radar LUCE et al.
(2001b) implemented a technique that they called “fre-
quency domain radar interferometric imaging” (FII). As
explained in detail by MUSCHINSKI et al. (2001, p. 425),
LUCE et al. (2001b) did not cycle fast enough through all
frequencies and therefore could not fully exploit range-
imaging capabilities. In other words, FII as implemented
by LUCE et al. (2001b) is a hybrid of FDI and RIM.

The first RIM implementation on a UHF profiler
was accomplished by CHILSON et al. (2003). Figure
18 shows the “RIM brightness,” from which one can
retrieve local clear-air reflectivity, observed at a single
range gate on the morning of April 10, 2001.

While the so-called spatial-interferometry technique
(PFISTER, 1971; WOODMAN, 1971) is the angular coun-
terpart of FDI, the so-called coherent radar imaging
(CRI) technique is the angular counterpart of RIM. CRI
was first used in the upper atmosphere for the obser-
vation of plasma irregularities (KUDEKI and SÜRÜCÜ,
1991). PALMER et al. (1998) were the first to use CRI in
the lower atmosphere.

4.3 Alternative perspectives by
oversampling strategies

In Section 4.1, we have addressed the problem of how
to find the optimum complex weightsw j(x) for a given
locationx to be imaged. In this subsection, we outline
a method to reconstruct the cross-covariance function
〈n∗(x′)n(x′′)〉 and not only its Bragg component.

In order to illustrate the basic idea, let us consider in-
stead of (4.1) the following family of sampling functions

Glmn(x) =
1√
σl

A

(

rn +x
σl

)

exp[−iβm(r0 + rn +x)] ,

(4.16)
whereA stands for an admissible window or so-called
analyzing function (e.g. Gaussian),rn denotes the loca-
tion, βm the Bragg wavenumber, andσl (a dilation pa-
rameter) the pulse length. If one intends to reconstruct



D
R

A
FT

Meteorol. Z.,14, 2005 A. Muschinski et al.: Advanced Radar Wind Profiling 623

〈n∗(x′)n(x′′)〉, one has to make use of the sample values

〈I∗lmnIl ′m′n′〉 =
∫ ∫

G∗
lmn(x

′)Gl ′m′n′(x′′)×

×〈n∗(x′)n(x′′)〉dx′dx′′. (4.17)

The following observation illuminates the type of equa-
tion (4.17). For fixedσl (e.g.σl = 1 for all l ) the inte-
gral transform is nothing more than the two-dimensional
windowed Fourier transform evaluated at discrete points
in the space–frequency domain, whereas for fixedβm
(4.17) results in the two-dimensional wavelet transform;
for details we refer the reader to the very rich literature,
e.g. DAUBECHIES (1992). For both situations there ex-
ists a well-developed theory on how to invert the inte-
gral equation. In the continuous framework (assume for
a moment that the parametersσ, β, r, σ′, β′, andr ′ are
continuously given) the inversion formula is in principle
given by the adjoint integral operator; i.e.,

〈n∗(x′)n(x′′)〉 =

∫

〈I∗σβr Iσ′β′r ′〉×

×G∗
σβr(x

′)Gσ′β′r ′(x
′′)dµ(σ,β, r,σ′,β′, r ′). (4.18)

Since our approach requires to deal with discrete pa-
rameter families(σl ,βm, rn,σl ′ ,βm′ , rn′), we have to dis-
cretize this inversion formula in some adequate way.
This leads directly to the so-called concept of frames
(e.g., DUFFIN and SCHÄFER, 1952), i.e. to the discrete
framework in which we are allowed to consider discrete
families of parameters. The concept is well-understood
for the Fourier as well as for the wavelet case; e.g., in
the Fourier case the following family of functions

Gl0mn(x) =
1√

2πσl0

exp

(

−(nr̃ +x)2

2σ2
l0

)

×exp
[

−imβ̃(r0 +nr̃ +x)
]

(m,n)∈I , β̃r̃<2π
(4.19)

forms a frame, whereI denotes an adequate index set.
A Fourier-reconstruction formula is then given by

〈n∗(x′)n(x′′)〉 = ∑
(m,n) ∈ I
(m′ ,n′) ∈ I

〈I∗l0mnIl ′0m′n′〉×

×D (G∗
l0mnGl ′0m′n′)(x

′,x′′) , (4.20)

where the system{D (G∗
l0mnGl ′0m′n′)} denotes the so-

called dual frame which can be computed in some spe-
cial situations exactly. In general, there exist several (lin-
ear as well as adaptive) schemes that approximate the
dual frame very well. A similar formula can be estab-
lished for the wavelet transform. However, for certain
technical/physical reasons, the pure Gabor or the pure
wavelet case might be too restrictive for our approach.
In order to allow more flexibility in constructing an ade-
quate analyzing frame, we have to relax the restrictions

made onσl or βm. To this end, we consider the non-
restricted family

{

G∗
σl βmrn

Gσl ′βm′ rn′

}

(l ,m,n,l ′ ,m′,n′)∈J
. (4.21)

It is shown in DAHLKE et al. (2004a,b) that this fam-
ily may form under certain assumptions on the sampling
grid J a so-called mixed Gabor–wavelet–frame. It was
pointed out that one can identify reasonable parameter
families such that an increase of the sampling density
with respect to{σl ,σl ′} leads to a decrease of the redun-
dancy with respect to{βm,βm′} and vice versa (what is
of course of practical impact). We obtain the following
reconstruction scheme

〈n∗(x′)n(x′′)〉 = ∑
(n,m,l ,n′ ,m′,l ′)∈J

〈I∗nmlIn′m′l ′〉×

×D (G∗
σnβmr l

Gσn′βm′ r l ′ )(x
′,x′′) , (4.22)

where{D (G∗
σnβmr l

Gσn′βm′ r l ′ )}(n,m,l ,n′ ,m′,l ′)∈J stands again
for the dual system. DAHLKE et al. (2004a,b) show how
to construct or to approximate the dual frame function,
or the so-called discrete reconstruction operator.

The whole concept of frame-based reconstruction
schemes carries over to higher dimensions without es-
sential changes. Moreover, the frame approach allows
one to treat the reconstruction in a complete discrete set-
ting, which is essential for fast numerical implementa-
tion. Note that the application of frame theory is strongly
connected with incorporating oversampling (not only
range oversampling). The main deficiency in the pro-
posed method is that there might be a discrepancy be-
tween exact analytical inversion and the technical ca-
pabilities of radar devices. However, this results in the
problem of identifying near-optimal parameter families,
which requires of course a critical error analysis.

5 Summary and outlook

We have given a tutorial overview of concepts, prob-
lems, and solutions in advanced radar wind profiling
(RWP). We have divided RWP into three categories:
single-signal RWP, two-signal RWP, and multi-signal
RWP.

Single-signal RWP, or traditional RWP, was pio-
neered thirty years ago (WOODMAN and GUILLÉN ,
1974). Now it is a key technology for measuring winds
and turbulence in the atmospheric boundary layer, the
free troposphere, and the lower stratosphere. The vast
majority of radar wind profilers (RWPs) used for re-
search and operational purposes are single-signal RWPs.

The standard technique to retrieve vertical profiles
of the three-dimensional wind vector from single-signal
RWPs is the Doppler beam-swinging (DBS) technique.
The standard tool for the statistical analysis of signal
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time series is the periodogram, from which the first three
moments of the clear-air spectrum are estimated. We
have discussed the problems of separating the clear-air
signal, clutter, and noise. Based on a measured signal
that was severely contaminated by clutter from an air-
craft, we have discussed the potential of time-frequency
decomposition techniques to efficiently remove airborne
clutter.

Two-signal and multi-signal RWP offer a wealth of
additional options to overcome limitations inherent in
traditional RWP. An overview of recent progress in the
physical and mathematical concepts and techniques of
two-signal and multi-signal RWP has been given.

Given the need to observe meteorological fields re-
liably with higher spatial and temporal resolution, to
design and optimize observational networks and make
them adaptive to ever-changing observational needs,
radar wind profiling will remain a fertile area of inter-
disciplinary research and development in the decades to
come.
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