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Radar Wind Profiler (RWP) technology has reached a stage, where Meteorological Ser-
vices consider their operational use within the Global Observing System (GOS), see [9].
In this contribution we concentrate on systems which employ the widely used Doppler-
Beam swinging (DBS) method for the determination of the vertical profile of the hori-
zontal wind.

The operational experience with these systems has shown, that the ”classical” signal
processing for the DBS method (see, for instance [10]) is not optimal with respect to the
effective filtering of non-atmospheric signals. Especially ground and intermittent clutter
signals can lead to serious degradations of the computed winds. Improved signal process-
ing using Wavelets was proposed by [6, 1], but the main problem with this technique so
far has been the lack of fine-tuning procedures.

The currently used digital processing assumes that the signal consists of two parts:
The signal that is produced by the atmospheric scattering process and noise. This is
certainly not true. Additional signal contributions emerge from ground clutter echoes,
intermittent clutter and occasionally spurious Radio Frequency (RF) signals of internal or
external origin. In the following, we will concentrate on the clutter problem and demon-
strate the potential of Wavelet filtering with one typical example, where the standard
signal processing yielded erroneous wind data.

The used data were sampled using the 482 MHz profiler at the Observatory Lindenberg
of the Deutscher Wetterdienst on the 1st of December 1999. A more detailed look into
the I/Q-Timeseries of the East Beam’s Gate 11 and 17 at 08:53:38 UTC (Figure 1) and
the resulting power spectra makes immediately clear that advanced signal processing for
RWP is necessary to increase the accuracy of wind vector reconstruction. The timeseries
at Gate 11 shows the typical signature of a slowly fading, large amplitude ground clutter
signal component, which corresponds to the narrow spike centered around point 1024
(zero Doppler shift) in the resulting power spectrum [8]. In contrast, the timeseries at
Gate 17 shows a strong transient component in the last quarter. Such a signature is quite
typical for a flier echo, as was shown by [1]. This transient almost completely covers up
any atmospheric signal in the power spectrum.

Motivated by [3, 7] our purpose was to embed the filtering procedure into the known
mathematical theory of wavelets. Wavelet techniques seem to be more than promising
because very important is the fact that the contamination appears often instationary
and with a priori unknown scale structure. In order to localize clutter components one
may use a great variety of wavelet filters [2] i.e. to choose a certain wavelet one has to
determine the properties of clutter.

The main emphasis of doing wavelet domain filtering is to create a suitable, i.e.
problem matched, coefficients selecting procedure. We apply statistical estimation theory
to separate the atmospheric component. A side effect of using statistics is to get a
measure of reconstruction quality. This reveals a objective evaluation and a self-acting
filter algorithm.
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Figure 1: This figure shows the East beam and a detailed look into raw data.

We assume that our data f may be represented as a series
Z o dor () + Z Z Biktj(z

This expansion is a special kind of orthogonal series. In case of orthogonal series estima-
tion the idea of reconstructing the desired atmospheric signal is not difficult.

From given measurements (Y3,...,Y,) we want to estimate the function f in the
simple model

Y = f(Xi) + &4
where ¢ is a stochastic process. The basic idea i 1s to replace the wavelet coefﬁments in the
series expansion by empirical estimates &, = Z Yi-¢ie(X;) and ﬂjk =1 Z Yi-in(X5),

where the X; are timestamps and the Y; are observatlons A stralghtforward linear
estimation is given by the projection

fgl Z QjokPijok (T) + Z Z Bixtjx(z

J=Jo

To appraise this estimator it is known that one may solve the expected loss or the risk
E||f;, — f]|? (mean integrated squared error).

Obviously this kind of linear estimation includes all clutter components, because we
have taken the whole set of wavelet coefficients , i.e. we have not performed any filtering
step so far.

In the following we want to apply so-called hard thresholding and soft thresholding
respectively. These routines were introduced and adapted to several problems by Donoho
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Figure 2: Decomposition (sequences of level 4), reconstruction and Fourier power spec-
trum of gate 17 (top) and gate 11 (below). The dark curves in the power spectra repre-
sentations display the decontaminated spectra. Clearly to recognize are the differences of
moment estimations, see the computed first moment before (red arrow) and after (blue
arrow) the filtering step.

and Johnstone [4, 5. Inspired by these easy to implement procedures we adjusted it to
our problem.

The functions of soft and hard thresholding are given by n*(u) = (|u| — \)sgn(u) and
n"(u) = uX{u>r} respectively. Here \ is a adequate threshold. Applying this rule to our
linear wavelet estimator we get a nonlinear estimator

fr@) = Z " (Gjok ) Pjok (%) + Z Z 7 (Bjk) s (),

Jj=jo k

where n* is n° and n" respectively.

If the threshold A is specified according to the asymptotic distribution of the empir-
ical coefficients, only those coefficients remain which are supposed to carry significant
signal information. These are finally used for the reconstruction by the inverse wavelet
transform. For the right level of significance an appropriate choice of the threshold A is
needed, which in general depends not only on the sample size n, but also on the resolu-
tion scale j and location k of the coefficients. In case of regression with non-stationary
errors we have to use a both level and location dependent threshold rule [11]. For thresh-

olds Aji satisfying ojx/2logM; < A\ < C 10% and for any positive constant C' we
have supfeFfz(M)EHf* — flIZ = O ((log(n)/n)?/+1) | where o; is the variance and
M; denotes the number of the coefficients used in the nonlinear estimator. The optimal
threshold rate is attained only for the optimal threshold. But in practice this is unknown
and thus we have to replace oj; by some estimation ¢;;,. Hence the log-term is to un-
derstand as the price for some data-driven threshold rule and it originates due to the
estimation of the unknown variance 0%, = Var(B).

Coming back to our particular dataset (see Figure 1), the problem was that gate 17
was contaminated by intermittent clutter (aircraft echoes) and gate 11 by ground clutter.



Using standard signal processing without any filtering step prior to the FF'T, the spectra
were significantly biased and therefore the moment estimation and in the end the wind
vector reconstruction. Figure 2 exemplifies how wavelet thresholding was realized in the
decomposition sequences ay. and f,. of gate 11 and 17. The dotted lines may be identified
with the threshold ).

Result: We have demonstrated wavelet domain filtering using real wind profiler data.
The ideas of discrete multiscale analysis and nonlinear estimation theory were used and
developed for removing ground and intermittent clutter (airplane echoes). The presented
algorithm is a step toward removing clutter automatically and stable. Real time imple-
mentation in profiler systems is required to test the new method with a substantially
longer dataset, preferably in parallel with the standard processing (comparison), and to
demonstrate its use for operational applications.
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