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Abstract

Inspired by papers of Vese–Osher [20] and Osher–Solé–Vese [19] we present
a wavelet–based treatment of variational problems arising in the field of image
processing. In particular, we follow their approach and discuss a special class
of variational functionals that induce a decomposition of images into oscillat-
ing and cartoon components and possibly an appropriate ‘noise’ component.
In the setting of [20] and [19], the cartoon component of an image is modeled
by a BV function; the corresponding incorporation of BV penalty terms in
the variational functional leads to PDE schemes that are numerically inten-
sive. By replacing the BV penalty term by a B1

1(L1) term (which amounts
to a slightly stronger constraint on the minimizer), and writing the problem
in a wavelet framework, we obtain elegant and numerically efficient schemes
with results very similar to those obtained in [20] and [19]. This approach al-
lows us, moreover, to incorporate general bounded linear blur operators into
the problem so that the minimization leads to a simultaneous decomposition,
deblurring and denoising.

1 Introduction

One important problem in image processing is the restoration of the ‘true’ image
from an observation. In almost all applications the observed image is a noisy and
blurred version of the true image. In principle, the restoration task can be under-
stood as an inverse problem, i.e. one can attack it by solving a related variational
problem.

In this paper we focus on a special class of variational problems which induce a
decomposition of images in oscillating and cartoon components; the cartoon part
is ideally piecewise smooth with possible abrupt edges and contours; the oscillation
part on the other hand ‘fills’ in the smooth regions in the cartoon with texture -like
features. Several authors, e.g. [20, 19], propose to model the cartoon component by
the space BV which induces a penalty term that allows edges and contours in the
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reconstructed cartoon images. However, the minimization of variational problems
of this type usually results in PDE based schemes that are numerically intensive.

The main goal of this paper is to provide a computationally thriftier algorithm
by using a wavelet–based scheme that solves not the same but a very similar vari-
ational problem, in which the BV –constraint, which cannot easily be expressed in
the wavelet domain, is replaced by a B1

1(L1)–term, i.e. a slightly stricter constraint
(since B1

1(L1) ⊂ BV in two dimensions). Moreover, we can allow the involvement of
general linear bounded blur operators, which extends the range of application. By
applying recent results, see [7], we show convergence of the proposed scheme.

In order to give a brief description of the underlying variational problems, we
recall the methods proposed in [20, 19]. They follow the idea of Y. Meyer [18],
proposed as an improvement on the total variation framework of L. Rudin, S. Osher
and E. Fatemi [21]. In principle, the models can be understood as a decomposition
of an image f into f = u+ v, where u represents the cartoon part and v the texture
part. In the Vese–Osher model, see [20], the decomposition is induced by solving

inf
u,g1,g2

Gp(u, g1, g2) , where (1.1)

Gp(u, g1, g2) =

∫
Ω

|∇u|+ λ‖f − (u+ divg)‖2
L2(Ω) + µ‖|g|‖Lp(Ω) ,

with f ∈ L2(Ω), Ω ⊂ R2, and v = divg = div(g1, g2). The first term is the total
variation of u. If u ∈ L1 and |∇u| is a finite measure on Ω, then u ∈ BV (Ω).
This space allows discontinuities, therefore edges and contours generally appear in
u. The second term represents the restoration discrepancy; to penalize v, the third
term approximates (by taking p finite) the norm of the space of oscillating functions
introduced by Y. Meyer (with p = ∞) which is in some sense dual to BV (Ω). (For
details we refer the reader to [18].) Setting p = 2 and g = ∇P + Q, where P is
a single–valued function and Q is a divergence–free vector field, it is shown in [19]
that the v–penalty term can be expressed by

‖|g|‖L2(Ω) =

(∫
Ω

|∇(∆)−1v|2
)1/2

= ‖v‖H−1(Ω) .

(The H−1 calculus is allowed as long as we deal with oscillatory texture/noise com-
ponents that have zero mean.) With these assumptions, the variational problem
(1.1) simplifies to solving

inf
u,g1,g2

G2(u, v) , where (1.2)

G2(u, v) =

∫
Ω

|∇u|+ λ‖f − (u+ v)‖2
L2(Ω) + µ‖v‖H−1(Ω) .

In general, one drawback is that the minimization of (1.1) or (1.2) leads to numeri-
cally intensive schemes.

Instead of solving problem (1.2) by means of finite difference schemes, we propose
a wavelet–based treatment. We are encouraged by the fact that elementary methods
based on wavelet shrinkage solve similar extremal problems where BV (Ω) is replaced
by the Besov space B1

1(L1(Ω)). Since BV (Ω) can not be simply described in terms
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of wavelet coefficients, it is not clear that BV (Ω) minimizers can be obtained in this
way. Yet, it is shown in [2], exploiting B1

1(L1(Ω)) ⊂ BV (Ω) ⊂ B1
1(L1(Ω)) − weak,

that methods using Haar systems provide near BV (Ω) minimizers. So far there
exists no similar result for general (in particular smoother) wavelet systems. We
shall nevertheless use wavelets that have more smoothness/vanishing moments than
Haar wavelets, because we expect them to be better suited to the modeling of the
smooth parts in the cartoon image. Though we may not obtain provable ‘near–best–
BV –minimizers’, we hope to nevertheless not be ‘too far off’. Limiting ourselves to
the case p = 2, replacing BV (Ω) by B1

1(L1(Ω)), and, moreover, extending the range
of applicability by incorporating a bounded linear operator K, we end up with the
following variational problem:

inf
u,v
Ff (v, u) , where

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

This paper is organized as follows. In Section 2 we recall some basic facts on
wavelets, in Section 3 the numerical scheme is developed and convergence is shown,
in Section 4 we introduce some extra refinements on the scheme, and finally, in
Section 5 we present some numerical results.

2 Preliminaries on wavelets

In this section, we briefly recall some facts on wavelets that are needed later on.
Especially important for our approach are the smoothness characterization proper-
ties of wavelets: one can determine the membership of a function in many different
smoothness functional spaces by examining the decay properties of its wavelets co-
efficients. For a comprehensive introduction and overview on this topic we would
refer the reader to the abundant literature, see e.g. [5, 6, 1, 4, 13, 12, 15, 23].

Suppose H is a Hilbert space. Let {Vj} be a sequence of closed nested subspaces
of H whose union is dense in H while their intersection is zero. In addition, V0

is shift–invariant and f ∈ Vj ↔ f(2j·) ∈ V0, so that the sequence {Vj} forms a
multi-resolution analysis. In many cases of practical relevance the spaces Vj are
spanned by single scale bases Φj = {φj,k : k ∈ Ij} which are uniformly stable.
Successively updating a current approximation in Vj to a better one in Vj+1 can be
facilitated if stable bases Ψj = {ψj,k : k ∈ Jj} for some complement Wj of Vj in
Vj+1 are available. Hence, any fn ∈ Vn has an alternative multi-scale representation
fn =

∑
k∈I0

f0,kφ0,k +
∑n

j=0

∑
k∈Jj

fj,kψj,k. The essential constraint on the choice of

Wj is that Ψ =
⋃

j Ψj forms a Riesz-basis of H, i.e. every f ∈ H has a unique
expansion

f =
∑

j

∑
k∈Jj

〈f, ψ̃j,k〉ψj,k such that ‖f‖H ∼

∑
j

∑
k∈Jj

|〈f, ψ̃j,k〉|2
 1

2

, (2.1)

where Ψ̃ forms a bi-orthogonal system and is in fact also a Riesz-basis for H, see,
e.g., [5].
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For our approach we assume that any function (image) f ∈ L2(I) can be ex-
tended periodically to all of R2. Here I is assumed to be the unit square (0, 1]2 =
Ω. Throughout this paper we only consider compactly supported tensor product
wavelet systems (based on Daubechies’ orthogonal wavelets, see [6], or symmetric
bi-orthogonal wavelets by Cohen, Daubechies, and Feauveau, see [1]).

We are finally interested in characterizations of Besov spaces, see, e.g., [23]. For
β > 0 and 0 < p, q ≤ ∞ the Besov space Bβ

q (Lp(Ω)) of order β is the set of functions

Bβ
q (Lp(Ω)) = {f ∈ Lp(Ω) : |f |Bβ

q (Lp(Ω)) <∞} ,

where |f |Bβ
q (Lp(Ω)) =

(∫∞
0

(t−βωl(f ; t)p)
qdt/t

)1/q
and ωl denotes the l-th modulus

of smoothness, l > β. These spaces are endowed with the norm ‖f‖Bβ
q (Lp(Ω)) =

‖f‖Lp(Ω) + |f |Bβ
q (Lp(Ω)). (For p < 1, this is not a norm, strictly speaking, and the

Besov spaces are complete topological vector spaces but no longer Banach spaces, see
[11] for details, including the characterization of these spaces by wavelets.) What is
important to us is that one can determine whether a function is in Bβ

q (Lp(Ω)) simply
by examining its wavelet coefficients. The case p = q, on which we shall focus, is the
easiest. Suppose that φ has R continuous derivatives and ψ has vanishing moments
of order M . Then, as long as β < min(R,M), one has in, two dimensions, for all
f ∈ Bβ

p (Lp(Ω)), the following norm equivalence (denoted by ∼)

|f |Bβ
p (Lp(Ω)) ∼

(∑
λ

2|λ|sp|fλ|p
)1/p

with fλ := 〈f, ψ̃λ〉, s = β + 1− 2/p and |λ| = j.

(2.2)
In what follows, we shall always use the equivalent weighted `p–norm of the {fλ}
instead of the standard Besov norm; with a slight abuse of notation we shall continue
to denote it by the same symbol, however. When p = q = 2, the space Bβ

2 (L2(Ω))
is the Bessel potential space Hβ(Ω). In analogy with the special case of Bessel
potential spaces Hβ(Ω), the Besov space Bβ

p (Lp(Ω)) with β < 0 can be viewed as

the dual space of Bβ′

p′ (Lp′(Ω)), where β′ = −β and 1/p+ 1/p′ = 1.

3 Image decomposition

As stated in Section 1, we aim to solve

inf
u,v
Ff (v, u) , where (3.1)

Ff (v, u) = ‖f −K(u+ v)‖2
L2(Ω) + γ‖v‖2

H−1(Ω) + 2α|u|B1
1(L1(Ω)) .

At first, we may observe the following

Lemma 3.1 If the null–space N (K) of the operator K is trivial, then the variational
problem (3.1) has a unique minimizer.

This can be seen as follows:

Ff (µ(v, u) + (1− µ)(v′, u′))− µFf ((v, u))− (1− µ)Ff ((v
′, u′)) =
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−µ(1− µ)
(
‖K(u− u′ + v − v′)‖2

L2(Ω) + γ‖v − v′‖2
H−1(Ω)

)
+2α

(
|µu+ (1− µ)u′|B1

1(L1(Ω)) − µ|u|B1
1(L1(Ω)) − (1− µ)|u′|B1

1(L1(Ω))

)
(3.2)

with 0 < µ < 1. Since the Banach norm is convex the right hand side of (3.2) is
non-positive, i.e. Ff is convex. Since N (K) = {0}, the term ‖K(u − u′ + v − v′)‖
can be zero only if u− u′ + v − v′ = 0, moreover, ‖v − v′‖ is zero only if v − v′ = 0.
Hence, (3.2) is strictly convex. �

In order to solve this problem by means of wavelets we have to switch to the sequence
space formulation. When K is the identity operator the problem simplifies to

inf
u,v

{∑
λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ||vλ|2 + 2α|uλ|

)}
, (3.3)

where J = {λ = (i, j, k) : k ∈ Jj, j ∈ Z, i = 1, 2, 3} is the index set used in our sep-
arable setting. The minimization of (3.3) is straightforward, since it decouples into
easy one–dimensional minimizations. This results in an explicit shrinkage scheme,
presented also in [8]:

Proposition 3.1 Let f be a given function. The functional (3.3) is minimized by
the parametrized class of functions ṽγ,α and ũγ,α given by the following non-linear
filtering of the wavelet series of f :

ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
fλ − Sα(22|λ|+γ)/γ(fλ)

]
ψλ

and
ũγ,α =

∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ ,

where St denotes the soft-shrinkage operator, Jj0 all indices λ for scales larger than
j0 and Ij0 the indices λ for the fixed scale j0.

In the case where K is not the identity operator the minimization process results
in a coupled system of nonlinear equations for the wavelet coefficients uλ and vλ,
which is not as straightforward to solve. To overcome this problem, we adapt an
iterative approach. As in [7] we derive the iterative algorithm from a sequence of
so-called surrogate functionals that are each easy to minimize, and for which one
hopes that the successive minimizers have the minimizing element of (3.1) as limit.
However, contrary to [7] our variational problem has mixed quadratic and non-
quadratic penalties. This requires a slightly different use of surrogate functionals.
In [10, 9] a similar u+v problem is solved by an approach that combines u and v into
one vector–valued function (u, v). This leads to alternating iterations with respect
to u and v simultaneously. It can be shown that the minimizers of the resulting
alternating algorithm strongly converge to the desired unique solution, [10].

We will follow a different approach here, in which we first solve the quadratic
problem for v, and then construct an iteration scheme for u. To this end, we
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introduce the differential operator T := (−∆)1/2. Setting v = Th the variational
problem (3.1) reads as

inf
(u,h)

Ff (h, u) , with (3.4)

Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) .

Minimizing (3.4) with respect to w results in

h̃γ(f, u) = (T ∗K∗KT + γ)−1T ∗K∗(f −Ku)

or equivalently

ṽγ(f, u) = T (T ∗K∗KT + γ)−1T ∗K∗(f −Ku) .

Inserting this explicit expression for h̃γ(f, u) in (3.4) and defining

fγ := Tγf, T 2
γ := I −KT (T ∗K∗KT + γ)−1T ∗K∗ , (3.5)

we obtain
Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2

L2(Ω) + 2α|u|B1
1(L1(Ω)) . (3.6)

Thus, the remaining task is to solve

inf
u
Ff (h̃γ(f, u), u) , where (3.7)

Ff (h̃γ(f, u), u) = ‖fγ − TγKu‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

The corresponding variational equations in the sequence space representation are

∀λ : (K∗T 2
γKu)λ − (K∗fγ)λ + αsign(uλ) = 0 .

This gives a coupled system of nonlinear equations for uλ. For this reason we
construct surrogate functionals that remove the influence of K∗T 2

γKu. First, we
choose a constant C such that ‖K∗T 2

γK‖ < C. Since ‖Tγ‖ ≤ 1, it suffices to require
that ‖K∗K‖ < C. Then we define the functional

Φ(u; a) := C‖u− a‖2
L2(Ω) − ‖TγK(u− a)‖2

L2(Ω)

which depends on an auxiliary element a ∈ L2(Ω). We observe that Φ(u, a) is strictly
convex in u for any a. Since K can be rescaled, we limit our analysis without loss of
generality to the case C = 1. We finally add Φ(u; a) to Ff (h̃γ(f, u), u) and obtain
the following surrogate functional

F sur
f (h̃γ(f, a), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a)

=
∑

λ

{u2
λ − 2uλ(a+K∗T 2

γ (f −Ka))λ + 2α|uλ|}

+‖fγ‖2
L2(Ω) + ‖a‖2

L2(Ω) − ‖TγKa‖2
L2(Ω) . (3.8)

The advantage of minimizing (3.8) is that the variational equations for uλ decou-
ple. The summands of (3.8) are differentiable in uλ expect at the point of non-
differentiability. The variational equations for each λ are now given by

uλ + αsign(uλ) = (a+K∗T 2
γ (f −Ka))λ .
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This results in an explicit soft-shrinkage operation for uλ

uλ = Sα((a+K∗T 2
γ (f −Ka))λ) .

The next proposition summarizes our findings; it is the specialization to our partic-
ular case of a more general theorem in [7].

Proposition 3.2 Suppose K is a linear bounded operator modeling the blur, with
K maps L2(Ω) to L2(Ω) and ‖K∗K‖ < 1. Moreover, assume Tγ is defined as in
(3.5) and the functional F sur

f (h̃, u; a) is given by

F sur
f (h̃γ(f, u), u; a) = Ff (h̃γ(f, u), u) + Φ(u; a) .

Then, for arbitrarily chosen a ∈ L2(Ω), the functional F sur
f (h̃γ(f, u), u; a) has a

unique minimizer in L2(Ω). The minimizing element is given by

ũγ,α = Sα(a+K∗T 2
γ (f −Ka)) ,

where the operator Sα is defined component-wise by

Sα(x) =
∑

λ

Sα(xλ)ψλ .

The proof follows from [7]. One can now define an iterative algorithm by repeated
minimization of F sur

f :

u0 arbitrary ; un = arg min
u

(
F sur

f (h̃γ(f, u), u;u
n−1)

)
n = 1, 2, . . . (3.9)

The convergence result of [7] can again be applied directly:

Theorem 3.1 Suppose K is a linear bounded operator, with ‖K∗K‖ < 1, and that
Tγ is defined as in (3.5). Then the sequence of iterates

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . ,

with arbitrarily chosen u0 ∈ L2(Ω), converges in norm to a minimizer ũγ,α of the
functional

Ff (h̃γ(f, u), u) = ‖Tγ(f −Ku)‖2
L2(Ω) + 2α|u|B1

1(L1(Ω)) .

If N (TγK) = {0}, then the minimizer ũγ,α is unique, and every sequence of iterates
converges to ũγ,α in norm.

Combining the result of Theorem 3.1 and the representation for ṽ we summarize
how the image can finally be decomposed in cartoon and oscillating components.

Corollary 3.1 Assume that K is a linear bounded operator modeling the blur, with
‖K∗K‖ < 1. Moreover, if Tγ is defined as in (3.5) and if ũγ,α is the minimizing
element of (3.7), obtained as a limit of un

γ,α (see Theorem 3.1), then the variational
problem

inf
(u,h)

Ff (h, u), with Ff (h, u) = ‖f −K(u+ Th)‖2
L2(Ω) + γ‖h‖2

L2(Ω) + 2α|u|B1
1(L1(Ω))

is minimized by the class

(ũγ,α, (T
∗K∗KT + γ)−1T ∗K∗(f −Kũγ,α)) .

where ũγ,α is the unique limit of the sequence

un
γ,α = Sα(un−1

γ,α +K∗T 2
γ (f −Kun−1

γ,α )) , n = 1, 2, . . . .
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4 Refinements: using redundancy and adaptivity

to reduce artifacts

The non-linear filtering rule of Proposition 3.1 gives explicit descriptions of ṽ and ũ
that are computed by fast discrete wavelet schemes. However, non-redundant filter-
ing very often creates artifacts in terms of undesirable oscillations, which manifest
themselves as ringing and edge blurring. Poor directional selectivity of traditional
tensor product wavelet bases likewise cause artifacts. In this section we discuss var-
ious refinements on the basic algorithm that address this problem. In particular, we
shall use redundant translation invariant schemes, complex wavelets, and additional
edge dependent penalty weights.

4.1 Translation invariance by cycle–spinning

Assume that we are given an image with 2M rows of 2M pixels, where the gray
value of each pixel gives an average of f on a square 2−M × 2−M , which we denote
by fM

k , with k a double index running through all the elements of {0, 1, . . . , 2M −
1} × {0, 1, . . . , 2M − 1}. A traditional wavelet transform then computes f j

l , dj,i
l

with j0 ≤ j ≤ M , i = 1, 2, 3 and l ∈ {0, 1, . . . , 2j − 1} × {0, 1, . . . , 2j − 1} for
each j, where the f j

l stand for an average of f on mostly localized on (and indexed
by) the squares [l12

−j, (l1 + 1)2−j] × [l22
−j, (l2 + 1)2−j], and the dj,i

l stand for the
different species of wavelets (in two dimensions, there are three) in the tensor product
multi–resolution analysis. Because the corresponding wavelet basis is not translation
invariant, Coifman and Donoho proposed in [3] to recover translation invariance by
averaging over the 22(M+1−j0) translates of the wavelet basis; since many wavelets
occur in more than one of these translated bases (in fact, each ψj,i,k(x − 2Mn) in
exactly 22(j+1−j0) different bases), the average over all these bases uses only (M +
1−j0)22M different basis functions (and not 24(M+1−j0) = number of bases × number
of elements in each basis). This approach is called cycle–spinning. Writing, with a
slight abuse of notation, ψj,i,k+2j−Mn for the translate ψj,i,k(x − 2Mn), this average
can then be written as

fM = 2−2(M+1−j0)

2M−1∑
l1,l2=0

{
f j0

l2−M+j0
φj0,l2−M+j0 +

M−1∑
j=j0

22(j−j0)

3∑
i=1

dj,i
l2−M+jψj,i,l2−M+j

}
.

Carrying out our nonlinear filtering in each of the bases and averaging the result
then corresponds to applying the corresponding nonlinear filtering on the (much
smaller number of) coefficients in the last expression. This is the standard way to
implement thresholding on cycle–spinned representations.

The resulting sequence space representation of the variational functional (3.3)
has to be adapted to the redundant representation of f . To this end, we note that
the Besov penalty term takes the form

|f |Bβ
p (Lp) ∼

( ∑
j≥j0,i,k

2(js+2(j−M))|〈f, ψ̃j,i,k2j−M 〉|p
)1/p

.

The norms ‖ · ‖2
L2

and ‖ · ‖2
H−1 change similarly. Consequently, we obtain the same

minimization rule but with respect to a richer class of wavelet coefficients.
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4.2 Directional sensitivity by frequency projections

It has been shown by several authors [16, 22, 14] that if one treats positive and neg-
ative frequencies separately in the one–dimensional wavelet transform (resulting in
complex wavelets), the directional selectivity of the corresponding two–dimensional
multi–resolution analysis is improved. This can be done by applying the following
orthogonal projections:

P+ : L2 → L2,+ = {f ∈ L2 : supp f̂ ⊆ [0,∞)}
P− : L2 → L2,− = {f ∈ L2 : supp f̂ ⊆ (−∞, 0]} .

The projectors P+ and P− may be either applied to f or to {φ, φ̃} and {ψ, ψ̃}. In a
discrete framework these projections have to be approximated. This has been done
in different ways in the literature. In [16, 22] Hilbert transform pairs of wavelets are
used. In [14] f is projected (approximately) by multiplying with shifted generator
symbols in the frequency domain. We follow the second approach, i.e.

(P+f)∧(ω) := f̂(ω)H(ω − π/2) and (P−f)∧(ω) := f̂(ω)H(ω + π/2) ,

where f denotes the function to be analyzed and H is the low–pass filter for a
conjugate quadrature mirror filter pair. One then has

f̂(ω) = (B+P+f)∧(ω) + (B−P−f)∧(ω) , (4.1)

where the back–projections are given by

(B+f)∧ = f̂H(· − π/2) and (B−f)∧ = f̂H(·+ π/2)

respectively. This technique provides us with a simple multiplication scheme in
Fourier, or equivalently, a convolution scheme in time domain. In a separable two–
dimensional framework the projections need to be carried out in each of the two
frequency variables, resulting in four approximate projection operators P++, P+−,
P−+, P−−. Because f is real, we have

(P++f)∧(−ω) = (P−−f)∧(ω) and (P+−f)∧(−ω) = (P−+f)∧(ω) ,

so that the computation of P−+f and P−−f can be omitted. Consequently, the
modified variational functional takes the form

Ff (u, v) = 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+ 2α|u|B1

1(L1)

≤ 2
(
‖P++(f − (u+ v))‖2

L2
+ ‖P+−(f − (u+ v))‖2

L2

)
+

2λ
(
‖P++v‖2

H−1 + ‖P+−v‖2
H−1

)
+

4α
(
|P++u|B1

1(L1)
+ |P+−u|B1

1(L1)

)
,
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which can be minimized with respect to {P++v, P++u} and {P+−v, P+−u} sepa-
rately. The projections are be complex–valued, so that the thresholding operator
needs to be adapted. Parameterizing the wavelet coefficients by modulus and angle
and minimizing yields the following filtering rules for the projections of ṽγ,α and ũγ,α

(where ·· stands for any combination of +, −)

P ··ṽγ,α =
∑

λ∈Jj0

(1 + γ2−2|λ|)−1
[
P ··fλ − Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)

]
ψλ

and

P ··ũγ,α =
∑
k∈Ij0

〈P ··f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

(1 + γ2−2|λ|)−1Sα(22|λ|+γ)/γ(|P ··fλ|)eiω(P ··f)ψλ .

Finally, we have to apply the back-projections to obtain the minimizing functions

ṽBP
γ,α = B++P++ṽγ,α +B−−P++ṽγ,α +B+−P+−ṽγ,α +B−+P+−ṽγ,α

and

ũBP
γ,α = B++P++ũγ,α +B−−P++ũγ,α +B+−P+−ũγ,α +B−+P+−ũγ,α .

4.3 Weighted penalty functions

In order to improve the capability of preserving edges we additionally introduce a
positive weight sequence wλ in the H−1 penalty term. Consequently, we aim at
minimizing a slightly modified sequence space functional∑

λ∈J

(
|fλ − (uλ + vλ)|2 + γ2−2|λ|wλ|vλ|2 + 2α|uλ| · 1{λ∈Jj0

}
)
. (4.2)

The resulting texture and cartoon components take the form

ṽw
γ,α =

∑
λ∈Jj0

(1 + γwλ2
−2|λ|)−1

[
fλ − Sα(22|λ|+γwλ)/γwλ

(fλ)
]
ψλ

and
ũw

γ,α =
∑
k∈Ij0

〈f, φ̃j0,k〉φj0,k +
∑

λ∈Jj0

Sα(22|λ|+γwλ)/γwλ
(fλ)ψλ .

The main goal is to introduce a control parameter that depends on the local structure
of f . The local penalty weight wλ should be large in the presence of an edge and
small otherwise; the result of this weighting is to enhance the sensitivity of u near
edges. In order to do this, we must first localize the edges, which we do by a
procedure similar to an edge detection algorithm in [17]. This scheme rests on the
analysis of the cycle-spinned wavelet coefficients fλ at or near the same location but
at different scales. We expect that the fλ belonging to fine decomposition scales
contain informations of edges (well localized) as well as oscillating components.
Oscillating texture components typically show up in fine scales only; edges on the
other hand leave a signature of larger wavelet coefficients through a wider range of
scales. We thus apply the following not very sophisticated edge detector. Suppose
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that f ∈ VM and je denotes some ‘critical’ scale, then for a certain range of scales
|λ| = |(i, j, k)| = j ∈ {j0, . . . , j1 − je − 2, j1 − je − 1} we mark all positions k where
|fλ| is larger than a level dependent threshold parameter tj. Here the value tj is
chosen proportional to the mean value of all wavelet coefficients of level j. We say
that |fλ| represents an edge if k was marked for all j ∈ {j0, . . . , j1−je−2, j1−je−1}.
Finally, we adaptively choose the penalty sequence by setting

wλ =

{
Θλ if j ∈ {M − 1, . . . , j1 − je} and k was marked as an edge ,
ϑλ otherwise ,

where ϑλ is close to one and Θλ is much larger in order to penalize the corresponding
vλ’s.

5 Numerical experiments

In this section, we present some numerical experiments obtained with our wavelet–
based schemes.

We start with the case where K is the identity operator. In order to show how
the nonlinear (redundant) wavelet scheme acts on piecewise constant functions we
decompose a geometric image (representing cartoon components only) with sharp
contours, see Figure 1. We observe that ũ represents the cartoon part very well.
The texture component ṽ (plus a constant for illustration purposes) contains only
some very weak contour structures.

Next, we demonstrate the performance of the Haar shrinkage algorithm suc-
cessively incorporating redundancy and local penalty weights. The redundancy is
implemented by cycle spinning as describe in Section 4.1. The local penalty weights
are computed the following way: firstly, we apply the shrinkage operator S to f with
a level dependent threshold (the threshold per scale is equal to two times the mean
value of all the wavelet coefficients of the scale under consideration). Secondly, the
non zero values of Sthreshold(fλ) per scale indicate where wλ is set to Θλ = 1 + C ′

(here C ′ = 10, moreover, we set wλ equal to ϑλ = 1 elsewhere). The coefficients
Sthreshold(fλ) for the first two scales of a segment of a woman image are visualized in
Figure 2. In Figure 3, we present our numerical results. The upper row shows the
original and the noisy image. The next row visualizes the results for non-redundant
Haar shrinkage (Method A). The third row shows the same but incorporating cycle
spinning (Method B), and the last row shows the incorporation of cycle spinning
and local penalty weights. Each extension of the shrinkage method improves the
results. This is also be confirmed by comparing the signal–to–noise-ratios (which is
here defined as follows: SNR(f, g) = 10 log10(‖f‖2/‖f − g‖2)), see Table 1.

The next experiment is done on a fabric image, see Figure 4. But in contrast to
the examples before, we present here the use of frequency projection as introduced
in Section 4.2. The numerical result shows convincingly that the texture component
can be also well separated from the cartoon part.

In order to compare the performance with the Vese–Osher TV model and with
the Vese–Solé–Osher H−1 model we apply our scheme to a woman image (the same
that was used in [20, 19]), see Figure 5. We obtain very similar results as ob-
tained with the TV model proposed in [20]. Compared with the results obtained
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Figure 1: From left to right: initial geometric image f, ũ, ṽ + 150, computed with
Db3 in the translation invariant setting, α = 0.5, γ = 0.01.

Figure 2: Left: noisy segment of a woman image, middle and right: first two scales
of S(f) inducing the weight function w.

with the H−1 model proposed in [19] we observe that our reconstruction of the tex-
ture component contains much less cartoon information. In terms of computational
cost we have observed that even in the case of applying cycle spinning and edge
enhancement our proposed wavelet shrinkage scheme is less time consuming than
the Vese–Solé–Osher H−1 restoration scheme, see table 2, even when the wavelet
method is implemented in Matlab, which is slower than the compiled version for the
Vese–Solé–Osher scheme.

We end this section with presenting an experiment where K is not the identity
operator. In our particular case K is a convolution operator with Gaussian kernel.
The implementation is simply done in Fourier space. The upper row in Figure 6
shows the original f and the blurred image Kf . The lower row visualizes the results:
the cartoon component ũ, the texture component ṽ, and the sum of both ũ+ ṽ. One
may clearly see that the deblurred image ũ + ṽ contains (after a small number of
iterations) more small scale details than Kf . This definitely shows the capabilities
of the proposed iterative deblurring scheme (3.9).

Acknowledgments
The authors would like to thank L. Vese, S. Osher, C. DeMol and M. Defrise
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Figure 3: Top: initial and noisy image, 2nd row: non-redundant Haar shrinkage
(Method A), 3rd row: translation invariant Haar shrinkage (Method B), bottom:
translation invariant Haar shrinkage with edge enhancement (Method C); 2nd-4th
row from left to right: ũ, ṽ + 150 and ũ + ṽ, α = 0.5, γ = 0.0001, computed with
Haar wavelets and critical scale je = −3.
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Haar Shrinkage SNR(f , fε) SNR(f ,u+ v) SNR(f ,u)

Method A 20,7203 18,3319 16,0680
Method B 20,7203 21,6672 16,5886
Method C 20,7203 23,8334 17,5070

Table 1: Signal–to–noise ratios of the several decomposition methods (Haar shrink-
age, translation invariant Haar shrinkage, translation invariant Haar shrinkage with
edge enhancement).

Figure 4: From left to right: initial fabric image f , ũ, ṽ + 150, computed with Db4
incorporating frequency projections, α = 0.8, γ = 0.002.

Data basis ”Barbara” image (512x512 pixel)

Hardware Architecture PC
Operating System linux
OS Distribution redhat7.3
Model PC, AMD Athlon-XP
Memory Size (MB) 1024
Processor Speed (MHz) 1333
Number of CPUs 1

Computational cost (average over 10 runs)
PDE scheme in Fortran (compiler f77) 56,67 sec
wavelet shrinkage Method A (Matlab) 4,20 sec
wavelet shrinkage Method B (Matlab) 24,78 sec
wavelet shrinkage Method C (Matlab) 26,56 sec

Table 2: Comparison of computational cost of the PDE– and the wavelet–based
methods.
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Figure 5: Top from left to right: initial woman image f , ũ and ṽ + 150, computed
with Db10 (Method C), α = 0.5, γ = 0.002; bottom from left to right: u and
v obtained by the Vese–Osher TV model and the v component obtained by the
Vese–Solé–Osher H−1 model.

Figure 6: Top from left to right: initial image f , blurred image Kf ; bottom from
left to right: deblurred ũ, deblurred ṽ + 150, deblurred ũ + ṽ, computed with Db3
using the iterative approach, α = 0.2, γ = 0.001.

ULB for their hospitality during his stays in Princeton and Brussels.
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